summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/contract/device.c
blob: 1517bbbe9ea5e787f80cc93781209829d025b7dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
 */

#include <sys/mutex.h>
#include <sys/debug.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/kmem.h>
#include <sys/thread.h>
#include <sys/id_space.h>
#include <sys/avl.h>
#include <sys/list.h>
#include <sys/sysmacros.h>
#include <sys/proc.h>
#include <sys/contract.h>
#include <sys/contract_impl.h>
#include <sys/contract/device.h>
#include <sys/contract/device_impl.h>
#include <sys/cmn_err.h>
#include <sys/nvpair.h>
#include <sys/policy.h>
#include <sys/ddi_impldefs.h>
#include <sys/ddi_implfuncs.h>
#include <sys/systm.h>
#include <sys/stat.h>
#include <sys/sunddi.h>
#include <sys/esunddi.h>
#include <sys/ddi.h>
#include <sys/fs/dv_node.h>
#include <sys/sunndi.h>
#undef ct_lock	/* needed because clnt.h defines ct_lock as a macro */

/*
 * Device Contracts
 * -----------------
 * This file contains the core code for the device contracts framework.
 * A device contract is an agreement or a contract between a process and
 * the kernel regarding the state of the device. A device contract may be
 * created when a relationship is formed between a device and a process
 * i.e. at open(2) time, or it may be created at some point after the device
 * has been opened. A device contract once formed may be broken by either party.
 * A device contract can be broken by the process by an explicit abandon of the
 * contract or by an implicit abandon when the process exits. A device contract
 * can be broken by the kernel either asynchronously (without negotiation) or
 * synchronously (with negotiation). Exactly which happens depends on the device
 * state transition. The following state diagram shows the transitions between
 * device states. Only device state transitions currently supported by device
 * contracts is shown.
 *
 *                              <-- A -->
 *                       /-----------------> DEGRADED
 *                       |                      |
 *                       |                      |
 *                       |                      | S
 *                       |                      | |
 *                       |                      | v
 *                       v       S -->          v
 *                      ONLINE ------------> OFFLINE
 *
 *
 * In the figure above, the arrows indicate the direction of transition. The
 * letter S refers to transitions which are inherently synchronous i.e.
 * require negotiation and the letter A indicates transitions which are
 * asynchronous i.e. are done without contract negotiations. A good example
 * of a synchronous transition is the ONLINE -> OFFLINE transition. This
 * transition cannot happen as long as there are consumers which have the
 * device open. Thus some form of negotiation needs to happen between the
 * consumers and the kernel to ensure that consumers either close devices
 * or disallow the move to OFFLINE. Certain other transitions such as
 * ONLINE --> DEGRADED for example, are inherently asynchronous i.e.
 * non-negotiable. A device that suffers a fault that degrades its
 * capabilities will become degraded irrespective of what consumers it has,
 * so a negotiation in this case is pointless.
 *
 * The following device states are currently defined for device contracts:
 *
 *      CT_DEV_EV_ONLINE
 *              The device is online and functioning normally
 *      CT_DEV_EV_DEGRADED
 *              The device is online but is functioning in a degraded capacity
 *      CT_DEV_EV_OFFLINE
 *              The device is offline and is no longer configured
 *
 * A typical consumer of device contracts starts out with a contract
 * template and adds terms to that template. These include the
 * "acceptable set" (A-set) term, which is a bitset of device states which
 * are guaranteed by the contract. If the device moves out of a state in
 * the A-set, the contract is broken. The breaking of the contract can
 * be asynchronous in which case a critical contract event is sent to the
 * contract holder but no negotiations take place. If the breaking of the
 * contract is synchronous, negotations are opened between the affected
 * consumer and the kernel. The kernel does this by sending a critical
 * event to the consumer with the CTE_NEG flag set indicating that this
 * is a negotiation event. The consumer can accept this change by sending
 * a ACK message to the kernel. Alternatively, if it has the necessary
 * privileges, it can send a NACK message to the kernel which will block
 * the device state change. To NACK a negotiable event, a process must
 * have the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
 *
 * Other terms include the "minor path" term, specified explicitly if the
 * contract is not being created at open(2) time or specified implicitly
 * if the contract is being created at open time via an activated template.
 *
 * A contract event is sent on any state change to which the contract
 * owner has subscribed via the informative or critical event sets. Only
 * critical events are guaranteed to be delivered. Since all device state
 * changes are controlled by the kernel and cannot be arbitrarily generated
 * by a non-privileged user, the {PRIV_CONTRACT_EVENT} privilege does not
 * need to be asserted in a process's effective set to designate an event as
 * critical. To ensure privacy, a process must either have the same effective
 * userid as the contract holder or have the {PRIV_CONTRACT_OBSERVER} privilege
 * asserted in its effective set in order to observe device contract events
 * off the device contract type specific endpoint.
 *
 * Yet another term available with device contracts is the "non-negotiable"
 * term. This term is used to pre-specify a NACK to any contract negotiation.
 * This term is ignored for asynchronous state changes. For example, a
 * provcess may have the A-set {ONLINE|DEGRADED} and make the contract
 * non-negotiable. In this case, the device contract framework assumes a
 * NACK for any transition to OFFLINE and blocks the offline. If the A-set
 * is {ONLINE} and the non-negotiable term is set, transitions to OFFLINE
 * are NACKed but transitions to DEGRADE succeed.
 *
 * The OFFLINE negotiation (if OFFLINE state is not in the A-set for a contract)
 * happens just before the I/O framework attempts to offline a device
 * (i.e. detach a device and set the offline flag so that it cannot be
 * reattached). A device contract holder is expected to either NACK the offline
 * (if privileged) or release the device and allow the offline to proceed.
 *
 * The DEGRADE contract event (if DEGRADE is not in the A-set for a contract)
 * is generated just before the I/O framework transitions the device state
 * to "degraded" (i.e. DEVI_DEVICE_DEGRADED in I/O framework terminology).
 *
 * The contract holder is expected to ACK or NACK a negotiation event
 * within a certain period of time. If the ACK/NACK is not received
 * within the timeout period, the device contract framework will behave
 * as if the contract does not exist and will proceed with the event.
 *
 * Unlike a process contract a device contract does not need to exist
 * once it is abandoned, since it does not define a fault boundary. It
 * merely represents an agreement between a process and the kernel
 * regarding the state of the device. Once the process has abandoned
 * the contract (either implicitly via a process exit or explicitly)
 * the kernel has no reason to retain the contract. As a result
 * device contracts are neither inheritable nor need to exist in an
 * orphan state.
 *
 * A device unlike a process may exist in multiple contracts and has
 * a "life" outside a device contract. A device unlike a process
 * may exist without an associated contract. Unlike a process contract
 * a device contract may be formed after a binding relationship is
 * formed between a process and a device.
 *
 *	IMPLEMENTATION NOTES
 *	====================
 * DATA STRUCTURES
 * ----------------
 * 	The heart of the device contracts implementation is the device contract
 * 	private cont_device_t (or ctd for short) data structure. It encapsulates
 * 	the generic contract_t data structure and has a number of private
 *	fields.
 * 	These include:
 *		cond_minor: The minor device that is the subject of the contract
 *		cond_aset:  The bitset of states which are guaranteed by the
 *			   contract
 *		cond_noneg: If set, indicates that the result of negotiation has
 *			    been predefined to be a NACK
 * 	In addition, there are other device identifiers such the devinfo node,
 * 	dev_t and spec_type of the minor node. There are also a few fields that
 * 	are used during negotiation to maintain state. See
 *		uts/common/sys/contract/device_impl.h
