summaryrefslogtreecommitdiff
path: root/usr/src/cmd/sgs/elfdump/common/fake_shdr.c
blob: 498ea2ceff630a1b96a71842806d924b0324b412 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Generate a cache of section header information for an ELF
 * object from the information found in its program headers.
 *
 * Malicious code can remove or corrupt section headers. The
 * resulting program will be difficult to analyze, but is still
 * runnable. Hence, scribbling on the section headers or removing
 * them is an effective form of obfuscation. On the other hand,
 * program headers must be accurate or the program will not run.
 * Section headers derived from them will necessarily lack information
 * found in the originals (particularly for non-allocable sections),
 * but will provide essential symbol information. The focus is on
 * recovering information that elfdump knows how to display, and that
 * might be interesting in a forensic situation.
 *
 * There are some things we don't attempt to create sections for:
 *
 *	plt, got
 *		We have no way to determine the length of either of
 *		these sections from the information available via
 *		the program headers or dynamic section. The data in
 *		the PLT is of little use to elfdump. The data in the
 *		GOT might be somewhat more interesting, especially as
 *		it pertains to relocations. However, the sizing issue
 *		remains.
 *
 *	text, data, bss
 *		Although we could create these, there is little value
 *		to doing so. elfdump cannot display the arbitrary
 *		data in these sections, so this would amount to a
 *		simple repetition of the information already displayed
 *		in the program headers, with no additional benefit.
 */



#include	<sys/elf_amd64.h>
#include	<stdio.h>
#include	<unistd.h>
#include	<errno.h>
#include	<string.h>
#include	<strings.h>
#include	<conv.h>
#include	<msg.h>
#include	<_elfdump.h>



/*
 * Common information about the object that is needed by
 * all the routines in this module.
 */
typedef struct {
	const char	*file;
	int		fd;
	Ehdr		*ehdr;
	Phdr		*phdr;
	size_t		phnum;
} FSTATE;



/*
 * These values uniquely identify the sections that we know
 * how to recover.
 *
 * Note: We write the sections to the cache array in this same order.
 * It simplifies this code if the dynamic, dynstr, dynsym, and ldynsym
 * sections occupy known slots in the cache array. Other sections reference
 * them by index, and if they are at a known spot, there is no need
 * for a fixup pass. Putting them in positions [1-4] solves this.
 *
 * The order they are in was chosen such that if any one of them exists,
 * all of the ones before it must also exist. This means that if the
 * desired section exists, it will end up in the desired index in the
 * cache array.
 *
 * The order of the other sections is arbitrary. I've arranged them
 * in roughly related groups.
 */
typedef enum {
	SINFO_T_NULL =		0,
	SINFO_T_DYN =		1,
	SINFO_T_DYNSTR = 	2,
	SINFO_T_DYNSYM =	3,
	SINFO_T_LDYNSYM =	4,

	SINFO_T_HASH =		5,
	SINFO_T_SYMINFO =	6,
	SINFO_T_SYMSORT =	7,
	SINFO_T_TLSSORT =	8,
	SINFO_T_VERNEED =	9,
	SINFO_T_VERDEF =	10,
	SINFO_T_VERSYM =	11,
	SINFO_T_INTERP =	12,
	SINFO_T_CAP =		13,
	SINFO_T_CAPINFO =	14,
	SINFO_T_CAPCHAIN =	15,
	SINFO_T_UNWIND =	16,
	SINFO_T_MOVE =		17,
	SINFO_T_REL =		18,
	SINFO_T_RELA =		19,
	SINFO_T_PREINITARR =	20,
	SINFO_T_INITARR =	21,
	SINFO_T_FINIARR =	22,
	SINFO_T_NOTE =		23,

	SINFO_T_NUM =		24 /* Count of items. Must come last */
} SINFO_TYPE;



/*
 * Table of per-section constant data used to set up the section
 * header cache and the various sub-parts it references. Indexed by
 * SINFO_T value.
 *
 * note: The sh_flags value should be either SHF_ALLOC, or 0.
 *	get_data() sets SHF_WRITE if the program header containing the
 *	section is writable. The other flags require information that
 *	the program headers don't contain (i.e. SHF_STRINGS, etc) so
 *	we don't set them.
 */
typedef struct {
	const char	*name;
	Word		sh_type;
	Word		sh_flags;
	Word		sh_addralign;
	Word		sh_entsize;
	Elf_Type	libelf_type;
} SINFO_DATA;

/*
 * Many of these sections use an alignment given by M_WORD_ALIGN, a
 * value that varies depending on the object target machine. Since we
 * don't know that value at compile time, we settle for a value of
 * 4 for ELFCLASS32 objects, and 8 for ELFCLASS64. This matches the
 * platforms we current support (sparc and x86), and is good enough for
 * a fake section header in any event, as the resulting object is only
 * analyzed, and is not executed.
 */
#ifdef _ELF64
#define	FAKE_M_WORD_ALIGN 8
#else
#define	FAKE_M_WORD_ALIGN 4
#endif

static SINFO_DATA sinfo_data[SINFO_T_NUM] = {
	/* SINFO_T_NULL */
	{ 0 },

	/* SINFO_T_DYN */
	{ MSG_ORIG(MSG_PHDRNAM_DYN), SHT_DYNAMIC, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Dyn), ELF_T_DYN },

	/* SINFO_T_DYNSTR */
	{ MSG_ORIG(MSG_PHDRNAM_DYNSTR), SHT_STRTAB, SHF_ALLOC,
	    1, 0, ELF_T_BYTE },

	/* SINFO_T_DYNSYM */
	{ MSG_ORIG(MSG_PHDRNAM_DYNSYM), SHT_DYNSYM, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Sym), ELF_T_SYM },

	/* SINFO_T_LDYNSYM */
	{ MSG_ORIG(MSG_PHDRNAM_LDYNSYM), SHT_SUNW_LDYNSYM, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Sym), ELF_T_SYM },

	/* SINFO_T_HASH */
	{ MSG_ORIG(MSG_PHDRNAM_HASH), SHT_HASH, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Word), ELF_T_WORD },

	/* SINFO_T_SYMINFO */
	{ MSG_ORIG(MSG_PHDRNAM_SYMINFO),  SHT_SUNW_syminfo, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Syminfo), ELF_T_SYMINFO },

