summaryrefslogtreecommitdiff
path: root/usr/src/cmd/sgs/rtld/amd64/boot_elf.s
blob: 36f136e31df5084c8c1c2227914c505ad21f49ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 * Copyright (c) 2018 Joyent, Inc. All rights reserved.
 */

/*
 * Welcome to the magic behind the PLT (procedure linkage table). When rtld
 * fills out the PLT entries, it will refer initially to the functions in this
 * file. As such our goal is simple:
 *
 *     The lie of the function call must be preserved at all costs.
 *
 * This means that we need to prepare the system for an arbitrary series of
 * instructions to be called. For example, as a side effect of resolving a
 * symbol we may need to open a shared object which will cause any _init
 * functions to be called. Those functions can use any and all of the ABI state
 * that they desire (for example, the FPU registers). Therefore we must save and
 * restore all the ABI mandated registers here.
 *
 * For the full information about what we need to save and restore and why,
 * please see the System V amd64 PS ABI '3.2.3 Parameter Passing'. For general
 * purpose registers, we need to take care of the following:
 *
 * 	%rax	- Used for information about the number of vector arguments
 *	%rdi	- arg0
 *	%rsi	- arg1
 *	%rdx	- arg2
 *	%rcx	- arg3
 *	%r8	- arg4
 *	%r9	- arg5
 *	%r10	- static chain pointer
 *
 * Unfortunately, the world of the FPU is more complicated.
 *
 * The ABI mandates that we must save %xmm0-%xmm7. On newer Intel processors,
 * %xmm0-%xmm7 shadow %ymm0-%ymm7 and %zmm0-%zmm7. Historically, when saving the
 * FPU, we only saved and restored these eight registers. Unfortunately, this
 * process itself ended up having side effects. Because the registers shadow one
 * another, if we saved a full %zmm register when only a %xmm register was
 * valid, we would end up causing the processor to think that the full %zmm
 * register was valid. Once it believed that this was the case, it would then
 * degrade performance of code that only used the %xmm registers.
 *
 * One way to tackle this problem would have been to use xgetbv with ecx=1 to
 * get information about what was actually in use and only save and restore
 * that. You can imagine that this logic roughly ends up as something like:
 *
 *         if (zmm_inuse)
 *		save_zmm()
 *         if (ymm_inuse)
 *		save_ymm()
 *         save_xmm()
 *
 * However, this logic leaves us at the mercy of the branch predictor. This
 * means that all of our efforts can end up still causing the CPU to execute
 * things to make it think that some of these other FPU registers are in use and
 * thus defeat the optimizations that it has.
 *
 * To deal with this problem, Intel has suggested using the xsave family of
 * instructions. The kernel provides information about the size required for the
 * floating point registers as well as which of several methods we need to
 * employ through the aux vector. This gets us out of trying to look at the
 * hardware capabilities and make decisions every time. As part of the
 * amd64-specific portion of rtld, it will process those values and determine
 * the functions on an as-needed basis.
 *
 * There are two different functions that we export. The first is elf_rtbndr().
 * This is basically the glue that gets us into the PLT and to perform
 * relocations. elf_rtbndr() determines the address of the function that we must
 * call and arranges its stack such that when we return from elf_rtbndr() we
 * will instead jump to the actual relocated function which will return to the
 * original caller. Because of this, we must preserve all of the registers that
 * are used for arguments and restore them before returning.
 *
 * The second function we export is elf_plt_trace(). This is used to add support
 * for audit libraries among other things. elf_plt_trace() may or may not call
 * the underlying function as a side effect or merely set up its return to it.
 * This changes how we handle %rax. If we call the function ourself, then we end
 * up making sure that %rax is the return value versus the initial value. In
 * addition, because we get %r11 from the surrounding PLT code, we opt to
 * preserve it in case some of the relocation logic ever ends up calling back
 * into us again.
 */

#if	defined(lint)

#include	<sys/types.h>
#include	<_rtld.h>
#include	<_audit.h>
#include	<_elf.h>
#include	<sys/regset.h>
#include	<sys/auxv_386.h>

