summaryrefslogtreecommitdiff
path: root/usr/src/common/crypto/md5/md5.c
blob: 528a4e1c6a198853c8b73531116cb0644392ed8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Cleaned-up and optimized version of MD5, based on the reference
 * implementation provided in RFC 1321.  See RSA Copyright information
 * below.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

/*
 * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
 */

/*
 * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
 * rights reserved.
 *
 * License to copy and use this software is granted provided that it
 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
 * Algorithm" in all material mentioning or referencing this software
 * or this function.
 *
 * License is also granted to make and use derivative works provided
 * that such works are identified as "derived from the RSA Data
 * Security, Inc. MD5 Message-Digest Algorithm" in all material
 * mentioning or referencing the derived work.
 *
 * RSA Data Security, Inc. makes no representations concerning either
 * the merchantability of this software or the suitability of this
 * software for any particular purpose. It is provided "as is"
 * without express or implied warranty of any kind.
 *
 * These notices must be retained in any copies of any part of this
 * documentation and/or software.
 */

#include <sys/types.h>
#include <sys/md5.h>
#include <sys/md5_consts.h>	/* MD5_CONST() optimization */
#include "md5_byteswap.h"
#if	!defined(_KERNEL) || defined(_BOOT)
#include <strings.h>
#endif /* !_KERNEL || _BOOT */

#ifdef _KERNEL
#include <sys/systm.h>
#endif /* _KERNEL */

static void Encode(uint8_t *, const uint32_t *, size_t);
static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *,
    const uint8_t [64]);

static uint8_t PADDING[64] = { 0x80, /* all zeros */ };

/*
 * F, G, H and I are the basic MD5 functions.
 */
#define	F(b, c, d)	(((b) & (c)) | ((~b) & (d)))
#define	G(b, c, d)	(((b) & (d)) | ((c) & (~d)))
#define	H(b, c, d)	((b) ^ (c) ^ (d))
#define	I(b, c, d)	((c) ^ ((b) | (~d)))

/*
 * ROTATE_LEFT rotates x left n bits.
 */
#define	ROTATE_LEFT(x, n)	\
	(((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n))))

/*
 * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
 * Rotation is separate from addition to prevent recomputation.
 */

#define	FF(a, b, c, d, x, s, ac) { \
	(a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
	(a) = ROTATE_LEFT((a), (s)); \
	(a) += (b); \
	}

#define	GG(a, b, c, d, x, s, ac) { \
	(a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
	(a) = ROTATE_LEFT((a), (s)); \
	(a) += (b); \
	}

#define	HH(a, b, c, d, x, s, ac) { \
	(a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
	(a) = ROTATE_LEFT((a), (s)); \
	(a) += (b); \
	}

#define	II(a, b, c, d, x, s, ac) { \
	(a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \
	(a) = ROTATE_LEFT((a), (s)); \
	(a) += (b); \
	}

/*
 * Loading 32-bit constants on a RISC is expensive since it involves both a
 * `sethi' and an `or'.  thus, we instead have the compiler generate `ld's to
 * load the constants from an array called `md5_consts'.  however, on intel
 * (and other CISC processors), it is cheaper to load the constant
 * directly.  thus, the c code in MD5Transform() uses the macro MD5_CONST()
 * which either expands to a constant or an array reference, depending on the
 * architecture the code is being compiled for.
 *
 * Right now, i386 and amd64 are the CISC exceptions.
 * If we get another CISC ISA, we'll have to change the ifdef.
 */

#if defined(__i386) || defined(__amd64)

#define	MD5_CONST(x)		(MD5_CONST_ ## x)
#define	MD5_CONST_e(x)		MD5_CONST(x)
#define	MD5_CONST_o(x)		MD5_CONST(x)

#else
/*
 * sparc/RISC optimization:
 *
 * while it is somewhat counter-intuitive, on sparc (and presumably other RISC
 * machines), it is more efficient to place all the constants used in this
 * function in an array and load the values out of the array than to manually
 * load the constants.  this is because setting a register to a 32-bit value
 * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit
 * value from memory only takes one `ld' (or `lduw' on v9).  while this
 * increases memory usage, the compiler can find enough other things to do
 * while waiting to keep the pipeline does not stall.  additionally, it is
 * likely that many of these constants are cached so that later accesses do
 * not even go out to the bus.
 *
 * this array is declared `static' to keep the compiler from having to
 * bcopy() this array onto the stack frame of MD5Transform() each time it is
 * called -- which is unacceptably expensive.
 *
 * the `const' is to ensure that callers are good citizens and do not try to
 * munge the array.  since these routines are going to be called from inside
 * multithreaded kernelland, this is a good safety check. -- `constants' will
 * end up in .rodata.
 *
 * unfortunately, loading from an array in this manner hurts performance under
 * intel (and presumably other CISC machines).  so, there is a macro,
 * MD5_CONST(), used in MD5Transform(), that either expands to a reference to
 * this array, or to the actual constant, depending on what platform this code
 * is compiled for.
 */