	/* SINFO_T_SYMSORT */
	{ MSG_ORIG(MSG_PHDRNAM_SYMSORT), SHT_SUNW_symsort, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Word), ELF_T_WORD },

	/* SINFO_T_TLSSORT */
	{ MSG_ORIG(MSG_PHDRNAM_TLSSORT), SHT_SUNW_tlssort, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Word), ELF_T_WORD },

	/* SINFO_T_VERNEED */
	{ MSG_ORIG(MSG_PHDRNAM_VER), SHT_SUNW_verneed, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, 1, ELF_T_VNEED },

	/* SINFO_T_VERDEF */
	{ MSG_ORIG(MSG_PHDRNAM_VER), SHT_SUNW_verdef, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, 1, ELF_T_VDEF },

	/* SINFO_T_VERSYM */
	{ MSG_ORIG(MSG_PHDRNAM_VER), SHT_SUNW_versym, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Versym), ELF_T_HALF },

	/* SINFO_T_INTERP */
	{ MSG_ORIG(MSG_PHDRNAM_INTERP), SHT_PROGBITS, SHF_ALLOC,
	    1, 0, ELF_T_BYTE },

	/* SINFO_T_CAP */
	{ MSG_ORIG(MSG_PHDRNAM_CAP), SHT_SUNW_cap, SHF_ALLOC,
	    sizeof (Addr), sizeof (Cap), ELF_T_CAP },

	/* SINFO_T_CAPINFO */
	{ MSG_ORIG(MSG_PHDRNAM_CAPINFO), SHT_SUNW_capinfo, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Capinfo), ELF_T_WORD },

	/* SINFO_T_CAPCHAIN */
	{ MSG_ORIG(MSG_PHDRNAM_CAPCHAIN), SHT_SUNW_capchain, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Capchain), ELF_T_WORD },

	/* SINFO_T_UNWIND */
	{ MSG_ORIG(MSG_PHDRNAM_UNWIND), SHT_AMD64_UNWIND, SHF_ALLOC,
	    sizeof (Addr), 0, ELF_T_BYTE },

	/* SINFO_T_MOVE */
	{ MSG_ORIG(MSG_PHDRNAM_MOVE), SHT_SUNW_move, SHF_ALLOC,
	    sizeof (Lword), sizeof (Move), ELF_T_MOVE },

	/* SINFO_T_REL */
	{ MSG_ORIG(MSG_PHDRNAM_REL), SHT_REL, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Rel), ELF_T_REL },

	/* SINFO_T_RELA */
	{ MSG_ORIG(MSG_PHDRNAM_RELA), SHT_RELA, SHF_ALLOC,
	    FAKE_M_WORD_ALIGN, sizeof (Rela), ELF_T_RELA },

	/* SINFO_T_PREINITARR */
	{ MSG_ORIG(MSG_PHDRNAM_PREINITARR), SHT_PREINIT_ARRAY, SHF_ALLOC,
	    sizeof (Addr), sizeof (Addr), ELF_T_ADDR },

	/* SINFO_T_INITARR */
	{ MSG_ORIG(MSG_PHDRNAM_INITARR), SHT_INIT_ARRAY, SHF_ALLOC,
	    sizeof (Addr), sizeof (Addr),  ELF_T_ADDR },

	/* SINFO_T_FINIARR */
	{ MSG_ORIG(MSG_PHDRNAM_FINIARR), SHT_FINI_ARRAY, SHF_ALLOC,
	    sizeof (Addr), sizeof (Addr), ELF_T_ADDR },

	/* SINFO_T_NOTE */
	{ MSG_ORIG(MSG_PHDRNAM_NOTE), SHT_NOTE, 0,
	    FAKE_M_WORD_ALIGN, 1, ELF_T_NOTE }
};





/*
 * As we read program headers and dynamic elements, we build up
 * the data for our fake section headers in variables of the
 * SINFO type. SINFO is used to track the sections that can only
 * appear a fixed number of times (usually once).
 *
 * SINFO_LISTELT is used for sections that can occur an arbitrary
 * number of times. They are kept in a doubly linked circular
 * buffer.
 */
typedef struct {
	SINFO_TYPE	type;	/* Our type code for the section */
	Addr		vaddr;	/* Virtual memory address */
	Off		offset;	/* File offset of data. Ignored unless */
				/*	vaddr is 0. Used by program headers */
	size_t		size;	/* # bytes in section */
	size_t		vercnt;	/* Used by verdef and verneed to hold count */
	Shdr		*shdr;	/* Constructed shdr */
	Elf_Data	*data;	/* Constructed data descriptor */
} SINFO;

typedef struct _sinfo_listelt {
	struct _sinfo_listelt	*next;
	struct _sinfo_listelt	*prev;
	SINFO			sinfo;
} SINFO_LISTELT;



/*
 * Free dynamic memory used by SINFO structures.
 *
 * entry:
 *	sinfo - Address of first SINFO structure to free
 *	n - # of structures to clear
 *
 * exit:
 *	For each SINFO struct, the section header, data descriptor,
 *	and data buffer are freed if non-NULL. The relevant
 *	fields are set to NULL, and the type is set to SINFO_T_NULL.
 */
static void
sinfo_free(SINFO *sinfo, size_t n)
{
	for (; n-- > 0; sinfo++) {
		if (sinfo->data != NULL) {
			if (sinfo->data->d_buf != NULL)
				free(sinfo->data->d_buf);
			free(sinfo->data);
			sinfo->data = NULL;
		}

		if (sinfo->shdr) {
			free(sinfo->shdr);
			sinfo->shdr = NULL;
		}
		sinfo->type = SINFO_T_NULL;
	}
}