#else

#include	<link.h>
#include	<_audit.h>
#include	<sys/asm_linkage.h>
#include	<sys/auxv_386.h>
#include	<sys/x86_archext.h>

/*
 * This macro is used to zero the xsave header. The contents of scratchreg will
 * be destroyed. locreg should contain the starting address of the xsave header.
 */
#define	XSAVE_HEADER_ZERO(scratch, loc) \
	xorq	scratch, scratch;	\
	movq	scratch, 0x200(loc);	\
	movq	scratch, 0x208(loc);	\
	movq	scratch, 0x210(loc);	\
	movq	scratch, 0x218(loc);	\
	movq	scratch, 0x220(loc);	\
	movq	scratch, 0x228(loc);	\
	movq	scratch, 0x230(loc);	\
	movq	scratch, 0x238(loc)


	.file	"boot_elf.s"
	.text

/*
 * This section of the code contains glue functions that are used to take care
 * of saving and restoring the FPU. We deal with this in a few different ways
 * based on the hardware support and what exists. Historically we've only saved
 * and restored the first 8 floating point registers rather than the entire FPU.
 * That implementation still exists here and is kept around mostly as an
 * insurance policy.
 */
	ENTRY(_elf_rtbndr_fp_save_orig)
	movq	org_scapset@GOTPCREL(%rip),%r11
	movq	(%r11),%r11		/* Syscapset_t pointer */
	movl	8(%r11),%edx		/* sc_hw_2 */
	testl	$AV_386_2_AVX512F,%edx
	jne	.save_zmm
	movl	(%r11),%edx		/* sc_hw_1 */
	testl	$AV_386_AVX,%edx
	jne	.save_ymm
	movdqa	%xmm0, (%rdi)
	movdqa	%xmm1, 64(%rdi)
	movdqa	%xmm2, 128(%rdi)
	movdqa	%xmm3, 192(%rdi)
	movdqa	%xmm4, 256(%rdi)
	movdqa	%xmm5, 320(%rdi)
	movdqa	%xmm6, 384(%rdi)
	movdqa	%xmm7, 448(%rdi)
	jmp	.save_finish

.save_ymm:
	vmovdqa	%ymm0, (%rdi)
	vmovdqa	%ymm1, 64(%rdi)
	vmovdqa	%ymm2, 128(%rdi)
	vmovdqa	%ymm3, 192(%rdi)
	vmovdqa	%ymm4, 256(%rdi)
	vmovdqa	%ymm5, 320(%rdi)
	vmovdqa	%ymm6, 384(%rdi)
	vmovdqa	%ymm7, 448(%rdi)
	jmp	.save_finish

.save_zmm:
	vmovdqa64	%zmm0, (%rdi)
	vmovdqa64	%zmm1, 64(%rdi)
	vmovdqa64	%zmm2, 128(%rdi)
	vmovdqa64	%zmm3, 192(%rdi)
	vmovdqa64	%zmm4, 256(%rdi)
	vmovdqa64	%zmm5, 320(%rdi)
	vmovdqa64	%zmm6, 384(%rdi)
	vmovdqa64	%zmm7, 448(%rdi)

.save_finish:
	ret
	SET_SIZE(_elf_rtbndr_fp_save_orig)

	ENTRY(_elf_rtbndr_fp_restore_orig)
	movq	org_scapset@GOTPCREL(%rip),%r11
	movq	(%r11),%r11		/* Syscapset_t pointer */
	movl	8(%r11),%edx		/* sc_hw_2 */
	testl	$AV_386_2_AVX512F,%edx
	jne	.restore_zmm
	movl	(%r11),%edx		/* sc_hw_1 */
	testl	$AV_386_AVX,%edx
	jne	.restore_ymm

	movdqa	(%rdi), %xmm0
	movdqa	64(%rdi), %xmm1
	movdqa	128(%rdi), %xmm2
	movdqa	192(%rdi), %xmm3
	movdqa	256(%rdi), %xmm4
	movdqa	320(%rdi), %xmm5
	movdqa	384(%rdi), %xmm6
	movdqa	448(%rdi), %xmm7
	jmp	.restore_finish