#ifdef sun4v

/*
 * Going to load these consts in 8B chunks, so need to enforce 8B alignment
 */

/* CSTYLED */
#pragma align 64 (md5_consts)
#define	_MD5_CHECK_ALIGNMENT

#endif /* sun4v */

static const uint32_t md5_consts[] = {
	MD5_CONST_0,	MD5_CONST_1,	MD5_CONST_2,	MD5_CONST_3,
	MD5_CONST_4,	MD5_CONST_5,	MD5_CONST_6,	MD5_CONST_7,
	MD5_CONST_8,	MD5_CONST_9,	MD5_CONST_10,	MD5_CONST_11,
	MD5_CONST_12,	MD5_CONST_13,	MD5_CONST_14,	MD5_CONST_15,
	MD5_CONST_16,	MD5_CONST_17,	MD5_CONST_18,	MD5_CONST_19,
	MD5_CONST_20,	MD5_CONST_21,	MD5_CONST_22,	MD5_CONST_23,
	MD5_CONST_24,	MD5_CONST_25,	MD5_CONST_26,	MD5_CONST_27,
	MD5_CONST_28,	MD5_CONST_29,	MD5_CONST_30,	MD5_CONST_31,
	MD5_CONST_32,	MD5_CONST_33,	MD5_CONST_34,	MD5_CONST_35,
	MD5_CONST_36,	MD5_CONST_37,	MD5_CONST_38,	MD5_CONST_39,
	MD5_CONST_40,	MD5_CONST_41,	MD5_CONST_42,	MD5_CONST_43,
	MD5_CONST_44,	MD5_CONST_45,	MD5_CONST_46,	MD5_CONST_47,
	MD5_CONST_48,	MD5_CONST_49,	MD5_CONST_50,	MD5_CONST_51,
	MD5_CONST_52,	MD5_CONST_53,	MD5_CONST_54,	MD5_CONST_55,
	MD5_CONST_56,	MD5_CONST_57,	MD5_CONST_58,	MD5_CONST_59,
	MD5_CONST_60,	MD5_CONST_61,	MD5_CONST_62,	MD5_CONST_63
};


#ifdef sun4v
/*
 * To reduce the number of loads, load consts in 64-bit
 * chunks and then split.
 *
 * No need to mask upper 32-bits, as just interested in
 * low 32-bits (saves an & operation and means that this
 * optimization doesn't increases the icount.
 */
#define	MD5_CONST_e(x)		(md5_consts64[x/2] >> 32)
#define	MD5_CONST_o(x)		(md5_consts64[x/2])

#else

#define	MD5_CONST_e(x)		(md5_consts[x])
#define	MD5_CONST_o(x)		(md5_consts[x])

#endif /* sun4v */

#endif

/*
 * MD5Init()
 *
 * purpose: initializes the md5 context and begins and md5 digest operation
 *   input: MD5_CTX *	: the context to initialize.
 *  output: void
 */

void
MD5Init(MD5_CTX *ctx)
{
	ctx->count[0] = ctx->count[1] = 0;

	/* load magic initialization constants */
	ctx->state[0] = MD5_INIT_CONST_1;
	ctx->state[1] = MD5_INIT_CONST_2;
	ctx->state[2] = MD5_INIT_CONST_3;
	ctx->state[3] = MD5_INIT_CONST_4;
}

/*
 * MD5Update()
 *
 * purpose: continues an md5 digest operation, using the message block
 *          to update the context.
 *   input: MD5_CTX *	: the context to update
 *          uint8_t *	: the message block
 *          uint32_t    : the length of the message block in bytes
 *  output: void
 *
 * MD5 crunches in 64-byte blocks.  All numeric constants here are related to
 * that property of MD5.
 */

void
MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len)
{
	uint32_t		i, buf_index, buf_len;
#ifdef	sun4v
	uint32_t		old_asi;
#endif	/* sun4v */
	const unsigned char 	*input = (const unsigned char *)inpp;

	/* compute (number of bytes computed so far) mod 64 */
	buf_index = (ctx->count[0] >> 3) & 0x3F;

