summaryrefslogtreecommitdiff
path: root/usr/src/lib/libc/sparc/fp/_Q_cplx_div.c
blob: 8740c42f5426235357bfbd9b45e7a05ea89affc7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License, Version 1.0 only
 * (the "License").  You may not use this file except in compliance
 * with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * On SPARC V8, _Q_cplx_div(v, z, w) sets *v = *z / *w with infin-
 * ities handling according to C99.
 *
 * On SPARC V9, _Q_cplx_div(z, w) returns *z / *w with infinities
 * handled according to C99.
 *
 * If z and w are both finite and w is nonzero, _Q_cplx_div delivers
 * the complex quotient q according to the usual formula: let a =
 * Re(z), b = Im(z), c = Re(w), and d = Im(w); then q = x + I * y
 * where x = (a * c + b * d) / r and y = (b * c - a * d) / r with
 * r = c * c + d * d.  This implementation scales to avoid premature
 * underflow or overflow.
 *
 * If z is neither NaN nor zero and w is zero, or if z is infinite
 * and w is finite and nonzero, _Q_cplx_div delivers an infinite
 * result.  If z is finite and w is infinite, _Q_cplx_div delivers
 * a zero result.
 *
 * If z and w are both zero or both infinite, or if either z or w is
 * a complex NaN, _Q_cplx_div delivers NaN + I * NaN.  C99 doesn't
 * specify these cases.
 *
 * This implementation can raise spurious underflow, overflow, in-
 * valid operation, inexact, and division-by-zero exceptions.  C99
 * allows this.
 */

#if !defined(sparc) && !defined(__sparc)
#error This code is for SPARC only
#endif

static union {
	int		i[4];
	long double	q;
} inf = {
	0x7fff0000, 0, 0, 0
};

/*
 * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
 */
static int
testinfl(long double x)
{
	union {
		int		i[4];
		long double	q;
	} xx;

	xx.q = x;
	return (((((xx.i[0] << 1) - 0xfffe0000) | xx.i[1] | xx.i[2] | xx.i[3])
		== 0)? (1 | (xx.i[0] >> 31)) : 0);
}

#ifdef __sparcv9
long double _Complex
_Q_cplx_div(const long double _Complex *z, const long double _Complex *w)
{
	long double _Complex	v = 0;
#else
void
_Q_cplx_div(long double _Complex *v, const long double _Complex *z,
	const long double _Complex *w)
{
#endif
	union {
		int		i[4];
		long double	q;
	} aa, bb, cc, dd, ss;
	long double	a, b, c, d, r;
	int		ha, hb, hc, hd, hz, hw, hs, i, j;

	/*
	 * The following is equivalent to
	 *
	 *  a = creall(*z); b = cimagl(*z);
	 *  c = creall(*w); d = cimagl(*w);
	 */
	a = ((long double *)z)[0];
	b = ((long double *)z)[1];
	c = ((long double *)w)[0];
	d = ((long double *)w)[1];

	/* extract high-order words to estimate |z| and |w| */
	aa.q = a;
	bb.q = b;
	ha = aa.i[0] & ~0x80000000;
	hb = bb.i[0] & ~0x80000000;
	hz = (ha > hb)? ha : hb;

	cc.q = c;
	dd.q = d;
	hc = cc.i[0] & ~0x80000000;
	hd = dd.i[0] & ~0x80000000;
	hw = (hc > hd)? hc : hd;

	/* check for special cases */
	if (hw >= 0x7fff0000) { /* w is inf or nan */
		r = 0.0l;
		i = testinfl(c);
		j = testinfl(d);
		if (i | j) { /* w is infinite */
			/*
			 * "factor out" infinity, being careful to preserve
			 * signs of finite values
			 */
			c = i? i : ((cc.i[0] < 0)? -0.0l : 0.0l);
			d = j? j : ((dd.i[0] < 0)? -0.0l : 0.0l);
			if (hz >= 0x7ffe0000) {
				/* scale to avoid overflow below */
				c *= 0.5l;
				d *= 0.5l;
			}
		}
		goto done;
	}

	if (hw == 0 && (cc.i[1] | cc.i[2] | cc.i[3] |
		dd.i[1] | dd.i[2] | dd.i[3]) == 0) {
		/* w is zero; multiply z by 1/Re(w) - I * Im(w) */
		r = 1.0l;
		c = 1.0l / c;
		i = testinfl(a);
		j = testinfl(b);
		if (i | j) { /* z is infinite */
			a = i;
			b = j;
		}
		goto done;
	}

	if (hz >= 0x7fff0000) { /* z is inf or nan */
		r = 1.0l;
		i = testinfl(a);
		j = testinfl(b);
		if (i | j) { /* z is infinite */
			a = i;
			b = j;
			r = inf.q;
		}
		goto done;
	}

	/*
	 * Scale c and d to compute 1/|w|^2 and the real and imaginary
	 * parts of the quotient.
	 */
	hs = (((hw >> 2) - hw) + 0x6ffd7fff) & 0xffff0000;
	if (hz < 0x00ea0000) { /* |z| < 2^-16149 */
		if (((hw - 0x3e380000) | (0x40e90000 - hw)) >= 0)
			hs = (((0x40e90000 - hw) >> 1) & 0xffff0000)
				+ 0x3fff0000;
	}
	ss.i[0] = hs;
	ss.i[1] = ss.i[2] = ss.i[3] = 0;

	c *= ss.q;
	d *= ss.q;
	r = 1.0l / (c * c + d * d);

	c *= ss.q;
	d *= ss.q;

done:
#ifdef __sparcv9
	((long double *)&v)[0] = (a * c + b * d) * r;
	((long double *)&v)[1] = (b * c - a * d) * r;
	return (v);
#else
	((long double *)v)[0] = (a * c + b * d) * r;
	((long double *)v)[1] = (b * c - a * d) * r;
#endif
}