/*
 * Allocate a new SINFO_LISTELT and put it at the end of the
 * doubly linked list anchored by the given list root node.
 *
 * On success, a new node has been put at the end of the circular
 * doubly linked list, and a pointer to the SINFO sub-structure is
 * returned. On failure, an error is printed, and NULL is returned.
 */

static SINFO *
sinfo_list_alloc(FSTATE *fstate, SINFO_LISTELT *root)
{
	SINFO_LISTELT *elt;

	if ((elt = malloc(sizeof (*elt))) == NULL) {
		int err = errno;
		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
		    fstate->file, strerror(err));
		return (0);
	}

	elt->next = root;
	elt->prev = root->prev;

	root->prev = elt;
	elt->prev->next = elt;

	bzero(&elt->sinfo, sizeof (elt->sinfo));
	return (&elt->sinfo);
}



/*
 * Release the memory used by the given list, restoring it to
 * an empty list.
 */
static void
sinfo_list_free_all(SINFO_LISTELT *root)
{
	SINFO_LISTELT *elt;

	for (elt = root->next; elt != root; elt = elt->next)
		sinfo_free(&elt->sinfo, 1);

	root->next = root->prev = root;
}



/*
 * Given a virtual address and desired size of the data to be found
 * at that address, look through the program headers for the PT_LOAD
 * segment that contains it and return the offset within the ELF file
 * at which it resides.
 *
 * entry:
 *	fstate - Object state
 *	addr - virtual address to be translated
 *	size - Size of the data to be found at that address, in bytes
 *	zero_bytes - NULL, or address to receive the number of data
 *		bytes at the end of the data that are not contained
 *		in the file, and which must be zero filled by the caller.
 *		If zero_bytes is NULL, the file must contain all of the
 *		desired data. If zero_bytes is not NULL, then the program
 *		header must reserve the space for all of the data (p_memsz)
 *		but it is acceptable for only part of the data to be in
 *		the file (p_filesz). *zero_bytes is set to the difference
 *		in size, and is the number of bytes the caller must
 *		set to 0 rather than reading from the file.
 *	phdr_ret - NULL, or address of variable to receive pointer
 *		to program header that contains offset.
 * exit:
 *	On success: If zero_bytes is non-NULL, it is updated. If phdr_ret
 *	is non-NULL, it is updated. The file offset is returned.
 *
 *	On failure, 0 is returned. Since any ELF file we can understand
 *	must start with an ELF magic number, 0 cannot be a valid file
 *	offset for a virtual address, and is therefore unambiguous as
 *	a failure indication.
 */
static Off
map_addr_to_offset(FSTATE *fstate, Addr addr, size_t size, size_t *zero_bytes,
    Phdr **phdr_ret)
{
	Off	offset;
	Addr	end_addr = addr + size;
	size_t	avail_file;
	Phdr	*phdr = fstate->phdr;
	size_t	phnum = fstate->phnum;

	for (; phnum--; phdr++) {
		if (phdr->p_type != PT_LOAD)
			continue;

		if ((addr >= phdr->p_vaddr) &&
		    (end_addr <= (phdr->p_vaddr + phdr->p_memsz))) {
			/*
			 * Subtract segment virtual address, leaving the
			 * offset relative to the segment (not the file).
			 */
			offset = addr - phdr->p_vaddr;
			avail_file = phdr->p_filesz - offset;

			/*
			 * The addr/size are in bounds for this segment.
			 * Is there enough data in the file to satisfy
			 * the request? If zero_bytes is NULL, it must
			 * all be in the file. Otherwise it can be
			 * zero filled.
			 */
			if (zero_bytes == NULL) {
				if (size > avail_file)
					continue;
			} else {
				*zero_bytes = (size > avail_file) ?
				    (size - avail_file) : 0;
			}

			if (phdr_ret != NULL)
				*phdr_ret = phdr;

			/* Add segment file offset, giving overall offset */
			return (phdr->p_offset + offset);
		}
	}

	/* If we get here, the mapping failed */
	return (0);
}



/*
 * This routine is the same thing as map_addr_to_offset(), except that
 * it goes the other way, mapping from offset to virtual address.
 *
 * The comments for map_addr_to_offset() are applicable if you
 * reverse offset and address.
 */

static Addr
map_offset_to_addr(FSTATE *fstate, Off offset, size_t size, size_t *zero_bytes,
    Phdr **phdr_ret)
{
	Off	end_offset = offset + size;
	size_t	avail_file;
	Phdr	*phdr = fstate->phdr;
	size_t	phnum = fstate->phnum;

	for (; phnum--; phdr++) {
		if (phdr->p_type != PT_LOAD)
			continue;

		if ((offset >= phdr->p_offset) &&
		    (end_offset <= (phdr->p_offset + phdr->p_memsz))) {
			/*
			 * Subtract segment offset, leaving the
			 * offset relative to the segment (not the file).
			 */
			offset -= phdr->p_offset;
			avail_file = phdr->p_filesz - offset;

			/*
			 * The offset/size are in bounds for this segment.
			 * Is there enough data in the file to satisfy
			 * the request? If zero_bytes is NULL, it must
			 * all be in the file. Otherwise it can be
			 * zero filled.
			 */
			if (zero_bytes == NULL) {
				if (size > avail_file)
					continue;
			} else {
				*zero_bytes = (size > avail_file) ?
				    (size - avail_file) : 0;
			}

			if (phdr_ret != NULL)
				*phdr_ret = phdr;

			/* Add segment virtual address, giving overall addr */
			return (phdr->p_vaddr + offset);
		}
	}

	/* If we get here, the mapping failed */
	return (0);
}



/*
 * Use elf_xlatetom() to convert the bytes in buf from their
 * in-file representation to their in-memory representation.
 *
 * Returns True(1) for success. On failure, an error message is printed
 * and False(0) is returned.
 */
static int
xlate_data(FSTATE *fstate, void *buf, size_t nbyte, Elf_Type xlate_type)
{
	Elf_Data	data;

	data.d_type = xlate_type;
	data.d_size = nbyte;
	data.d_off = 0;
	data.d_align = 0;
	data.d_version = fstate->ehdr->e_version;
	data.d_buf = buf;

	if (elf_xlatetom(&data, &data,
	    fstate->ehdr->e_ident[EI_DATA]) == NULL) {
		failure(fstate->file, MSG_ORIG(MSG_ELF_XLATETOM));
		return (0);
	}

	return (1);
}


/*
 * Read nbytes of data into buf, starting at the specified offset
 * within the ELF file.
 *
 * entry:
 *	fstate - Object state
 *	offset - Offset within the file at which desired data resides.
 *	buf - Buffer to receive the data
 *	nbyte - # of bytes to read into buf
 *	xlate_type - An ELF xlate type, specifying the type of data
 *		being input. If xlate_type is ELF_T_BYTE, xlate is not
 *		done. Otherwise, xlate_data() is called to convert the
 *		data into its in-memory representation.
 * exit:
 *	On success, the data has been written into buf, xlate_data()
 *	called on it if required, and True(1) is returned. Otherwise
 *	False(0) is returned.
 *
 * note:
 *	This routine does not move the file pointer.
 */
static int
read_data(FSTATE *fstate, Off offset, void *buf, size_t nbyte,
    Elf_Type xlate_type)
{
	if (pread(fstate->fd, buf, nbyte, offset) != nbyte) {
		int err = errno;