.restore_ymm:
	vmovdqa	(%rdi), %ymm0
	vmovdqa	64(%rdi), %ymm1
	vmovdqa	128(%rdi), %ymm2
	vmovdqa	192(%rdi), %ymm3
	vmovdqa	256(%rdi), %ymm4
	vmovdqa	320(%rdi), %ymm5
	vmovdqa	384(%rdi), %ymm6
	vmovdqa	448(%rdi), %ymm7
	jmp	.restore_finish

.restore_zmm:
	vmovdqa64	(%rdi), %zmm0
	vmovdqa64	64(%rdi), %zmm1
	vmovdqa64	128(%rdi), %zmm2
	vmovdqa64	192(%rdi), %zmm3
	vmovdqa64	256(%rdi), %zmm4
	vmovdqa64	320(%rdi), %zmm5
	vmovdqa64	384(%rdi), %zmm6
	vmovdqa64	448(%rdi), %zmm7

.restore_finish:
	ret
	SET_SIZE(_elf_rtbndr_fp_restore_orig)

	ENTRY(_elf_rtbndr_fp_fxsave)
	fxsaveq	(%rdi)
	ret
	SET_SIZE(_elf_rtbndr_fp_fxsave)

	ENTRY(_elf_rtbndr_fp_fxrestore)
	fxrstor	(%rdi)
	ret
	SET_SIZE(_elf_rtbndr_fp_fxrestore)

	ENTRY(_elf_rtbndr_fp_xsave)
	XSAVE_HEADER_ZERO(%rdx, %rdi)
	movq	$_CONST(XFEATURE_FP_ALL), %rdx
	movl	%edx, %eax
	shrq	$32, %rdx
	xsave	(%rdi)			/* save data */
	ret
	SET_SIZE(_elf_rtbndr_fp_xsave)

	ENTRY(_elf_rtbndr_fp_xrestore)
	movq	$_CONST(XFEATURE_FP_ALL), %rdx
	movl	%edx, %eax
	shrq	$32, %rdx
	xrstor	(%rdi)			/* save data */
	ret
	SET_SIZE(_elf_rtbndr_fp_xrestore)

#endif

#if	defined(lint)

/* ARGSUSED0 */
int
elf_plt_trace()
{
	return (0);
}

#else

/*
 * On entry the 'glue code' has already  done the following:
 *
 *	pushq	%rbp
 *	movq	%rsp, %rbp
 *	subq	$0x10, %rsp
 *	leaq	trace_fields(%rip), %r11
 *	movq	%r11, -0x8(%rbp)
 *	movq	$elf_plt_trace, %r11
 *	jmp	*%r11
 *
 * so - -8(%rbp) contains the dyndata ptr
 *
 *	0x0	Addr		*reflmp
 *	0x8	Addr		*deflmp
 *	0x10	Word		symndx
 *	0x14	Word		sb_flags
 *	0x18	Sym		symdef.st_name
 *	0x1c			symdef.st_info
 *	0x1d			symdef.st_other
 *	0x1e			symdef.st_shndx
 *	0x20			symdef.st_value
 *	0x28			symdef.st_size
 *
 * Also note - on entry 16 bytes have already been subtracted
 * from the %rsp.  The first 8 bytes is for the dyn_data_ptr,
 * the second 8 bytes are to align the stack and are available
 * for use.
 */
#define	REFLMP_OFF		0x0
#define	DEFLMP_OFF		0x8
#define	SYMNDX_OFF		0x10
#define	SBFLAGS_OFF		0x14
#define	SYMDEF_OFF		0x18
#define	SYMDEF_VALUE_OFF	0x20