 * 	for details.
 * 	The ctd structure represents the device private part of a contract of
 * 	type "device"
 *
 * 	Another data structure used by device contracts is ctmpl_device. It is
 * 	the device contracts private part of the contract template structure. It
 *	encapsulates the generic template structure "ct_template_t" and includes
 *	the following device contract specific fields
 *		ctd_aset:   The bitset of states that should be guaranteed by a
 *			    contract
 *		ctd_noneg:  If set, indicates that contract should NACK a
 *			    negotiation
 *		ctd_minor:  The devfs_path (without the /devices prefix) of the
 *			    minor node that is the subject of the contract.
 *
 * ALGORITHMS
 * ---------
 * There are three sets of routines in this file
 * 	Template related routines
 * 	-------------------------
 *	These routines provide support for template related operations initated
 *	via the generic template operations. These include routines that dup
 *	a template, free it, and set various terms in the template
 *	(such as the minor node path, the acceptable state set (or A-set)
 *	and the non-negotiable term) as well as a routine to query the
 *	device specific portion of the template for the abovementioned terms.
 *	There is also a routine to create (ctmpl_device_create) that is used to
 *	create a contract from a template. This routine calls (after initial
 *	setup) the common function used to create a device contract
 *	(contract_device_create).
 *
 *	core device contract implementation
 *	----------------------------------
 *	These routines support the generic contract framework to provide
 *	functionality that allows contracts to be created, managed and
 *	destroyed. The contract_device_create() routine is a routine used
 *	to create a contract from a template (either via an explicit create
 *	operation on a template or implicitly via an open with an
 *	activated template.). The contract_device_free() routine assists
 *	in freeing the device contract specific parts. There are routines
 *	used to abandon (contract_device_abandon) a device contract as well
 *	as a routine to destroy (which despite its name does not destroy,
 *	it only moves a contract to a dead state) a contract.
 *	There is also a routine to return status information about a
 *	contract - the level of detail depends on what is requested by the
 *	user. A value of CTD_FIXED only returns fixed length fields such
 *	as the A-set, state of device and value of the "noneg" term. If
 *	CTD_ALL is specified, the minor node path is returned as well.
 *
 *	In addition there are interfaces (contract_device_ack/nack) which
 *	are used to support negotiation between userland processes and
 *	device contracts. These interfaces record the acknowledgement
 *	or lack thereof for negotiation events and help determine if the
 *	negotiated event should occur.
 *
 *	"backend routines"
 *	-----------------
 *	The backend routines form the interface between the I/O framework
 *	and the device contract subsystem. These routines, allow the I/O
 *	framework to call into the device contract subsystem to notify it of
 *	impending changes to a device state as well as to inform of the
 *	final disposition of such attempted state changes. Routines in this
 *	class include contract_device_offline() that indicates an attempt to
 *	offline a device, contract_device_degrade() that indicates that
 *	a device is moving to the degraded state and contract_device_negend()
 *	that is used by the I/O framework to inform the contracts subsystem of
 *	the final disposition of an attempted operation.
 *
 *	SUMMARY
 *	-------
 *      A contract starts its life as a template. A process allocates a device
 *	contract template and sets various terms:
 *		The A-set
 *		The device minor node
 *		Critical and informative events
 *		The noneg i.e. no negotition term
 *	Setting of these terms in the template is done via the
 *	ctmpl_device_set() entry point in this file. A process can query a
 *	template to determine the terms already set in the template - this is
 *	facilitated by the ctmpl_device_get() routine.
 *
 *	Once all the appropriate terms are set, the contract is instantiated via
 *	one of two methods
 *	- via an explicit create operation - this is facilitated by the
 *	  ctmpl_device_create() entry point
 *	- synchronously with the open(2) system call - this is achieved via the
 *	  contract_device_open() routine.
 *	The core work for both these above functions is done by
 *	contract_device_create()
 *
 *	A contract once created can be queried for its status. Support for
 *	status info is provided by both the common contracts framework and by
 *	the "device" contract type. If the level of detail requested is
 *	CTD_COMMON, only the common contract framework data is used. Higher
 *	levels of detail result in calls to contract_device_status() to supply
 *	device contract type specific status information.
 *
 *	A contract once created may be abandoned either explicitly or implictly.
 *	In either case, the contract_device_abandon() function is invoked. This
 * 	function merely calls contract_destroy() which moves the contract to
 *	the DEAD state. The device contract portion of destroy processing is
 *	provided by contract_device_destroy() which merely disassociates the
 *	contract from its device devinfo node. A contract in the DEAD state is
 *	not freed. It hanbgs around until all references to the contract are
 *	gone. When that happens, the contract is finally deallocated. The
 *	device contract specific portion of the free is done by
 *	contract_device_free() which finally frees the device contract specific
 *	data structure (cont_device_t).
 *
 *	When a device undergoes a state change, the I/O framework calls the
 *	corresponding device contract entry point. For example, when a device
 *	is about to go OFFLINE, the routine contract_device_offline() is
 *	invoked. Similarly if a device moves to DEGRADED state, the routine
 *	contract_device_degrade() function is called. These functions call the
 *	core routine contract_device_publish(). This function determines via
 *	the function is_sync_neg() whether an event is a synchronous (i.e.
 *	negotiable) event or not. In the former case contract_device_publish()
 *	publishes a CTE_NEG event and then waits in wait_for_acks() for ACKs
 *	and/or NACKs from contract holders. In the latter case, it simply
 *	publishes the event and does not wait. In the negotiation case, ACKs or
 *	NACKs from userland consumers results in contract_device_ack_nack()
 *	being called where the result of the negotiation is recorded in the
 *	contract data structure. Once all outstanding contract owners have
 *	responded, the device contract code in wait_for_acks() determines the
 *	final result of the negotiation. A single NACK overrides all other ACKs
 *	If there is no NACK, then a single ACK will result in an overall ACK
 *	result. If there are no ACKs or NACKs, then the result CT_NONE is
 *	returned back to the I/O framework. Once the event is permitted or
 *	blocked, the I/O framework proceeds or aborts the state change. The
 *	I/O framework then calls contract_device_negend() with a result code
 *	indicating final disposition of the event. This call releases the
 *	barrier and other state associated with the previous negotiation,
 *	which permits the next event (if any) to come into the device contract
 *	framework.
 *
 *	Finally, a device that has outstanding contracts may be removed from
 *	the system which results in its devinfo node being freed. The devinfo
 *	free routine in the I/O framework, calls into the device contract
 *	function - contract_device_remove_dip(). This routine, disassociates
 *	the dip from all contracts associated with the contract being freed,
 *	allowing the devinfo node to be freed.
 *
 * LOCKING
 * ---------
 * 	There are four sets of data that need to be protected by locks
 *
 *	i) device contract specific portion of the contract template - This data
 *	is protected by the template lock ctmpl_lock.
 *
 *	ii) device contract specific portion of the contract - This data is
 *	protected by the contract lock ct_lock
 *
 *	iii) The linked list of contracts hanging off a devinfo node - This
 *	list is protected by the per-devinfo node lock devi_ct_lock
 *
 *	iv) Finally there is a barrier, controlled by devi_ct_lock, devi_ct_cv
 *	and devi_ct_count that controls state changes to a dip
 *
 *	The template lock is independent in that none of the other locks in this
 *	file may be taken while holding the template lock (and vice versa).
 *
 *	The remaining three locks have the following lock order
 *
 *	devi_ct_lock  -> ct_count barrier ->  ct_lock
 *
 */

static cont_device_t *contract_device_create(ctmpl_device_t *dtmpl, dev_t dev,
    int spec_type, proc_t *owner, int *errorp);