		(void) fprintf(stderr, MSG_INTL(MSG_ERR_READ),
		    fstate->file, strerror(err));
		return (0);
	}

	if (xlate_type != ELF_T_BYTE)
		return (xlate_data(fstate, buf, nbyte, xlate_type));

	return (1);
}



/*
 * Read the hash nbucket/nchain values from the start of the hash
 * table found at the given virtual address in the mapped ELF object.
 *
 * On success, *nbucket, and *nchain have been filled in with their
 * values, *total contains the number of elements in the hash table,
 * and this routine returns True (1).
 *
 * On failure, False (0) is returned.
 */
static int
hash_size(FSTATE *fstate, SINFO *hash_sinfo,
    Word *nbucket, Word *nchain, size_t *total)
{
	Off		offset;
	Word		buf[2];

	offset = map_addr_to_offset(fstate, hash_sinfo->vaddr,
	    sizeof (buf), NULL, NULL);
	if (offset == 0)
		return (0);

	if (read_data(fstate, offset, buf, sizeof (buf), ELF_T_WORD) == 0)
		return (0);

	*nbucket = buf[0];
	*nchain = buf[1];
	*total = 2 + *nbucket + *nchain;
	return (1);
}



/*
 * Read a Verdef structure at the specified file offset and return
 * its vd_cnt, vd_aux, and vd_next fields.
 */
static int
read_verdef(FSTATE *fstate, Off offset, Half *cnt, Word *aux, Word *next)
{
	Verdef		verdef;

	if (read_data(fstate, offset, &verdef, sizeof (verdef),
	    ELF_T_BYTE) == 0)
		return (0);

	/* xlate vd_cnt */
	if (xlate_data(fstate, &verdef.vd_cnt, sizeof (verdef.vd_cnt),
	    ELF_T_HALF) == 0)
		return (0);

	/*
	 * xlate vd_aux and vd_next. These items are adjacent and are
	 * both Words, so they can be handled in a single operation.
	 */
	if (xlate_data(fstate, &verdef.vd_aux,
	    2 * sizeof (Word), ELF_T_WORD) == 0)
		return (0);

	*cnt = verdef.vd_cnt;
	*aux = verdef.vd_aux;
	*next = verdef.vd_next;

	return (1);
}



/*
 * Read a Verdaux structure at the specified file offset and return
 * its vda_next field.
 */
static int
read_verdaux(FSTATE *fstate, Off offset, Word *next)
{
	Verdaux		verdaux;

	if (read_data(fstate, offset, &verdaux, sizeof (verdaux),
	    ELF_T_BYTE) == 0)
		return (0);

	/* xlate vda_next */
	if (xlate_data(fstate, &verdaux.vda_next, sizeof (verdaux.vda_next),
	    ELF_T_WORD) == 0)
		return (0);

	*next = verdaux.vda_next;

	return (1);
}



/*
 * Read a Verneed structure at the specified file offset and return
 * its vn_cnt, vn_aux, and vn_next fields.
 */
static int
read_verneed(FSTATE *fstate, Off offset, Half *cnt, Word *aux, Word *next)
{
	Verneed		verneed;

	if (read_data(fstate, offset, &verneed, sizeof (verneed),
	    ELF_T_BYTE) == 0)
		return (0);

	/* xlate vn_cnt */
	if (xlate_data(fstate, &verneed.vn_cnt, sizeof (verneed.vn_cnt),
	    ELF_T_HALF) == 0)
		return (0);

	/*
	 * xlate vn_aux and vn_next. These items are adjacent and are
	 * both Words, so they can be handled in a single operation.
	 */
	if (xlate_data(fstate, &verneed.vn_aux,
	    2 * sizeof (Word), ELF_T_WORD) == 0)
		return (0);

	*cnt = verneed.vn_cnt;
	*aux = verneed.vn_aux;
	*next = verneed.vn_next;

	return (1);
}



/*
 * Read a Vernaux structure at the specified file offset and return
 * its vna_next field.
 */
static int
read_vernaux(FSTATE *fstate, Off offset, Word *next)
{
	Vernaux		vernaux;

	if (read_data(fstate, offset, &vernaux, sizeof (vernaux),
	    ELF_T_BYTE) == 0)
		return (0);

	/* xlate vna_next */
	if (xlate_data(fstate, &vernaux.vna_next, sizeof (vernaux.vna_next),
	    ELF_T_WORD) == 0)
		return (0);

	*next = vernaux.vna_next;

	return (1);
}



/*
 * Compute the size of Verdef and Verneed sections. Both of these
 * sections are made up of interleaved main nodes (Verdef and Verneed)
 * and auxiliary blocks (Verdaux and Vernaux). These nodes refer to
 * each other by relative offsets. The linker has a lot of flexibility
 * in how it lays out these items, and we cannot assume a standard
 * layout. To determine the size of the section, we must read each
 * main node and compute the high water mark of the memory it and its
 * auxiliary structs access.
 *
 * Although Verdef/Verdaux and Verneed/Vernaux are different types,
 * their logical organization is the same. Each main block has
 * a cnt field that tells how many auxiliary blocks it has, an
 * aux field that gives the offset of the first auxiliary block, and
 * an offset to the next main block. Each auxiliary block contains
 * an offset to the next auxiliary block. By breaking the type specific
 * code into separate sub-functions, we can process both Verdef and
 * sections Verdaux from a single routine.
 *
 * entry:
 *	fstate - Object state
 *	sec - Section to be processed (SINFO_T_VERDEF or SINFO_T_VERNEED).
 *
 * exit:
 *	On success, sec->size is set to the section size in bytes, and
 *	True (1) is returned. On failure, False (0) is returned.
 */
static int
verdefneed_size(FSTATE *fstate, SINFO *sec)
{
	int (* read_main)(FSTATE *, Off, Half *, Word *, Word *);
	int (* read_aux)(FSTATE *, Off, Word *);
	size_t	size_main, size_aux;