	/* update number of bits hashed into this MD5 computation so far */
	if ((ctx->count[0] += (input_len << 3)) < (input_len << 3))
	    ctx->count[1]++;
	ctx->count[1] += (input_len >> 29);

	buf_len = 64 - buf_index;

	/* transform as many times as possible */
	i = 0;
	if (input_len >= buf_len) {

		/*
		 * general optimization:
		 *
		 * only do initial bcopy() and MD5Transform() if
		 * buf_index != 0.  if buf_index == 0, we're just
		 * wasting our time doing the bcopy() since there
		 * wasn't any data left over from a previous call to
		 * MD5Update().
		 */

#ifdef sun4v
		/*
		 * For N1 use %asi register. However, costly to repeatedly set
		 * in MD5Transform. Therefore, set once here.
		 * Should probably restore the old value afterwards...
		 */
		old_asi = get_little();
		set_little(0x88);
#endif /* sun4v */

		if (buf_index) {
			bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);

			MD5Transform(ctx->state[0], ctx->state[1],
			    ctx->state[2], ctx->state[3], ctx,
			    ctx->buf_un.buf8);

			i = buf_len;
		}

		for (; i + 63 < input_len; i += 64)
			MD5Transform(ctx->state[0], ctx->state[1],
			    ctx->state[2], ctx->state[3], ctx, &input[i]);


#ifdef sun4v
		/*
		 * Restore old %ASI value
		 */
		set_little(old_asi);
#endif /* sun4v */

		/*
		 * general optimization:
		 *
		 * if i and input_len are the same, return now instead
		 * of calling bcopy(), since the bcopy() in this
		 * case will be an expensive nop.
		 */

		if (input_len == i)
			return;

		buf_index = 0;
	}

	/* buffer remaining input */
	bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
}

/*
 * MD5Final()
 *
 * purpose: ends an md5 digest operation, finalizing the message digest and
 *          zeroing the context.
 *   input: uchar_t *	: a buffer to store the digest in
 *			: The function actually uses void* because many
 *			: callers pass things other than uchar_t here.
 *          MD5_CTX *   : the context to finalize, save, and zero
 *  output: void
 */

void
MD5Final(void *digest, MD5_CTX *ctx)
{
	uint8_t		bitcount_le[sizeof (ctx->count)];
	uint32_t	index = (ctx->count[0] >> 3) & 0x3f;

	/* store bit count, little endian */
	Encode(bitcount_le, ctx->count, sizeof (bitcount_le));

	/* pad out to 56 mod 64 */
	MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);

	/* append length (before padding) */
	MD5Update(ctx, bitcount_le, sizeof (bitcount_le));

	/* store state in digest */
	Encode(digest, ctx->state, sizeof (ctx->state));

	/* zeroize sensitive information */
	bzero(ctx, sizeof (*ctx));
}

#ifndef	_KERNEL

void
md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen)
{
	MD5_CTX context;

	MD5Init(&context);
	MD5Update(&context, input, inlen);
	MD5Final(output, &context);
}

#endif	/* !_KERNEL */

/*
 * sparc register window optimization:
 *
 * `a', `b', `c', and `d' are passed into MD5Transform explicitly
 * since it increases the number of registers available to the
 * compiler.  under this scheme, these variables can be held in
 * %i0 - %i3, which leaves more local and out registers available.
 */

/*
 * MD5Transform()
 *
 * purpose: md5 transformation -- updates the digest based on `block'
 *   input: uint32_t	: bytes  1 -  4 of the digest
 *          uint32_t	: bytes  5 -  8 of the digest
 *          uint32_t	: bytes  9 - 12 of the digest
 *          uint32_t	: bytes 12 - 16 of the digest
 *          MD5_CTX *   : the context to update
 *          uint8_t [64]: the block to use to update the digest
 *  output: void
 */

static void
MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d,
    MD5_CTX *ctx, const uint8_t block[64])
{
	/*
	 * general optimization:
	 *
	 * use individual integers instead of using an array.  this is a
	 * win, although the amount it wins by seems to vary quite a bit.
	 */

	register uint32_t	x_0, x_1, x_2,  x_3,  x_4,  x_5,  x_6,  x_7;
	register uint32_t	x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15;
#ifdef sun4v
	unsigned long long 	*md5_consts64;

		/* LINTED E_BAD_PTR_CAST_ALIGN */
	md5_consts64 = (unsigned long long *) md5_consts;
#endif	/* sun4v */