/* barrier routines */
static void ct_barrier_acquire(dev_info_t *dip);
static void ct_barrier_release(dev_info_t *dip);
static int ct_barrier_held(dev_info_t *dip);
static int ct_barrier_empty(dev_info_t *dip);
static void ct_barrier_wait_for_release(dev_info_t *dip);
static int ct_barrier_wait_for_empty(dev_info_t *dip, int secs);
static void ct_barrier_decr(dev_info_t *dip);
static void ct_barrier_incr(dev_info_t *dip);

ct_type_t *device_type;

/*
 * Macro predicates for determining when events should be sent and how.
 */
#define	EVSENDP(ctd, flag) \
	((ctd->cond_contract.ct_ev_info | ctd->cond_contract.ct_ev_crit) & flag)

#define	EVINFOP(ctd, flag) \
	((ctd->cond_contract.ct_ev_crit & flag) == 0)

/*
 * State transition table showing which transitions are synchronous and which
 * are not.
 */
struct ct_dev_negtable {
	uint_t	st_old;
	uint_t	st_new;
	uint_t	st_neg;
} ct_dev_negtable[] = {
	{CT_DEV_EV_ONLINE, CT_DEV_EV_OFFLINE,	1},
	{CT_DEV_EV_ONLINE, CT_DEV_EV_DEGRADED,	0},
	{CT_DEV_EV_DEGRADED, CT_DEV_EV_ONLINE,	0},
	{CT_DEV_EV_DEGRADED, CT_DEV_EV_OFFLINE,	1},
	{0}
};

/*
 * Device contract template implementation
 */

/*
 * ctmpl_device_dup
 *
 * The device contract template dup entry point.
 * This simply copies all the fields (generic as well as device contract
 * specific) fields of the original.
 */
static struct ct_template *
ctmpl_device_dup(struct ct_template *template)
{
	ctmpl_device_t *new;
	ctmpl_device_t *old = template->ctmpl_data;
	char *buf;
	char *minor;

	new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);

	/*
	 * copy generic fields.
	 * ctmpl_copy returns with old template lock held
	 */
	ctmpl_copy(&new->ctd_ctmpl, template);

	new->ctd_ctmpl.ctmpl_data = new;
	new->ctd_aset = old->ctd_aset;
	new->ctd_minor = NULL;
	new->ctd_noneg = old->ctd_noneg;

	if (old->ctd_minor) {
		ASSERT(strlen(old->ctd_minor) + 1 <= MAXPATHLEN);
		bcopy(old->ctd_minor, buf, strlen(old->ctd_minor) + 1);
	} else {
		kmem_free(buf, MAXPATHLEN);
		buf = NULL;
	}

	mutex_exit(&template->ctmpl_lock);
	if (buf) {
		minor = i_ddi_strdup(buf, KM_SLEEP);
		kmem_free(buf, MAXPATHLEN);
		buf = NULL;
	} else {
		minor = NULL;
	}
	mutex_enter(&template->ctmpl_lock);

	if (minor) {
		new->ctd_minor = minor;
	}

	ASSERT(buf == NULL);
	return (&new->ctd_ctmpl);
}

/*
 * ctmpl_device_free
 *
 * The device contract template free entry point.  Just
 * frees the template.
 */
static void
ctmpl_device_free(struct ct_template *template)
{
	ctmpl_device_t *dtmpl = template->ctmpl_data;

	if (dtmpl->ctd_minor)
		kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);

	kmem_free(dtmpl, sizeof (ctmpl_device_t));
}

/*
 * SAFE_EV is the set of events which a non-privileged process is
 * allowed to make critical. An unprivileged device contract owner has
 * no control over when a device changes state, so all device events
 * can be in the critical set.
 *
 * EXCESS tells us if "value", a critical event set, requires
 * additional privilege. For device contracts EXCESS currently
 * evaluates to 0.
 */
#define	SAFE_EV		(CT_DEV_ALLEVENT)
#define	EXCESS(value)	((value) & ~SAFE_EV)


/*
 * ctmpl_device_set
 *
 * The device contract template set entry point. Sets various terms in the
 * template. The non-negotiable  term can only be set if the process has
 * the {PRIV_SYS_DEVICES} privilege asserted in its effective set.
 */
static int
ctmpl_device_set(struct ct_template *tmpl, ct_kparam_t *kparam,
    const cred_t *cr)
{
	ctmpl_device_t *dtmpl = tmpl->ctmpl_data;
	ct_param_t *param = &kparam->param;
	int error;
	dev_info_t *dip;
	int spec_type;
	uint64_t param_value;
	char *str_value;

	ASSERT(MUTEX_HELD(&tmpl->ctmpl_lock));

	if (param->ctpm_id == CTDP_MINOR) {
		str_value = (char *)kparam->ctpm_kbuf;
		str_value[param->ctpm_size - 1] = '\0';
	} else {
		if (param->ctpm_size < sizeof (uint64_t))
			return (EINVAL);
		param_value = *(uint64_t *)kparam->ctpm_kbuf;
	}

	switch (param->ctpm_id) {
	case CTDP_ACCEPT:
		if (param_value & ~CT_DEV_ALLEVENT)
			return (EINVAL);
		if (param_value == 0)
			return (EINVAL);
		if (param_value == CT_DEV_ALLEVENT)
			return (EINVAL);

		dtmpl->ctd_aset = param_value;
		break;
	case CTDP_NONEG:
		if (param_value != CTDP_NONEG_SET &&
		    param_value != CTDP_NONEG_CLEAR)
			return (EINVAL);