	Off	offset, aux_offset;
	Off	highwater, extent;
	size_t	num_main = sec->vercnt;
	Half	v_cnt;
	Word	v_aux, v_next, va_next;


	/*
	 * Set up the function pointers to the type-specific code
	 * for fetching data from the main and auxiliary blocks.
	 */
	if (sec->type == SINFO_T_VERDEF) {
		read_main = read_verdef;
		read_aux = read_verdaux;
		size_main = sizeof (Verdef);
		size_aux = sizeof (Verdaux);
	} else {			/* SINFO_T_VERNEED */
		read_main = read_verneed;
		read_aux = read_vernaux;
		size_main = sizeof (Verneed);
		size_aux = sizeof (Vernaux);
	}

	/*
	 * Map starting address to file offset. Save the starting offset
	 * in the SINFO size field. Once we have the high water offset, we
	 * can subtract this from it to get the size.
	 *
	 * Note: The size argument set here is a lower bound --- the
	 * size of the main blocks without any auxiliary ones. It's
	 * the best we can do until the size has been determined for real.
	 */
	offset = highwater = map_addr_to_offset(fstate, sec->vaddr,
	    size_main * num_main, NULL, NULL);
	if (offset == 0)
		return (0);
	sec->size = offset;

	for (; num_main-- > 0; offset += v_next) {
		/* Does this move the high water mark up? */
		extent = offset + size_main;
		if (extent > highwater)
			highwater = extent;

		if ((*read_main)(fstate, offset, &v_cnt, &v_aux, &v_next) == 0)
			return (0);

		/*
		 * If there are auxiliary structures referenced,
		 * check their position to see if it pushes
		 * the high water mark.
		 */
		aux_offset = offset + v_aux;
		for (; v_cnt-- > 0; aux_offset += va_next) {
			extent = aux_offset + size_aux;
			if (extent > highwater)
				highwater = extent;

			if ((*read_aux)(fstate, aux_offset, &va_next) == 0)
				return (0);
		}
	}

	sec->size = highwater - sec->size;
	return (1);
}


/*
 * Allocate and fill in a fake section header, data descriptor,
 * and data buffer for the given section. Fill them in and read
 * the associated data into the buffer.
 *
 * entry:
 *	fstate - Object state
 *	sec - Section information
 *
 * exit:
 *	On success, the actions described above are complete, and
 *	True (1) is returned.
 *
 *	On failure, an error is reported, all resources used by sec
 *	are released, and sec->type is set to SINFO_T_NULL, effectively
 *	eliminating its contents from any further use. False (0) is
 *	returned.
 */
static int
get_data(FSTATE *fstate, SINFO *sec)
{

	SINFO_DATA	*tinfo;
	size_t		read_bytes, zero_bytes;
	Phdr		*phdr = NULL;

	/*
	 * If this is a NULL section, or if we've already processed
	 * this item, then we are already done.
	 */
	if ((sec->type == SINFO_T_NULL) || (sec->shdr != NULL))
		return (1);

	if (((sec->shdr = malloc(sizeof (*sec->shdr))) == NULL) ||
	    ((sec->data = malloc(sizeof (*sec->data))) == NULL)) {
		int err = errno;
		sinfo_free(sec, 1);
		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
		    fstate->file, strerror(err));
		return (0);
	}
	tinfo = &sinfo_data[sec->type];



	/*
	 * Fill in fake section header
	 *
	 * sh_name should be the offset of the name in the shstrtab
	 * section referenced by the ELF header. There is no
	 * value to elfdump in creating shstrtab, so we set
	 * sh_name to 0, knowing that elfdump doesn't look at it.
	 */
	sec->shdr->sh_name = 0;
	sec->shdr->sh_type = tinfo->sh_type;
	sec->shdr->sh_flags = tinfo->sh_flags;
	if ((tinfo->sh_flags & SHF_ALLOC) == 0) {
		/*
		 * Non-allocable section: Pass the addr (which is probably
		 * 0) and offset through without inspection.
		 */
		sec->shdr->sh_addr = sec->vaddr;
		sec->shdr->sh_offset = sec->offset;
		zero_bytes = 0;
	} else if (sec->vaddr == 0) {
		/*
		 * Allocable section with a 0 vaddr. Figure out the
		 * real address by mapping the offset to it using the
		 * program headers.
		 */
		sec->shdr->sh_addr = map_offset_to_addr(fstate, sec->offset,
		    sec->size, &zero_bytes, &phdr);
		sec->shdr->sh_offset = sec->offset;
	} else {
		/*
		 * Allocable section with non-0 vaddr. Use the vaddr
		 * to derive the offset.
		 */
		sec->shdr->sh_addr = sec->vaddr;
		sec->shdr->sh_offset = map_addr_to_offset(fstate,
		    sec->vaddr, sec->size, &zero_bytes, &phdr);
	}
	if (sec->shdr->sh_offset == 0) {
		sinfo_free(sec, 1);
		return (0);
	}
	/*
	 * If the program header has its write flags set, then set
	 * the section write flag.
	 */
	if (phdr && ((phdr->p_flags & PF_W) != 0))
		sec->shdr->sh_flags |= SHF_WRITE;
	sec->shdr->sh_size = sec->size;
	sec->shdr->sh_link = 0;
	sec->shdr->sh_info = 0;
	sec->shdr->sh_addralign = tinfo->sh_addralign;
	sec->shdr->sh_entsize = tinfo->sh_entsize;