	/*
	 * general optimization:
	 *
	 * the compiler (at least SC4.2/5.x) generates better code if
	 * variable use is localized.  in this case, swapping the integers in
	 * this order allows `x_0 'to be swapped nearest to its first use in
	 * FF(), and likewise for `x_1' and up.  note that the compiler
	 * prefers this to doing each swap right before the FF() that
	 * uses it.
	 */

	/*
	 * sparc v9/v8plus optimization:
	 *
	 * if `block' is already aligned on a 4-byte boundary, use the
	 * optimized load_little_32() directly.  otherwise, bcopy()
	 * into a buffer that *is* aligned on a 4-byte boundary and
	 * then do the load_little_32() on that buffer.  benchmarks
	 * have shown that using the bcopy() is better than loading
	 * the bytes individually and doing the endian-swap by hand.
	 *
	 * even though it's quite tempting to assign to do:
	 *
	 * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
	 *
	 * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least
	 * SC4.2/5.x) *does not* like that, so please resist the urge.
	 */

#ifdef _MD5_CHECK_ALIGNMENT
	if ((uintptr_t)block & 0x3) {		/* not 4-byte aligned? */
		bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));

#ifdef sun4v
		x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32);
		x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32);
		x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32);
		x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32);
		x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32);
		x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32);
		x_9  = LOAD_LITTLE_32_9(ctx->buf_un.buf32);
		x_8  = LOAD_LITTLE_32_8(ctx->buf_un.buf32);
		x_7  = LOAD_LITTLE_32_7(ctx->buf_un.buf32);
		x_6  = LOAD_LITTLE_32_6(ctx->buf_un.buf32);
		x_5  = LOAD_LITTLE_32_5(ctx->buf_un.buf32);
		x_4  = LOAD_LITTLE_32_4(ctx->buf_un.buf32);
		x_3  = LOAD_LITTLE_32_3(ctx->buf_un.buf32);
		x_2  = LOAD_LITTLE_32_2(ctx->buf_un.buf32);
		x_1  = LOAD_LITTLE_32_1(ctx->buf_un.buf32);
		x_0  = LOAD_LITTLE_32_0(ctx->buf_un.buf32);
#else
		x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15);
		x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14);
		x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13);
		x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12);
		x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11);
		x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10);
		x_9  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  9);
		x_8  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  8);
		x_7  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  7);
		x_6  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  6);
		x_5  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  5);
		x_4  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  4);
		x_3  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  3);
		x_2  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  2);
		x_1  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  1);
		x_0  = LOAD_LITTLE_32(ctx->buf_un.buf32 +  0);
#endif /* sun4v */
	} else
#endif
	{

#ifdef sun4v
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_15 = LOAD_LITTLE_32_f(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_14 = LOAD_LITTLE_32_e(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_13 = LOAD_LITTLE_32_d(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_12 = LOAD_LITTLE_32_c(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_11 = LOAD_LITTLE_32_b(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_10 = LOAD_LITTLE_32_a(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_9  = LOAD_LITTLE_32_9(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_8  = LOAD_LITTLE_32_8(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_7  = LOAD_LITTLE_32_7(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_6  = LOAD_LITTLE_32_6(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_5  = LOAD_LITTLE_32_5(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_4  = LOAD_LITTLE_32_4(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_3  = LOAD_LITTLE_32_3(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_2  = LOAD_LITTLE_32_2(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_1  = LOAD_LITTLE_32_1(block);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_0  = LOAD_LITTLE_32_0(block);
#else
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_15 = LOAD_LITTLE_32(block + 60);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_14 = LOAD_LITTLE_32(block + 56);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_13 = LOAD_LITTLE_32(block + 52);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_12 = LOAD_LITTLE_32(block + 48);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_11 = LOAD_LITTLE_32(block + 44);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_10 = LOAD_LITTLE_32(block + 40);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_9  = LOAD_LITTLE_32(block + 36);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_8  = LOAD_LITTLE_32(block + 32);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_7  = LOAD_LITTLE_32(block + 28);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_6  = LOAD_LITTLE_32(block + 24);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_5  = LOAD_LITTLE_32(block + 20);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_4  = LOAD_LITTLE_32(block + 16);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_3  = LOAD_LITTLE_32(block + 12);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_2  = LOAD_LITTLE_32(block +  8);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_1  = LOAD_LITTLE_32(block +  4);
		/* LINTED E_BAD_PTR_CAST_ALIGN */
		x_0  = LOAD_LITTLE_32(block +  0);
#endif /* sun4v */
	}