/*
 * Next, we need to create a bunch of local storage. First, we have to preserve
 * the standard registers per the amd64 ABI. This means we need to deal with:
 *	%rax	- Used for information about the number of vector arguments
 *	%rdi	- arg0
 *	%rsi	- arg1
 *	%rdx	- arg2
 *	%rcx	- arg3
 *	%r8	- arg4
 *	%r9	- arg5
 *	%r10	- static chain pointer
 *	%r11	- PLT Interwork register, our caller is using this, so it's not
 *		  a temporary for us.
 *
 * In addition, we need to save the amd64 ABI floating point arguments. Finally,
 * we need to deal with our local storage. We need a La_amd64_regs and a
 * uint64_t for the previous stack size.
 *
 * To deal with this and the potentially variable size of the FPU regs, we have
 * to play a few different games. We refer to all of the standard registers, the
 * previous stack size, and La_amd64_regs structure off of %rbp. These are all
 * values that are below %rbp.
 */
#define	SPDYNOFF	-8
#define	SPDESTOFF	-16
#define	SPPRVSTKOFF	-24
#define	SPLAREGOFF	-88
#define	ORIG_RDI	-96
#define	ORIG_RSI	-104
#define	ORIG_RDX	-112
#define	ORIG_RCX	-120
#define	ORIG_R8		-128
#define	ORIG_R9		-136
#define	ORIG_R10	-144
#define	ORIG_R11	-152
#define	ORIG_RAX	-160
#define	PLT_SAVE_OFF	168

	ENTRY(elf_plt_trace)
	/*
	 * Save our static registers. After that 64-byte align us and subtract
	 * the appropriate amount for the FPU. The frame pointer has already
	 * been pushed for us by the glue code.
	 */
	movq	%rdi, ORIG_RDI(%rbp)
	movq	%rsi, ORIG_RSI(%rbp)
	movq	%rdx, ORIG_RDX(%rbp)
	movq	%rcx, ORIG_RCX(%rbp)
	movq	%r8, ORIG_R8(%rbp)
	movq	%r9, ORIG_R9(%rbp)
	movq	%r10, ORIG_R10(%rbp)
	movq	%r11, ORIG_R11(%rbp)
	movq	%rax, ORIG_RAX(%rbp)

	subq	$PLT_SAVE_OFF, %rsp

	movq	_plt_save_size@GOTPCREL(%rip),%r9
	movq	_plt_fp_save@GOTPCREL(%rip),%r10
	subq	(%r9), %rsp
	andq	$-64, %rsp
	movq	%rsp, %rdi
	call	*(%r10)

	/*
	 * Now that we've saved all of our registers, figure out what we need to
	 * do next.
	 */
	movq	SPDYNOFF(%rbp), %rax			/ %rax = dyndata
	testb	$LA_SYMB_NOPLTENTER, SBFLAGS_OFF(%rax)	/ <link.h>
	je	.start_pltenter
	movq	SYMDEF_VALUE_OFF(%rax), %rdi
	movq	%rdi, SPDESTOFF(%rbp)		/ save destination address
	jmp	.end_pltenter

.start_pltenter:
	/*
	 * save all registers into La_amd64_regs
	 */
	leaq	SPLAREGOFF(%rbp), %rsi	/ %rsi = &La_amd64_regs
	leaq	8(%rbp), %rdi
	movq	%rdi, 0(%rsi)		/ la_rsp
	movq	0(%rbp), %rdi
	movq	%rdi, 8(%rsi)		/ la_rbp
	movq	ORIG_RDI(%rbp), %rdi
	movq	%rdi, 16(%rsi)		/ la_rdi
	movq	ORIG_RSI(%rbp), %rdi
	movq	%rdi, 24(%rsi)		/ la_rsi
	movq	ORIG_RDX(%rbp), %rdi
	movq	%rdi, 32(%rsi)		/ la_rdx
	movq	ORIG_RCX(%rbp), %rdi
	movq	%rdi, 40(%rsi)		/ la_rcx
	movq	ORIG_R8(%rbp), %rdi
	movq	%rdi, 48(%rsi)		/ la_r8
	movq	ORIG_R9(%rbp), %rdi
	movq	%rdi, 56(%rsi)		/ la_r9