		/*
		 * only privileged processes can designate a contract
		 * non-negotiatble.
		 */
		if (param_value == CTDP_NONEG_SET &&
		    (error = secpolicy_sys_devices(cr)) != 0) {
			return (error);
		}

		dtmpl->ctd_noneg = param_value;
		break;

	case CTDP_MINOR:
		if (*str_value != '/' ||
		    strncmp(str_value, "/devices/",
		    strlen("/devices/")) == 0 ||
		    strstr(str_value, "../devices/") != NULL ||
		    strchr(str_value, ':') == NULL) {
			return (EINVAL);
		}

		spec_type = 0;
		dip = NULL;
		if (resolve_pathname(str_value, &dip, NULL, &spec_type) != 0) {
			return (ERANGE);
		}
		ddi_release_devi(dip);

		if (spec_type != S_IFCHR && spec_type != S_IFBLK) {
			return (EINVAL);
		}

		if (dtmpl->ctd_minor != NULL) {
			kmem_free(dtmpl->ctd_minor,
			    strlen(dtmpl->ctd_minor) + 1);
		}
		dtmpl->ctd_minor = i_ddi_strdup(str_value, KM_SLEEP);
		break;
	case CTP_EV_CRITICAL:
		/*
		 * Currently for device contracts, any event
		 * may be added to the critical set. We retain the
		 * following code however for future enhancements.
		 */
		if (EXCESS(param_value) &&
		    (error = secpolicy_contract_event(cr)) != 0)
			return (error);
		tmpl->ctmpl_ev_crit = param_value;
		break;
	default:
		return (EINVAL);
	}

	return (0);
}

/*
 * ctmpl_device_get
 *
 * The device contract template get entry point.  Simply fetches and
 * returns the value of the requested term.
 */
static int
ctmpl_device_get(struct ct_template *template, ct_kparam_t *kparam)
{
	ctmpl_device_t *dtmpl = template->ctmpl_data;
	ct_param_t *param = &kparam->param;
	uint64_t *param_value = kparam->ctpm_kbuf;

	ASSERT(MUTEX_HELD(&template->ctmpl_lock));

	if (param->ctpm_id == CTDP_ACCEPT ||
	    param->ctpm_id == CTDP_NONEG) {
		if (param->ctpm_size < sizeof (uint64_t))
			return (EINVAL);
		kparam->ret_size = sizeof (uint64_t);
	}

	switch (param->ctpm_id) {
	case CTDP_ACCEPT:
		*param_value = dtmpl->ctd_aset;
		break;
	case CTDP_NONEG:
		*param_value = dtmpl->ctd_noneg;
		break;
	case CTDP_MINOR:
		if (dtmpl->ctd_minor) {
			kparam->ret_size = strlcpy((char *)kparam->ctpm_kbuf,
			    dtmpl->ctd_minor, param->ctpm_size);
			kparam->ret_size++;
		} else {
			return (ENOENT);
		}
		break;
	default:
		return (EINVAL);
	}

	return (0);
}

/*
 * Device contract type specific portion of creating a contract using
 * a specified template
 */
/*ARGSUSED*/
int
ctmpl_device_create(ct_template_t *template, ctid_t *ctidp)
{
	ctmpl_device_t *dtmpl;
	char *buf;
	dev_t dev;
	int spec_type;
	int error;
	cont_device_t *ctd;

	if (ctidp == NULL)
		return (EINVAL);

	buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);

	dtmpl = template->ctmpl_data;

	mutex_enter(&template->ctmpl_lock);
	if (dtmpl->ctd_minor == NULL) {
		/* incomplete template */
		mutex_exit(&template->ctmpl_lock);
		kmem_free(buf, MAXPATHLEN);
		return (EINVAL);
	} else {
		ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
		bcopy(dtmpl->ctd_minor, buf, strlen(dtmpl->ctd_minor) + 1);
	}
	mutex_exit(&template->ctmpl_lock);

	spec_type = 0;
	dev = NODEV;
	if (resolve_pathname(buf, NULL, &dev, &spec_type) != 0 ||
	    dev == NODEV || dev == DDI_DEV_T_ANY || dev == DDI_DEV_T_NONE ||
	    (spec_type != S_IFCHR && spec_type != S_IFBLK)) {
		CT_DEBUG((CE_WARN,
		    "tmpl_create: failed to find device: %s", buf));
		kmem_free(buf, MAXPATHLEN);
		return (ERANGE);
	}
	kmem_free(buf, MAXPATHLEN);

	ctd = contract_device_create(template->ctmpl_data,
	    dev, spec_type, curproc, &error);

	if (ctd == NULL) {
		CT_DEBUG((CE_WARN, "Failed to create device contract for "
		    "process (%d) with device (devt = %lu, spec_type = %s)",
		    curproc->p_pid, dev,
		    spec_type == S_IFCHR ? "S_IFCHR" : "S_IFBLK"));
		return (error);
	}

	mutex_enter(&ctd->cond_contract.ct_lock);
	*ctidp = ctd->cond_contract.ct_id;
	mutex_exit(&ctd->cond_contract.ct_lock);

	return (0);
}

/*
 * Device contract specific template entry points
 */
static ctmplops_t ctmpl_device_ops = {
	ctmpl_device_dup,		/* ctop_dup */
	ctmpl_device_free,		/* ctop_free */
	ctmpl_device_set,		/* ctop_set */
	ctmpl_device_get,		/* ctop_get */
	ctmpl_device_create,		/* ctop_create */
	CT_DEV_ALLEVENT			/* all device events bitmask */
};


/*
 * Device contract implementation
 */

/*
 * contract_device_default
 *
 * The device contract default template entry point.  Creates a
 * device contract template with a default A-set and no "noneg" ,
 * with informative degrade events and critical offline events.
 * There is no default minor path.
 */
static ct_template_t *
contract_device_default(void)
{
	ctmpl_device_t *new;

	new = kmem_zalloc(sizeof (ctmpl_device_t), KM_SLEEP);
	ctmpl_init(&new->ctd_ctmpl, &ctmpl_device_ops, device_type, new);

	new->ctd_aset = CT_DEV_EV_ONLINE | CT_DEV_EV_DEGRADED;
	new->ctd_noneg = 0;
	new->ctd_ctmpl.ctmpl_ev_info = CT_DEV_EV_DEGRADED;
	new->ctd_ctmpl.ctmpl_ev_crit = CT_DEV_EV_OFFLINE;

	return (&new->ctd_ctmpl);
}

/*
 * contract_device_free
 *
 * Destroys the device contract specific portion of a contract and
 * frees the contract.
 */
static void
contract_device_free(contract_t *ct)
{
	cont_device_t *ctd = ct->ct_data;

	ASSERT(ctd->cond_minor);
	ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);
	kmem_free(ctd->cond_minor, strlen(ctd->cond_minor) + 1);

	ASSERT(ctd->cond_devt != DDI_DEV_T_ANY &&
	    ctd->cond_devt != DDI_DEV_T_NONE && ctd->cond_devt != NODEV);

	ASSERT(ctd->cond_spec == S_IFBLK || ctd->cond_spec == S_IFCHR);

	ASSERT(!(ctd->cond_aset & ~CT_DEV_ALLEVENT));
	ASSERT(ctd->cond_noneg == 0 || ctd->cond_noneg == 1);

	ASSERT(!(ctd->cond_currev_type & ~CT_DEV_ALLEVENT));
	ASSERT(!(ctd->cond_currev_ack & ~(CT_ACK | CT_NACK)));

	ASSERT((ctd->cond_currev_id > 0) ^ (ctd->cond_currev_type == 0));
	ASSERT((ctd->cond_currev_id > 0) || (ctd->cond_currev_ack == 0));