	/* round 1 */
	FF(a, b, c, d, 	x_0, MD5_SHIFT_11, MD5_CONST_e(0));  /* 1 */
	FF(d, a, b, c, 	x_1, MD5_SHIFT_12, MD5_CONST_o(1));  /* 2 */
	FF(c, d, a, b, 	x_2, MD5_SHIFT_13, MD5_CONST_e(2));  /* 3 */
	FF(b, c, d, a, 	x_3, MD5_SHIFT_14, MD5_CONST_o(3));  /* 4 */
	FF(a, b, c, d, 	x_4, MD5_SHIFT_11, MD5_CONST_e(4));  /* 5 */
	FF(d, a, b, c, 	x_5, MD5_SHIFT_12, MD5_CONST_o(5));  /* 6 */
	FF(c, d, a, b, 	x_6, MD5_SHIFT_13, MD5_CONST_e(6));  /* 7 */
	FF(b, c, d, a, 	x_7, MD5_SHIFT_14, MD5_CONST_o(7));  /* 8 */
	FF(a, b, c, d, 	x_8, MD5_SHIFT_11, MD5_CONST_e(8));  /* 9 */
	FF(d, a, b, c, 	x_9, MD5_SHIFT_12, MD5_CONST_o(9));  /* 10 */
	FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */
	FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */
	FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */
	FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */
	FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */
	FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */

	/* round 2 */
	GG(a, b, c, d,  x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */
	GG(d, a, b, c,  x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */
	GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */
	GG(b, c, d, a,  x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */
	GG(a, b, c, d,  x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */
	GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */
	GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */
	GG(b, c, d, a,  x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */
	GG(a, b, c, d,  x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */
	GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */
	GG(c, d, a, b,  x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */
	GG(b, c, d, a,  x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */
	GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */
	GG(d, a, b, c,  x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */
	GG(c, d, a, b,  x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */
	GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */

	/* round 3 */
	HH(a, b, c, d,  x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */
	HH(d, a, b, c,  x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */
	HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */
	HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */
	HH(a, b, c, d,  x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */
	HH(d, a, b, c,  x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */
	HH(c, d, a, b,  x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */
	HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */
	HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */
	HH(d, a, b, c,  x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */
	HH(c, d, a, b,  x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */
	HH(b, c, d, a,  x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */
	HH(a, b, c, d,  x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */
	HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */
	HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */
	HH(b, c, d, a,  x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */

	/* round 4 */
	II(a, b, c, d,  x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */
	II(d, a, b, c,  x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */
	II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */
	II(b, c, d, a,  x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */
	II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */
	II(d, a, b, c,  x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */
	II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */
	II(b, c, d, a,  x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */
	II(a, b, c, d,  x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */
	II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */
	II(c, d, a, b,  x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */
	II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */
	II(a, b, c, d,  x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */
	II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */
	II(c, d, a, b,  x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */
	II(b, c, d, a,  x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */

	ctx->state[0] += a;
	ctx->state[1] += b;
	ctx->state[2] += c;
	ctx->state[3] += d;

	/*
	 * zeroize sensitive information -- compiler will optimize
	 * this out if everything is kept in registers
	 */

	x_0 = x_1  = x_2  = x_3  = x_4  = x_5  = x_6  = x_7 = x_8 = 0;
	x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0;
}

/*
 * Encode()
 *
 * purpose: to convert a list of numbers from big endian to little endian
 *   input: uint8_t *	: place to store the converted little endian numbers
 *	    uint32_t *	: place to get numbers to convert from
 *          size_t	: the length of the input in bytes
 *  output: void
 */

static void
Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
    size_t input_len)
{
	size_t		i, j;

	for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) {

#ifdef _LITTLE_ENDIAN

#ifdef _MD5_CHECK_ALIGNMENT
		if ((uintptr_t)output & 0x3)	/* Not 4-byte aligned */
			bcopy(input + i, output + j, 4);
		else *(uint32_t *)(output + j) = input[i];
#else
		/*LINTED E_BAD_PTR_CAST_ALIGN*/
		*(uint32_t *)(output + j) = input[i];
#endif /* _MD5_CHECK_ALIGNMENT */

#else	/* big endian -- will work on little endian, but slowly */

		output[j] = input[i] & 0xff;
		output[j + 1] = (input[i] >> 8)  & 0xff;
		output[j + 2] = (input[i] >> 16) & 0xff;
		output[j + 3] = (input[i] >> 24) & 0xff;
#endif
	}
}