	/*
	 * prepare for call to la_pltenter
	 */
	movq	SPDYNOFF(%rbp), %r11		/ %r11 = &dyndata
	leaq	SBFLAGS_OFF(%r11), %r9		/ arg6 (&sb_flags)
	leaq	SPLAREGOFF(%rbp), %r8		/ arg5 (&La_amd64_regs)
	movl	SYMNDX_OFF(%r11), %ecx		/ arg4 (symndx)
	leaq	SYMDEF_OFF(%r11), %rdx		/ arg3 (&Sym)
	movq	DEFLMP_OFF(%r11), %rsi		/ arg2 (dlmp)
	movq	REFLMP_OFF(%r11), %rdi		/ arg1 (rlmp)
	call	audit_pltenter@PLT
	movq	%rax, SPDESTOFF(%rbp)		/ save calling address
.end_pltenter:

	/*
	 * If *no* la_pltexit() routines exist
	 * we do not need to keep the stack frame
	 * before we call the actual routine.  Instead we
	 * jump to it and remove our stack from the stack
	 * at the same time.
	 */
	movl	audit_flags(%rip), %eax
	andl	$AF_PLTEXIT, %eax		/ value of audit.h:AF_PLTEXIT
	cmpl	$0, %eax
	je	.bypass_pltexit
	/*
	 * Has the *nopltexit* flag been set for this entry point
	 */
	movq	SPDYNOFF(%rbp), %r11		/ %r11 = &dyndata
	testb	$LA_SYMB_NOPLTEXIT, SBFLAGS_OFF(%r11)
	je	.start_pltexit

.bypass_pltexit:
	/*
	 * No PLTEXIT processing required.
	 */
	movq	0(%rbp), %r11
	movq	%r11, -8(%rbp)			/ move prev %rbp
	movq	SPDESTOFF(%rbp), %r11		/ r11 == calling destination
	movq	%r11, 0(%rbp)			/ store destination at top

	/* Restore FPU */
	movq	_plt_fp_restore@GOTPCREL(%rip),%r10

	movq	%rsp, %rdi
	call	*(%r10)

	movq	ORIG_RDI(%rbp), %rdi
	movq	ORIG_RSI(%rbp), %rsi
	movq	ORIG_RDX(%rbp), %rdx
	movq	ORIG_RCX(%rbp), %rcx
	movq	ORIG_R8(%rbp), %r8
	movq	ORIG_R9(%rbp), %r9
	movq	ORIG_R10(%rbp), %r10
	movq	ORIG_R11(%rbp), %r11
	movq	ORIG_RAX(%rbp), %rax

	subq	$8, %rbp			/ adjust %rbp for 'ret'
	movq	%rbp, %rsp			/
	/*
	 * At this point, after a little doctoring, we should
	 * have the following on the stack:
	 *
	 *	16(%rsp):  ret addr
	 *	8(%rsp):  dest_addr
	 *	0(%rsp):  Previous %rbp
	 *
	 * So - we pop the previous %rbp, and then
	 * ret to our final destination.
	 */
	popq	%rbp				/
	ret					/ jmp to final destination
						/ and clean up stack :)

.start_pltexit:
	/*
	 * In order to call the destination procedure and then return
	 * to audit_pltexit() for post analysis we must first grow
	 * our stack frame and then duplicate the original callers
	 * stack state.  This duplicates all of the arguements
	 * that were to be passed to the destination procedure.
	 */
	movq	%rbp, %rdi			/
	addq	$16, %rdi			/    %rdi = src
	movq	(%rbp), %rdx			/
	subq	%rdi, %rdx			/    %rdx == prev frame sz
	/*
	 * If audit_argcnt > 0 then we limit the number of
	 * arguements that will be duplicated to audit_argcnt.
	 *
	 * If (prev_stack_size > (audit_argcnt * 8))
	 *	prev_stack_size = audit_argcnt * 8;
	 */
	movl	audit_argcnt(%rip),%eax		/   %eax = audit_argcnt
	cmpl	$0, %eax
	jle	.grow_stack
	leaq	(,%rax,8), %rax			/    %eax = %eax * 4
	cmpq	%rax,%rdx
	jle	.grow_stack
	movq	%rax, %rdx
	/*
	 * Grow the stack and duplicate the arguements of the
	 * original caller.
	 */
.grow_stack:
	movq	%rsp, %r11
	subq	%rdx, %rsp			/    grow the stack
	movq	%rdx, SPPRVSTKOFF(%rbp)		/    -88(%rbp) == prev frame sz
	movq	%rsp, %rcx			/    %rcx = dest
	addq	%rcx, %rdx			/    %rdx == tail of dest
.while_base:
	cmpq	%rdx, %rcx			/   while (base+size >= src++) {
	jge	.end_while			/
	movq	(%rdi), %rsi
	movq	%rsi,(%rcx)			/        *dest = *src
	addq	$8, %rdi			/	 src++
	addq	$8, %rcx			/        dest++
	jmp	.while_base			/    }