	ASSERT(!list_link_active(&ctd->cond_next));

	kmem_free(ctd, sizeof (cont_device_t));
}

/*
 * contract_device_abandon
 *
 * The device contract abandon entry point.
 */
static void
contract_device_abandon(contract_t *ct)
{
	ASSERT(MUTEX_HELD(&ct->ct_lock));

	/*
	 * device contracts cannot be inherited or orphaned.
	 * Move the contract to the DEAD_STATE. It will be freed
	 * once all references to it are gone.
	 */
	contract_destroy(ct);
}

/*
 * contract_device_destroy
 *
 * The device contract destroy entry point.
 * Called from contract_destroy() to do any type specific destroy. Note
 * that destroy is a misnomer - this does not free the contract, it only
 * moves it to the dead state. A contract is actually freed via
 * 	contract_rele() -> contract_dtor(), contop_free()
 */
static void
contract_device_destroy(contract_t *ct)
{
	cont_device_t	*ctd;
	dev_info_t	*dip;

	ASSERT(MUTEX_HELD(&ct->ct_lock));

	for (;;) {
		ctd = ct->ct_data;
		dip = ctd->cond_dip;
		if (dip == NULL) {
			/*
			 * The dip has been removed, this is a dangling contract
			 * Check that dip linkages are NULL
			 */
			ASSERT(!list_link_active(&ctd->cond_next));
			CT_DEBUG((CE_NOTE, "contract_device_destroy:"
			    " contract has no devinfo node. contract ctid : %d",
			    ct->ct_id));
			return;
		}

		/*
		 * The intended lock order is : devi_ct_lock -> ct_count
		 * barrier -> ct_lock.
		 * However we can't do this here as dropping the ct_lock allows
		 * a race condition with i_ddi_free_node()/
		 * contract_device_remove_dip() which may free off dip before
		 * we can take devi_ct_lock. So use mutex_tryenter to avoid
		 * dropping ct_lock until we have acquired devi_ct_lock.
		 */
		if (mutex_tryenter(&(DEVI(dip)->devi_ct_lock)) != 0)
			break;
		mutex_exit(&ct->ct_lock);
		delay(drv_usectohz(1000));
		mutex_enter(&ct->ct_lock);
	}
	mutex_exit(&ct->ct_lock);

	/*
	 * Waiting for the barrier to be released is strictly speaking not
	 * necessary. But it simplifies the implementation of
	 * contract_device_publish() by establishing the invariant that
	 * device contracts cannot go away during negotiation.
	 */
	ct_barrier_wait_for_release(dip);
	mutex_enter(&ct->ct_lock);

	list_remove(&(DEVI(dip)->devi_ct), ctd);
	ctd->cond_dip = NULL; /* no longer linked to dip */
	contract_rele(ct);	/* remove hold for dip linkage */

	mutex_exit(&ct->ct_lock);
	mutex_exit(&(DEVI(dip)->devi_ct_lock));
	mutex_enter(&ct->ct_lock);
}

/*
 * contract_device_status
 *
 * The device contract status entry point. Called when level of "detail"
 * is either CTD_FIXED or CTD_ALL
 *
 */
static void
contract_device_status(contract_t *ct, zone_t *zone, int detail, nvlist_t *nvl,
    void *status, model_t model)
{
	cont_device_t *ctd = ct->ct_data;

	ASSERT(detail == CTD_FIXED || detail == CTD_ALL);

	mutex_enter(&ct->ct_lock);
	contract_status_common(ct, zone, status, model);

	/*
	 * There's no need to hold the contract lock while accessing static
	 * data like aset or noneg. But since we need the lock to access other
	 * data like state, we hold it anyway.
	 */
	VERIFY(nvlist_add_uint32(nvl, CTDS_STATE, ctd->cond_state) == 0);
	VERIFY(nvlist_add_uint32(nvl, CTDS_ASET, ctd->cond_aset) == 0);
	VERIFY(nvlist_add_uint32(nvl, CTDS_NONEG, ctd->cond_noneg) == 0);

	if (detail == CTD_FIXED) {
		mutex_exit(&ct->ct_lock);
		return;
	}

	ASSERT(ctd->cond_minor);
	VERIFY(nvlist_add_string(nvl, CTDS_MINOR, ctd->cond_minor) == 0);

	mutex_exit(&ct->ct_lock);
}

/*
 * Converts a result integer into the corresponding string. Used for printing
 * messages
 */
static char *
result_str(uint_t result)
{
	switch (result) {
	case CT_ACK:
		return ("CT_ACK");
	case CT_NACK:
		return ("CT_NACK");
	case CT_NONE:
		return ("CT_NONE");
	default:
		return ("UNKNOWN");
	}
}

/*
 * Converts a device state integer constant into the corresponding string.
 * Used to print messages.
 */
static char *
state_str(uint_t state)
{
	switch (state) {
	case CT_DEV_EV_ONLINE:
		return ("ONLINE");
	case CT_DEV_EV_DEGRADED:
		return ("DEGRADED");
	case CT_DEV_EV_OFFLINE:
		return ("OFFLINE");
	default:
		return ("UNKNOWN");
	}
}

/*
 * Routine that determines if a particular CT_DEV_EV_? event corresponds to a
 * synchronous state change or not.
 */
static int
is_sync_neg(uint_t old, uint_t new)
{
	int	i;

	ASSERT(old & CT_DEV_ALLEVENT);
	ASSERT(new & CT_DEV_ALLEVENT);

	if (old == new) {
		CT_DEBUG((CE_WARN, "is_sync_neg: transition to same state: %s",
		    state_str(new)));
		return (-2);
	}

	for (i = 0; ct_dev_negtable[i].st_new != 0; i++) {
		if (old == ct_dev_negtable[i].st_old &&
		    new == ct_dev_negtable[i].st_new) {
			return (ct_dev_negtable[i].st_neg);
		}
	}

	CT_DEBUG((CE_WARN, "is_sync_neg: Unsupported state transition: "
	    "old = %s -> new = %s", state_str(old), state_str(new)));

	return (-1);
}

/*
 * Used to cleanup cached dv_nodes so that when a device is released by
 * a contract holder, its devinfo node can be successfully detached.
 */
static int
contract_device_dvclean(dev_info_t *dip)
{
	char		*devnm;
	dev_info_t	*pdip;
	int		error;

	ASSERT(dip);

	/* pdip can be NULL if we have contracts against the root dip */
	pdip = ddi_get_parent(dip);

	if (pdip && DEVI_BUSY_OWNED(pdip) || !pdip && DEVI_BUSY_OWNED(dip)) {
		char		*path;

		path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
		(void) ddi_pathname(dip, path);
		CT_DEBUG((CE_WARN, "ct_dv_clean: Parent node is busy owned, "
		    "device=%s", path));
		kmem_free(path, MAXPATHLEN);
		return (EDEADLOCK);
	}

	if (pdip) {
		devnm = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP);
		(void) ddi_deviname(dip, devnm);
		error = devfs_clean(pdip, devnm + 1, DV_CLEAN_FORCE);
		kmem_free(devnm, MAXNAMELEN + 1);
	} else {
		error = devfs_clean(dip, NULL, DV_CLEAN_FORCE);
	}

	return (error);
}

/*
 * Endpoint of a ct_ctl_ack() or ct_ctl_nack() call from userland.
 * Results in the ACK or NACK being recorded on the dip for one particular
 * contract. The device contracts framework evaluates the ACK/NACKs for all
 * contracts against a device to determine if a particular device state change
 * should be allowed.
 */
static int
contract_device_ack_nack(contract_t *ct, uint_t evtype, uint64_t evid,
    uint_t cmd)
{
	cont_device_t *ctd = ct->ct_data;
	dev_info_t *dip;
	ctid_t	ctid;
	int error;

	ctid = ct->ct_id;