	/*
	 * Some sections define special meanings for sh_link and sh_info.
	 */
	switch (tinfo->sh_type) {
	case SHT_DYNAMIC:
		sec->shdr->sh_link = SINFO_T_DYNSTR;
		break;

	case SHT_DYNSYM:
		sec->shdr->sh_link = SINFO_T_DYNSTR;
		sec->shdr->sh_info = 1;	/* First global symbol */
		break;

	case SHT_SUNW_LDYNSYM:
		sec->shdr->sh_link = SINFO_T_DYNSTR;
		/*
		 * ldynsym is all local symbols, so the index of the
		 * first global is equivalent to the number of symbols.
		 */
		sec->shdr->sh_info = sec->shdr->sh_size / sizeof (Sym);
		break;

	case SHT_HASH:
	case SHT_SUNW_move:
	case SHT_REL:
	case SHT_RELA:
	case SHT_SUNW_versym:
		sec->shdr->sh_link = SINFO_T_DYNSYM;
		break;

	case SHT_SUNW_verdef:
	case SHT_SUNW_verneed:
		sec->shdr->sh_link = SINFO_T_DYNSTR;
		sec->shdr->sh_info = sec->vercnt;
		break;

	case SHT_SUNW_syminfo:
		sec->shdr->sh_link = SINFO_T_DYNSYM;
		sec->shdr->sh_info = SINFO_T_DYN;
		break;

	case SHT_SUNW_symsort:
	case SHT_SUNW_tlssort:
		sec->shdr->sh_link = SINFO_T_LDYNSYM;
		break;
	}



	/* Fill in fake Elf_Data descriptor */
	sec->data->d_type = tinfo->libelf_type;
	sec->data->d_size = sec->size;
	sec->data->d_off = 0;
	sec->data->d_align = tinfo->sh_addralign;
	sec->data->d_version = fstate->ehdr->e_version;

	if (sec->size == 0) {
		sec->data->d_buf = NULL;
		return (1);
	}

	if ((sec->data->d_buf = malloc(sec->size)) == NULL) {
		int err = errno;

		sinfo_free(sec, 1);
		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
		    fstate->file, strerror(err));
		return (0);
	}

	read_bytes = sec->size - zero_bytes;
	if ((read_bytes > 0) &&
	    (read_data(fstate, sec->shdr->sh_offset, sec->data->d_buf,
	    read_bytes, ELF_T_BYTE) == 0)) {
		sinfo_free(sec, 1);
		return (0);
	}
	if (zero_bytes > 0)
		bzero(read_bytes + (char *)sec->data->d_buf, zero_bytes);

	if ((tinfo->libelf_type != ELF_T_BYTE) &&
	    (elf_xlatetom(sec->data, sec->data,
	    fstate->ehdr->e_ident[EI_DATA]) == NULL)) {
		sinfo_free(sec, 1);
		failure(fstate->file, MSG_ORIG(MSG_ELF_XLATETOM));
		return (0);
	}

	return (1);
}



/*
 * Generate a section header cache made up of information derived
 * from the program headers.
 *
 * entry:
 *	file - Name of object
 *	fd - Open file handle for object
 *	elf - ELF descriptor
 *	ehdr - Elf header
 *	cache, shnum - Addresses of variables to receive resulting
 *		cache and number of sections.
 *
 * exit:
 *	On success, *cache and *shnum are set, and True (1) is returned.
 *	On failure, False (0) is returned.
 *
 * note:
 *	The cache returned by this routine must be freed using
 *	fake_shdr_cache_free(), and not by a direct call to free().
 *	Otherwise, memory will leak.
 */
int
fake_shdr_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr,
    Cache **cache, size_t *shnum)
{
	/*
	 * The C language guarantees that a structure of homogeneous
	 * items will receive exactly the same layout in a structure
	 * as a plain array of the same type. Hence, this structure, which
	 * gives us by-name or by-index access to the various section
	 * info descriptors we maintain.
	 *
	 * We use this for sections where
	 *	- Only one instance is allowed
	 *	- We need to be able to access them easily by
	 *		name (for instance, when mining the .dynamic
	 *		section for information to build them up.
	 *
	 * NOTE: These fields must be in the same order as the
	 * SINFO_T_ type codes that correspond to them. Otherwise,
	 * they will end up in the wrong order in the cache array,
	 * and the sh_link/sh_info fields may be wrong.
	 */
	struct {
		/* Note: No entry is needed for SINFO_T_NULL */
		SINFO	dyn;
		SINFO	dynstr;
		SINFO	dynsym;
		SINFO	ldynsym;

		SINFO	hash;
		SINFO	syminfo;
		SINFO	symsort;
		SINFO	tlssort;
		SINFO	verneed;
		SINFO	verdef;
		SINFO	versym;
		SINFO	interp;
		SINFO	cap;
		SINFO	capinfo;
		SINFO	capchain;
		SINFO	unwind;
		SINFO	move;
		SINFO	rel;
		SINFO	rela;
		SINFO	preinitarr;
		SINFO	initarr;
		SINFO	finiarr;
	} sec;
	static const size_t sinfo_n = sizeof (sec) / sizeof (sec.dyn);
	SINFO *secarr = (SINFO *) &sec;

	/*
	 * Doubly linked circular list, used to track sections
	 * where multiple sections of a given type can exist.
	 * seclist is the root of the list. Its sinfo field is not
	 * used --- it serves to anchor the root of the list, allowing
	 * rapid access to the first and last element in the list.
	 */
	SINFO_LISTELT	seclist;

	FSTATE		fstate;
	size_t		ndx;
	size_t		num_sinfo, num_list_sinfo;
	SINFO		*sinfo;
	SINFO_LISTELT	*sinfo_list;
	Cache		*_cache;


	fstate.file = file;
	fstate.fd = fd;
	fstate.ehdr = ehdr;
	if (elf_getphdrnum(elf, &fstate.phnum) == -1) {
		failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
		return (0);
	}
	if ((fstate.phdr = elf_getphdr(elf)) == NULL) {
		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
		return (0);
	}

	bzero(&sec, sizeof (sec));	/* Initialize "by-name" sec info */
	seclist.next = seclist.prev = &seclist;	  /* Empty circular list */