	/*
	 * The above stack is now an exact duplicate of
	 * the stack of the original calling procedure.
	 */
.end_while:
	/
	/ Restore registers using %r11 which contains our old %rsp value
	/ before growing the stack.
	/
	movq	_plt_fp_restore@GOTPCREL(%rip),%r10
	movq	%r11, %rdi
	call	*(%r10)

.trace_r2_finish:
	movq	ORIG_RDI(%rbp), %rdi
	movq	ORIG_RSI(%rbp), %rsi
	movq	ORIG_RDX(%rbp), %rdx
	movq	ORIG_RCX(%rbp), %rcx
	movq	ORIG_R8(%rbp), %r8
	movq	ORIG_R9(%rbp), %r9
	movq	ORIG_R10(%rbp), %r10
	movq	ORIG_RAX(%rbp), %rax
	movq	ORIG_R11(%rbp), %r11

	/*
	 * Call to desitnation function - we'll return here
	 * for pltexit monitoring.
	 */
	call	*SPDESTOFF(%rbp)

	addq	SPPRVSTKOFF(%rbp), %rsp	/ cleanup dupped stack

	/
	/ prepare for call to audit_pltenter()
	/
	movq	SPDYNOFF(%rbp), %r11		/ %r11 = &dyndata
	movq	SYMNDX_OFF(%r11), %r8		/ arg5 (symndx)
	leaq	SYMDEF_OFF(%r11), %rcx		/ arg4 (&Sym)
	movq	DEFLMP_OFF(%r11), %rdx		/ arg3 (dlmp)
	movq	REFLMP_OFF(%r11), %rsi		/ arg2 (rlmp)
	movq	%rax, %rdi			/ arg1 (returnval)
	call	audit_pltexit@PLT

	/*
	 * Clean up after ourselves and return to the
	 * original calling procedure. Make sure to restore
	 * registers.
	 */

	movq	_plt_fp_restore@GOTPCREL(%rip),%r10
	movq	%rsp, %rdi
	movq	%rax, SPPRVSTKOFF(%rbp)
	call	*(%r10)

	movq	ORIG_RDI(%rbp), %rdi
	movq	ORIG_RSI(%rbp), %rsi
	movq	ORIG_RDX(%rbp), %rdx
	movq	ORIG_RCX(%rbp), %rcx
	movq	ORIG_R8(%rbp), %r8
	movq	ORIG_R9(%rbp), %r9
	movq	ORIG_R10(%rbp), %r10
	movq	ORIG_R11(%rbp), %r11
	movq	SPPRVSTKOFF(%rbp), %rax

	movq	%rbp, %rsp			/
	popq	%rbp				/
	ret					/ return to caller
	SET_SIZE(elf_plt_trace)
#endif

/*
 * We got here because a call to a function resolved to a procedure
 * linkage table entry.  That entry did a JMPL to the first PLT entry, which
 * in turn did a call to elf_rtbndr.
 *
 * the code sequence that got us here was:
 *
 * .PLT0:
 *	pushq	GOT+8(%rip)	#GOT[1]
 *	jmp	*GOT+16(%rip)	#GOT[2]
 *	nop
 *	nop
 *	nop
 *	nop
 *	...
 * PLT entry for foo:
 *	jmp	*name1@GOTPCREL(%rip)
 *	pushl	$rel.plt.foo
 *	jmp	PLT0
 *
 * At entry, the stack looks like this:
 *
 *	return address			16(%rsp)
 *	$rel.plt.foo	(plt index)	8(%rsp)
 *	lmp				0(%rsp)
 *
 */
#if defined(lint)

extern unsigned long	elf_bndr(Rt_map *, unsigned long, caddr_t);

void
elf_rtbndr(Rt_map * lmp, unsigned long reloc, caddr_t pc)
{
	(void) elf_bndr(lmp, reloc, pc);
}