	CT_DEBUG((CE_NOTE, "ack_nack: entered: ctid %d", ctid));

	mutex_enter(&ct->ct_lock);
	CT_DEBUG((CE_NOTE, "ack_nack: contract lock acquired: %d", ctid));

	dip = ctd->cond_dip;

	ASSERT(ctd->cond_minor);
	ASSERT(strlen(ctd->cond_minor) < MAXPATHLEN);

	/*
	 * Negotiation only if new state is not in A-set
	 */
	ASSERT(!(ctd->cond_aset & evtype));

	/*
	 * Negotiation only if transition is synchronous
	 */
	ASSERT(is_sync_neg(ctd->cond_state, evtype));

	/*
	 * We shouldn't be negotiating if the "noneg" flag is set
	 */
	ASSERT(!ctd->cond_noneg);

	if (dip)
		ndi_hold_devi(dip);

	mutex_exit(&ct->ct_lock);

	/*
	 * dv_clean only if !NACK and offline state change
	 */
	if (cmd != CT_NACK && evtype == CT_DEV_EV_OFFLINE && dip) {
		CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: %d", ctid));
		error = contract_device_dvclean(dip);
		if (error != 0) {
			CT_DEBUG((CE_NOTE, "ack_nack: dv_clean: failed: %d",
			    ctid));
			ddi_release_devi(dip);
		}
	}

	mutex_enter(&ct->ct_lock);

	if (dip)
		ddi_release_devi(dip);

	if (dip == NULL) {
		if (ctd->cond_currev_id != evid) {
			CT_DEBUG((CE_WARN, "%sACK for non-current event "
			    "(type=%s, id=%llu) on removed device",
			    cmd == CT_NACK ? "N" : "",
			    state_str(evtype), (unsigned long long)evid));
			CT_DEBUG((CE_NOTE, "ack_nack: error: ESRCH, ctid: %d",
			    ctid));
		} else {
			ASSERT(ctd->cond_currev_type == evtype);
			CT_DEBUG((CE_WARN, "contract_ack: no such device: "
			    "ctid: %d", ctid));
		}
		error = (ct->ct_state == CTS_DEAD) ? ESRCH :
		    ((cmd == CT_NACK) ? ETIMEDOUT : 0);
		mutex_exit(&ct->ct_lock);
		return (error);
	}

	/*
	 * Must follow lock order: devi_ct_lock -> ct_count barrier - >ct_lock
	 */
	mutex_exit(&ct->ct_lock);

	mutex_enter(&DEVI(dip)->devi_ct_lock);
	mutex_enter(&ct->ct_lock);
	if (ctd->cond_currev_id != evid) {
		char *buf;
		mutex_exit(&ct->ct_lock);
		mutex_exit(&DEVI(dip)->devi_ct_lock);
		ndi_hold_devi(dip);
		buf = kmem_alloc(MAXPATHLEN, KM_SLEEP);
		(void) ddi_pathname(dip, buf);
		ddi_release_devi(dip);
		CT_DEBUG((CE_WARN, "%sACK for non-current event"
		    "(type=%s, id=%llu) on device %s",
		    cmd == CT_NACK ? "N" : "",
		    state_str(evtype), (unsigned long long)evid, buf));
		kmem_free(buf, MAXPATHLEN);
		CT_DEBUG((CE_NOTE, "ack_nack: error: %d, ctid: %d",
		    cmd == CT_NACK ? ETIMEDOUT : 0, ctid));
		return (cmd == CT_ACK ? 0 : ETIMEDOUT);
	}

	ASSERT(ctd->cond_currev_type == evtype);
	ASSERT(cmd == CT_ACK || cmd == CT_NACK);

	CT_DEBUG((CE_NOTE, "ack_nack: setting %sACK for ctid: %d",
	    cmd == CT_NACK ? "N" : "", ctid));

	ctd->cond_currev_ack = cmd;
	mutex_exit(&ct->ct_lock);

	ct_barrier_decr(dip);
	mutex_exit(&DEVI(dip)->devi_ct_lock);

	CT_DEBUG((CE_NOTE, "ack_nack: normal exit: ctid: %d", ctid));

	return (0);
}

/*
 * Invoked when a userland contract holder approves (i.e. ACKs) a state change
 */
static int
contract_device_ack(contract_t *ct, uint_t evtype, uint64_t evid)
{
	return (contract_device_ack_nack(ct, evtype, evid, CT_ACK));
}

/*
 * Invoked when a userland contract holder blocks (i.e. NACKs) a state change
 */
static int
contract_device_nack(contract_t *ct, uint_t evtype, uint64_t evid)
{
	return (contract_device_ack_nack(ct, evtype, evid, CT_NACK));
}

/*
 * Creates a new contract synchronously with the breaking of an existing
 * contract. Currently not supported.
 */
/*ARGSUSED*/
static int
contract_device_newct(contract_t *ct)
{
	return (ENOTSUP);
}

/*
 * Core device contract implementation entry points
 */
static contops_t contract_device_ops = {
	contract_device_free,		/* contop_free */
	contract_device_abandon,	/* contop_abandon */
	contract_device_destroy,	/* contop_destroy */
	contract_device_status,		/* contop_status */
	contract_device_ack,		/* contop_ack */
	contract_device_nack,		/* contop_nack */
	contract_qack_notsup,		/* contop_qack */
	contract_device_newct		/* contop_newct */
};

/*
 * contract_device_init
 *
 * Initializes the device contract type.
 */
void
contract_device_init(void)
{
	device_type = contract_type_init(CTT_DEVICE, "device",
	    &contract_device_ops, contract_device_default);
}

/*
 * contract_device_create
 *
 * create a device contract given template "tmpl" and the "owner" process.
 * May fail and return NULL if project.max-contracts would have been exceeded.
 *
 * Common device contract creation routine called for both open-time and
 * non-open time device contract creation
 */
static cont_device_t *
contract_device_create(ctmpl_device_t *dtmpl, dev_t dev, int spec_type,
    proc_t *owner, int *errorp)
{
	cont_device_t *ctd;
	char *minor;
	char *path;
	dev_info_t *dip;

	ASSERT(dtmpl != NULL);
	ASSERT(dev != NODEV && dev != DDI_DEV_T_ANY && dev != DDI_DEV_T_NONE);
	ASSERT(spec_type == S_IFCHR || spec_type == S_IFBLK);
	ASSERT(errorp);

	*errorp = 0;