	/*
	 * Go through the program headers and look for information
	 * we can use to synthesize section headers. By far the most
	 * valuable thing is a dynamic section, the contents of
	 * which point at all sections used by ld.so.1.
	 */
	for (ndx = 0; ndx < fstate.phnum; ndx++) {
		/*
		 * A program header with no file size does
		 * not have a backing section.
		 */
		if (fstate.phdr[ndx].p_filesz == 0)
			continue;


		switch (fstate.phdr[ndx].p_type) {
		default:
			/* Header we can't use. Move on to next one */
			continue;

		case PT_DYNAMIC:
			sec.dyn.type = SINFO_T_DYN;
			sinfo = &sec.dyn;
			break;

		case PT_INTERP:
			sec.interp.type = SINFO_T_INTERP;
			sinfo = &sec.interp;
			break;

		case PT_NOTE:
			if ((sinfo = sinfo_list_alloc(&fstate, &seclist)) ==
			    NULL)
				continue;
			sinfo->type = SINFO_T_NOTE;
			break;

		case PT_SUNW_UNWIND:
		case PT_SUNW_EH_FRAME:
			sec.unwind.type = SINFO_T_UNWIND;
			sinfo = &sec.unwind;
			break;

		case PT_SUNWCAP:
			sec.cap.type = SINFO_T_CAP;
			sinfo = &sec.cap;
			break;
		}

		/*
		 * Capture the position/extent information for
		 * the header in the SINFO struct set up by the
		 * switch statement above.
		 */
		sinfo->vaddr = fstate.phdr[ndx].p_vaddr;
		sinfo->offset = fstate.phdr[ndx].p_offset;
		sinfo->size = fstate.phdr[ndx].p_filesz;
	}

	/*
	 * If we found a dynamic section, look through it and
	 * gather information about the sections it references.
	 */
	if (sec.dyn.type == SINFO_T_DYN)
		(void) get_data(&fstate, &sec.dyn);
	if ((sec.dyn.type == SINFO_T_DYN) && (sec.dyn.data->d_buf != NULL)) {
		Dyn *dyn;
		for (dyn = sec.dyn.data->d_buf; dyn->d_tag != DT_NULL; dyn++) {
			switch (dyn->d_tag) {
			case DT_HASH:
				sec.hash.type = SINFO_T_HASH;
				sec.hash.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_STRTAB:
				sec.dynstr.type = SINFO_T_DYNSTR;
				sec.dynstr.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_SYMTAB:
				sec.dynsym.type = SINFO_T_DYNSYM;
				sec.dynsym.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_RELA:
				sec.rela.type = SINFO_T_RELA;
				sec.rela.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_RELASZ:
				sec.rela.size = dyn->d_un.d_val;
				break;

			case DT_STRSZ:
				sec.dynstr.size = dyn->d_un.d_val;
				break;

			case DT_REL:
				sec.rel.type = SINFO_T_REL;
				sec.rel.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_RELSZ:
				sec.rel.size = dyn->d_un.d_val;
				break;

			case DT_INIT_ARRAY:
				sec.initarr.type = SINFO_T_INITARR;
				sec.initarr.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_INIT_ARRAYSZ:
				sec.initarr.size = dyn->d_un.d_val;
				break;

			case DT_FINI_ARRAY:
				sec.finiarr.type = SINFO_T_FINIARR;
				sec.finiarr.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_FINI_ARRAYSZ:
				sec.finiarr.size = dyn->d_un.d_val;
				break;

			case DT_PREINIT_ARRAY:
				sec.preinitarr.type = SINFO_T_PREINITARR;
				sec.preinitarr.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_PREINIT_ARRAYSZ:
				sec.preinitarr.size = dyn->d_un.d_val;
				break;

			case DT_SUNW_CAPINFO:
				sec.capinfo.type = SINFO_T_CAPINFO;
				sec.capinfo.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_SUNW_CAPCHAIN:
				sec.capchain.type = SINFO_T_CAPCHAIN;
				sec.capchain.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_SUNW_SYMTAB:
				sec.ldynsym.type = SINFO_T_LDYNSYM;
				sec.ldynsym.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_SUNW_SYMSZ:
				sec.ldynsym.size = dyn->d_un.d_val;
				break;

			case DT_SUNW_SYMSORT:
				sec.symsort.type = SINFO_T_SYMSORT;
				sec.symsort.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_SUNW_SYMSORTSZ:
				sec.symsort.size = dyn->d_un.d_val;
				break;

			case DT_SUNW_TLSSORT:
				sec.tlssort.type = SINFO_T_TLSSORT;
				sec.tlssort.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_SUNW_TLSSORTSZ:
				sec.tlssort.size = dyn->d_un.d_val;
				break;

			case DT_MOVETAB:
				sec.move.type = SINFO_T_MOVE;
				sec.move.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_MOVESZ:
				sec.move.size = dyn->d_un.d_val;
				break;

			case DT_SYMINFO:
				sec.syminfo.type = SINFO_T_SYMINFO;
				sec.syminfo.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_SYMINSZ:
				sec.syminfo.size = dyn->d_un.d_val;
				break;

			case DT_VERSYM:
				sec.versym.type = SINFO_T_VERSYM;
				sec.versym.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_VERDEF:
				sec.verdef.type = SINFO_T_VERDEF;
				sec.verdef.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_VERDEFNUM:
				sec.verdef.vercnt = dyn->d_un.d_val;
				sec.verdef.size = sizeof (Verdef) *
				    dyn->d_un.d_val;
				break;

			case DT_VERNEED:
				sec.verneed.type = SINFO_T_VERNEED;
				sec.verneed.vaddr = dyn->d_un.d_ptr;
				break;

			case DT_VERNEEDNUM:
				sec.verneed.vercnt = dyn->d_un.d_val;
				sec.verneed.size = sizeof (Verneed) *
				    dyn->d_un.d_val;
				break;
			}
		}
	}

	/*
	 * Different sections depend on each other, and are meaningless
	 * without them. For instance, even if a .dynsym exists,
	 * no use can be made of it without a dynstr. These relationships
	 * fan out: Disqualifying the .dynsym will disqualify the hash
	 * section, and so forth.
	 *
	 * Disqualify sections that don't have the necessary prerequisites.
	 */

	/* Things that need the dynamic string table */
	if (sec.dynstr.size == 0)
		sec.dynstr.type = SINFO_T_NULL;
	if (sec.dynstr.type != SINFO_T_DYNSTR) {
		sinfo_free(&sec.dyn, 1);	/* Data already fetched */
		sec.dynsym.type =  SINFO_T_NULL;
		sec.dynsym.type =  SINFO_T_NULL;
		sec.verdef.type =  SINFO_T_NULL;
		sec.verneed.type =  SINFO_T_NULL;
	}