#else

/*
 * The PLT code that landed us here placed 2 arguments on the stack as
 * arguments to elf_rtbndr.
 * Additionally the pc of caller is below these 2 args.
 * Our stack will look like this after we establish a stack frame with
 * push %rbp; movq %rsp, %rbp sequence:
 *
 *	8(%rbp)			arg1 - *lmp
 *	16(%rbp), %rsi		arg2 - reloc index
 *	24(%rbp), %rdx		arg3 - pc of caller
 */
#define	LBPLMPOFF	8	/* arg1 - *lmp */
#define	LBPRELOCOFF	16	/* arg2 - reloc index */
#define	LBRPCOFF	24	/* arg3 - pc of caller */

/*
 * With the above in place, we must now proceed to preserve all temporary
 * registers that are also used for passing arguments. Specifically this
 * means:
 *
 *	%rax	- Used for information about the number of vector arguments
 *	%rdi	- arg0
 *	%rsi	- arg1
 *	%rdx	- arg2
 *	%rcx	- arg3
 *	%r8	- arg4
 *	%r9	- arg5
 *	%r10	- static chain pointer
 *
 * While we don't have to preserve %r11, we do have to preserve the FPU
 * registers. The FPU logic is delegated to a specific function that we'll call.
 * However, it requires that its stack is 64-byte aligned. We defer the
 * alignment to that point. This will also take care of the fact that a caller
 * may not call us with a correctly aligned stack pointer per the amd64 ABI.
 */

	.extern _plt_save_size
	.extern _plt_fp_save
	.extern plt_fp_restore

	.weak	_elf_rtbndr
	_elf_rtbndr = elf_rtbndr

	ENTRY(elf_rtbndr)
	pushq	%rbp		/* Establish stack frame */
	movq	%rsp, %rbp

	/*
	 * Save basic regs.
	 */
	pushq	%rax
	pushq	%rdi
	pushq	%rsi
	pushq	%rdx
	pushq	%rcx
	pushq	%r8
	pushq	%r9
	pushq	%r10
	pushq	%r12

	/*
	 * Save the amount of space we need for the FPU registers and call that
	 * function. Save %rsp before we manipulate it to make restore easier.
	 */
	movq	%rsp, %r12
	movq	_plt_save_size@GOTPCREL(%rip),%r9
	movq	_plt_fp_save@GOTPCREL(%rip),%r10
	subq	(%r9), %rsp
	andq	$-64, %rsp

	movq	%rsp, %rdi
	call	*(%r10)

	/*
	 * Perform actual PLT logic. Note that the plt related arguments are
	 * located at an offset relative to %rbp.
	 */
	movq	LBPLMPOFF(%rbp), %rdi	/* arg1 - *lmp */
	movq	LBPRELOCOFF(%rbp), %rsi	/* arg2 - reloc index */
	movq	LBRPCOFF(%rbp), %rdx	/* arg3 - pc of caller */
	call	elf_bndr@PLT		/* call elf_rtbndr(lmp, relndx, pc) */
	movq	%rax, LBPRELOCOFF(%rbp)	/* store final destination */

	/* Restore FPU */
	movq	_plt_fp_restore@GOTPCREL(%rip),%r10

	movq	%rsp, %rdi
	call	*(%r10)

	movq	%r12, %rsp
	popq	%r12
	popq	%r10
	popq	%r9
	popq	%r8
	popq	%rcx
	popq	%rdx
	popq	%rsi
	popq	%rdi
	popq	%rax

	movq	%rbp, %rsp	/* Restore our stack frame */
	popq	%rbp

	addq	$8, %rsp	/* pop 1st plt-pushed args */
				/* the second arguement is used */
				/* for the 'return' address to our */
				/* final destination */

	ret			/* invoke resolved function */

	SET_SIZE(elf_rtbndr)
#endif