	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);

	mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
	ASSERT(strlen(dtmpl->ctd_minor) < MAXPATHLEN);
	bcopy(dtmpl->ctd_minor, path, strlen(dtmpl->ctd_minor) + 1);
	mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);

	dip = e_ddi_hold_devi_by_path(path, 0);
	if (dip == NULL) {
		cmn_err(CE_WARN, "contract_create: Cannot find devinfo node "
		    "for device path (%s)", path);
		kmem_free(path, MAXPATHLEN);
		*errorp = ERANGE;
		return (NULL);
	}

	/*
	 * Lock out any parallel contract negotiations
	 */
	mutex_enter(&(DEVI(dip)->devi_ct_lock));
	ct_barrier_acquire(dip);
	mutex_exit(&(DEVI(dip)->devi_ct_lock));

	minor = i_ddi_strdup(path, KM_SLEEP);
	kmem_free(path, MAXPATHLEN);

	(void) contract_type_pbundle(device_type, owner);

	ctd = kmem_zalloc(sizeof (cont_device_t), KM_SLEEP);

	/*
	 * Only we hold a refernce to this contract. Safe to access
	 * the fields without a ct_lock
	 */
	ctd->cond_minor = minor;
	/*
	 * It is safe to set the dip pointer in the contract
	 * as the contract will always be destroyed before the dip
	 * is released
	 */
	ctd->cond_dip = dip;
	ctd->cond_devt = dev;
	ctd->cond_spec = spec_type;

	/*
	 * Since we are able to lookup the device, it is either
	 * online or degraded
	 */
	ctd->cond_state = DEVI_IS_DEVICE_DEGRADED(dip) ?
	    CT_DEV_EV_DEGRADED : CT_DEV_EV_ONLINE;

	mutex_enter(&dtmpl->ctd_ctmpl.ctmpl_lock);
	ctd->cond_aset = dtmpl->ctd_aset;
	ctd->cond_noneg = dtmpl->ctd_noneg;

	/*
	 * contract_ctor() initailizes the common portion of a contract
	 * contract_dtor() destroys the common portion of a contract
	 */
	if (contract_ctor(&ctd->cond_contract, device_type, &dtmpl->ctd_ctmpl,
	    ctd, 0, owner, B_TRUE)) {
		mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);
		/*
		 * contract_device_free() destroys the type specific
		 * portion of a contract and frees the contract.
		 * The "minor" path and "cred" is a part of the type specific
		 * portion of the contract and will be freed by
		 * contract_device_free()
		 */
		contract_device_free(&ctd->cond_contract);

		/* release barrier */
		mutex_enter(&(DEVI(dip)->devi_ct_lock));
		ct_barrier_release(dip);
		mutex_exit(&(DEVI(dip)->devi_ct_lock));

		ddi_release_devi(dip);
		*errorp = EAGAIN;
		return (NULL);
	}
	mutex_exit(&dtmpl->ctd_ctmpl.ctmpl_lock);

	mutex_enter(&ctd->cond_contract.ct_lock);
	ctd->cond_contract.ct_ntime.ctm_total = CT_DEV_ACKTIME;
	ctd->cond_contract.ct_qtime.ctm_total = CT_DEV_ACKTIME;
	ctd->cond_contract.ct_ntime.ctm_start = -1;
	ctd->cond_contract.ct_qtime.ctm_start = -1;
	mutex_exit(&ctd->cond_contract.ct_lock);

	/*
	 * Insert device contract into list hanging off the dip
	 * Bump up the ref-count on the contract to reflect this
	 */
	contract_hold(&ctd->cond_contract);
	mutex_enter(&(DEVI(dip)->devi_ct_lock));
	list_insert_tail(&(DEVI(dip)->devi_ct), ctd);

	/* release barrier */
	ct_barrier_release(dip);
	mutex_exit(&(DEVI(dip)->devi_ct_lock));

	ddi_release_devi(dip);

	return (ctd);
}

/*
 * Called when a device is successfully opened to create an open-time contract
 * i.e. synchronously with a device open.
 */
int
contract_device_open(dev_t dev, int spec_type, contract_t **ctpp)
{
	ctmpl_device_t *dtmpl;
	ct_template_t  *tmpl;
	cont_device_t *ctd;
	char *path;
	klwp_t *lwp;
	int error;

	if (ctpp)
		*ctpp = NULL;

	/*
	 * Check if we are in user-context i.e. if we have an lwp
	 */
	lwp = ttolwp(curthread);
	if (lwp == NULL) {
		CT_DEBUG((CE_NOTE, "contract_open: Not user-context"));
		return (0);
	}

	tmpl = ctmpl_dup(lwp->lwp_ct_active[device_type->ct_type_index]);
	if (tmpl == NULL) {
		return (0);
	}
	dtmpl = tmpl->ctmpl_data;

	/*
	 * If the user set a minor path in the template before an open,
	 * ignore it. We use the minor path of the actual minor opened.
	 */
	mutex_enter(&tmpl->ctmpl_lock);
	if (dtmpl->ctd_minor != NULL) {
		CT_DEBUG((CE_NOTE, "contract_device_open(): Process %d: "
		    "ignoring device minor path in active template: %s",
		    curproc->p_pid, dtmpl->ctd_minor));
		/*
		 * This is a copy of the actual activated template.
		 * Safe to make changes such as freeing the minor
		 * path in the template.
		 */
		kmem_free(dtmpl->ctd_minor, strlen(dtmpl->ctd_minor) + 1);
		dtmpl->ctd_minor = NULL;
	}
	mutex_exit(&tmpl->ctmpl_lock);

	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);

	if (ddi_dev_pathname(dev, spec_type, path) != DDI_SUCCESS) {
		CT_DEBUG((CE_NOTE, "contract_device_open(): Failed to derive "
		    "minor path from dev_t,spec {%lu, %d} for process (%d)",
		    dev, spec_type, curproc->p_pid));
		ctmpl_free(tmpl);
		kmem_free(path, MAXPATHLEN);
		return (1);
	}

	mutex_enter(&tmpl->ctmpl_lock);
	ASSERT(dtmpl->ctd_minor == NULL);
	dtmpl->ctd_minor = path;
	mutex_exit(&tmpl->ctmpl_lock);

	ctd = contract_device_create(dtmpl, dev, spec_type, curproc, &error);

	mutex_enter(&tmpl->ctmpl_lock);
	ASSERT(dtmpl->ctd_minor);
	dtmpl->ctd_minor = NULL;
	mutex_exit(&tmpl->ctmpl_lock);
	ctmpl_free(tmpl);
	kmem_free(path, MAXPATHLEN);

	if (ctd == NULL) {
		cmn_err(CE_NOTE, "contract_device_open(): Failed to "
		    "create device contract for process (%d) holding "
		    "device (devt = %lu, spec_type = %d)",
		    curproc->p_pid, dev, spec_type);
		return (1);
	}

	if (ctpp) {
		mutex_enter(&ctd->cond_contract.ct_lock);
		*ctpp = &ctd->cond_contract;
		mutex_exit(&ctd->cond_contract.ct_lock);
	}
	return (0);
}