	/*
	 * The length of the hash section is encoded in its first two
	 * elements (nbucket, and nchain). The length of the dynsym,
	 * ldynsym, and versym are not given in the dynamic section,
	 * but are known to be the same as nchain.
	 *
	 * If we don't have a hash table, or cannot read nbuckets and
	 * nchain, we have to invalidate all of these.
	 */
	if (sec.hash.type == SINFO_T_HASH) {
		Word nbucket;
		Word nchain;
		size_t total;

		if (hash_size(&fstate, &sec.hash,
		    &nbucket, &nchain, &total) == 0) {
			sec.hash.type = SINFO_T_NULL;
		} else {
			/* Use these counts to set sizes for related sections */
			sec.hash.size = total * sizeof (Word);
			sec.dynsym.size = nchain * sizeof (Sym);
			sec.versym.size = nchain * sizeof (Versym);

			/*
			 * The ldynsym size received the DT_SUNW_SYMSZ
			 * value, which is the combined size of .dynsym
			 * and .ldynsym. Now that we have the dynsym size,
			 * use it to lower the ldynsym size to its real size.
			 */
			if (sec.ldynsym.size > sec.dynsym.size)
				sec.ldynsym.size  -= sec.dynsym.size;
		}
	}
	/*
	 * If the hash table is not present, or if the call to
	 * hash_size() failed, then discard the sections that
	 * need it to determine their length.
	 */
	if (sec.hash.type != SINFO_T_HASH) {
		sec.dynsym.type = SINFO_T_NULL;
		sec.ldynsym.type = SINFO_T_NULL;
		sec.versym.type = SINFO_T_NULL;
	}

	/*
	 * The runtime linker does not receive size information for
	 * Verdef and Verneed sections. We have to read their data
	 * in pieces and calculate it.
	 */
	if ((sec.verdef.type == SINFO_T_VERDEF) &&
	    (verdefneed_size(&fstate, &sec.verdef) == 0))
		sec.verdef.type = SINFO_T_NULL;
	if ((sec.verneed.type == SINFO_T_VERNEED) &&
	    (verdefneed_size(&fstate, &sec.verneed) == 0))
		sec.verneed.type = SINFO_T_NULL;

	/* Discard any section with a zero length */
	ndx = sinfo_n;
	for (sinfo = secarr; ndx-- > 0; sinfo++)
		if ((sinfo->type != SINFO_T_NULL) && (sinfo->size == 0))
			sinfo->type = SINFO_T_NULL;

	/* Things that need the dynamic symbol table */
	if (sec.dynsym.type != SINFO_T_DYNSYM) {
		sec.ldynsym.type = SINFO_T_NULL;
		sec.hash.type = SINFO_T_NULL;
		sec.syminfo.type = SINFO_T_NULL;
		sec.versym.type = SINFO_T_NULL;
		sec.move.type = SINFO_T_NULL;
		sec.rel.type = SINFO_T_NULL;
		sec.rela.type = SINFO_T_NULL;
	}

	/* Things that need the dynamic local symbol table */
	if (sec.ldynsym.type != SINFO_T_DYNSYM) {
		sec.symsort.type = SINFO_T_NULL;
		sec.tlssort.type = SINFO_T_NULL;
	}

	/*
	 * Look through the results and fetch the data for any sections
	 * we have found. At the same time, count the number.
	 */
	num_sinfo = num_list_sinfo = 0;
	ndx = sinfo_n;
	for (sinfo = secarr; ndx-- > 0; sinfo++) {
		if ((sinfo->type != SINFO_T_NULL) && (sinfo->data == NULL))
			(void) get_data(&fstate, sinfo);
		if (sinfo->data != NULL)
			num_sinfo++;
	}
	for (sinfo_list = seclist.next; sinfo_list != &seclist;
	    sinfo_list = sinfo_list->next) {
		sinfo = &sinfo_list->sinfo;
		if ((sinfo->type != SINFO_T_NULL) && (sinfo->data == NULL))
			(void) get_data(&fstate, sinfo);
		if (sinfo->data != NULL)
			num_list_sinfo++;
	}

	/*
	 * Allocate the cache array and fill it in. The cache array
	 * ends up taking all the dynamic memory we've allocated
	 * to build up sec and seclist, so on success, we have nothing
	 * left to clean up. If we can't allocate the cache array
	 * though, we have to free up everything else.
	 */
	*shnum = num_sinfo + num_list_sinfo + 1; /* Extra for 1st NULL sec. */
	if ((*cache = _cache = malloc((*shnum) * sizeof (Cache))) == NULL) {
		int err = errno;
		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
		    file, strerror(err));
		sinfo_free(secarr, num_sinfo);
		sinfo_list_free_all(&seclist);
		return (0);
	}
	*_cache = cache_init;
	_cache++;
	ndx = 1;
	for (sinfo = secarr; num_sinfo > 0; sinfo++) {
		if (sinfo->data != NULL) {
			_cache->c_scn = NULL;
			_cache->c_shdr = sinfo->shdr;
			_cache->c_data = sinfo->data;
			_cache->c_name = (char *)sinfo_data[sinfo->type].name;
			_cache->c_ndx = ndx++;
			_cache++;
			num_sinfo--;
		}
	}
	for (sinfo_list = seclist.next; num_list_sinfo > 0;
	    sinfo_list = sinfo_list->next) {
		sinfo = &sinfo_list->sinfo;
		if (sinfo->data != NULL) {
			_cache->c_scn = NULL;
			_cache->c_shdr = sinfo->shdr;
			_cache->c_data = sinfo->data;
			_cache->c_name = (char *)sinfo_data[sinfo->type].name;
			_cache->c_ndx = ndx++;
			_cache++;
			num_list_sinfo--;
		}
	}

	return (1);
}





/*
 * Release all the memory referenced by a cache array allocated
 * by fake_shdr_cache().
 */
void
fake_shdr_cache_free(Cache *cache, size_t shnum)
{
	Cache *_cache;

	for (_cache = cache; shnum--; _cache++) {
		if (_cache->c_data != NULL) {
			if (_cache->c_data->d_buf != NULL)
				free(_cache->c_data->d_buf);
			free(_cache->c_data);
		}
		if (_cache->c_shdr)
			free(_cache->c_shdr);
	}

	free(cache);
}