/*
 * Called during contract negotiation by the device contract framework to wait
 * for ACKs or NACKs from contract holders. If all responses are not received
 * before a specified timeout, this routine times out.
 */
static uint_t
wait_for_acks(dev_info_t *dip, dev_t dev, int spec_type, uint_t evtype)
{
	cont_device_t *ctd;
	int timed_out = 0;
	int result = CT_NONE;
	int ack;
	char *f = "wait_for_acks";

	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
	ASSERT(dip);
	ASSERT(evtype & CT_DEV_ALLEVENT);
	ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
	ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
	    (spec_type == S_IFBLK || spec_type == S_IFCHR));

	CT_DEBUG((CE_NOTE, "%s: entered: dip: %p", f, (void *)dip));

	if (ct_barrier_wait_for_empty(dip, CT_DEV_ACKTIME) == -1) {
		/*
		 * some contract owner(s) didn't respond in time
		 */
		CT_DEBUG((CE_NOTE, "%s: timed out: %p", f, (void *)dip));
		timed_out = 1;
	}

	ack = 0;
	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {

		mutex_enter(&ctd->cond_contract.ct_lock);

		ASSERT(ctd->cond_dip == dip);

		if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
			mutex_exit(&ctd->cond_contract.ct_lock);
			continue;
		}
		if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
			mutex_exit(&ctd->cond_contract.ct_lock);
			continue;
		}

		/* skip if non-negotiable contract */
		if (ctd->cond_noneg) {
			mutex_exit(&ctd->cond_contract.ct_lock);
			continue;
		}

		ASSERT(ctd->cond_currev_type == evtype);
		if (ctd->cond_currev_ack == CT_NACK) {
			CT_DEBUG((CE_NOTE, "%s: found a NACK,result = NACK: %p",
			    f, (void *)dip));
			mutex_exit(&ctd->cond_contract.ct_lock);
			return (CT_NACK);
		} else if (ctd->cond_currev_ack == CT_ACK) {
			ack = 1;
			CT_DEBUG((CE_NOTE, "%s: found a ACK: %p",
			    f, (void *)dip));
		}
		mutex_exit(&ctd->cond_contract.ct_lock);
	}

	if (ack) {
		result = CT_ACK;
		CT_DEBUG((CE_NOTE, "%s: result = ACK, dip=%p", f, (void *)dip));
	} else if (timed_out) {
		result = CT_NONE;
		CT_DEBUG((CE_NOTE, "%s: result = NONE (timed-out), dip=%p",
		    f, (void *)dip));
	} else {
		CT_DEBUG((CE_NOTE, "%s: result = NONE, dip=%p",
		    f, (void *)dip));
	}


	return (result);
}

/*
 * Determines the current state of a device (i.e a devinfo node
 */
static int
get_state(dev_info_t *dip)
{
	if (DEVI_IS_DEVICE_OFFLINE(dip) || DEVI_IS_DEVICE_DOWN(dip))
		return (CT_DEV_EV_OFFLINE);
	else if (DEVI_IS_DEVICE_DEGRADED(dip))
		return (CT_DEV_EV_DEGRADED);
	else
		return (CT_DEV_EV_ONLINE);
}

/*
 * Sets the current state of a device in a device contract
 */
static void
set_cond_state(dev_info_t *dip)
{
	uint_t state = get_state(dip);
	cont_device_t *ctd;

	/* verify that barrier is held */
	ASSERT(ct_barrier_held(dip));

	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {
		mutex_enter(&ctd->cond_contract.ct_lock);
		ASSERT(ctd->cond_dip == dip);
		ctd->cond_state = state;
		mutex_exit(&ctd->cond_contract.ct_lock);
	}
}

/*
 * Core routine called by event-specific routines when an event occurs.
 * Determines if an event should be be published, and if it is to be
 * published, whether a negotiation should take place. Also implements
 * NEGEND events which publish the final disposition of an event after
 * negotiations are complete.
 *
 * When an event occurs on a minor node, this routine walks the list of
 * contracts hanging off a devinfo node and for each contract on the affected
 * dip, evaluates the following cases
 *
 *	a. an event that is synchronous, breaks the contract and NONEG not set
 *		- bumps up the outstanding negotiation counts on the dip
 *		- marks the dip as undergoing negotiation (devi_ct_neg)
 *		- event of type CTE_NEG is published
 *	b. an event that is synchronous, breaks the contract and NONEG is set
 *		- sets the final result to CT_NACK, event is blocked
 *		- does not publish an event
 *	c. event is asynchronous and breaks the contract
 *		- publishes a critical event irrespect of whether the NONEG
 *		  flag is set, since the contract will be broken and contract
 *		  owner needs to be informed.
 *	d. No contract breakage but the owner has subscribed to the event
 *		- publishes the event irrespective of the NONEG event as the
 *		  owner has explicitly subscribed to the event.
 *	e. NEGEND event
 *		- publishes a critical event. Should only be doing this if
 *		  if NONEG is not set.
 *	f. all other events
 *		- Since a contract is not broken and this event has not been
 *		  subscribed to, this event does not need to be published for
 *		  for this contract.
 *
 *	Once an event is published, what happens next depends on the type of
 *	event:
 *
 *	a. NEGEND event
 *		- cleanup all state associated with the preceding negotiation
 *		  and return CT_ACK to the caller of contract_device_publish()
 *	b. NACKed event
 *		- One or more contracts had the NONEG term, so the event was
 *		  blocked. Return CT_NACK to the caller.
 *	c. Negotiated event
 *		- Call wait_for_acks() to wait for responses from contract
 *		holders. The end result is either CT_ACK (event is permitted),
 *		CT_NACK (event is blocked) or CT_NONE (no contract owner)
 *		responded. This result is returned back to the caller.
 *	d. All other events
 *		- If the event was asynchronous (i.e. not negotiated) or
 *		a contract was not broken return CT_ACK to the caller.
 */
static uint_t
contract_device_publish(dev_info_t *dip, dev_t dev, int spec_type,
    uint_t evtype, nvlist_t *tnvl)
{
	cont_device_t *ctd;
	uint_t result = CT_NONE;
	uint64_t evid = 0;
	uint64_t nevid = 0;
	char *path = NULL;
	int negend;
	int match;
	int sync = 0;
	contract_t *ct;
	ct_kevent_t *event;
	nvlist_t *nvl;
	int broken = 0;

	ASSERT(dip);
	ASSERT(dev != NODEV && dev != DDI_DEV_T_NONE);
	ASSERT((dev == DDI_DEV_T_ANY && spec_type == 0) ||
	    (spec_type == S_IFBLK || spec_type == S_IFCHR));
	ASSERT(evtype == 0 || (evtype & CT_DEV_ALLEVENT));

	/* Is this a synchronous state change ? */
	if (evtype != CT_EV_NEGEND) {
		sync = is_sync_neg(get_state(dip), evtype);
		/* NOP if unsupported transition */
		if (sync == -2 || sync == -1) {
			DEVI(dip)->devi_flags |= DEVI_CT_NOP;
			result = (sync == -2) ? CT_ACK : CT_NONE;
			goto out;
		}
		CT_DEBUG((CE_NOTE, "publish: is%s sync state change",
		    sync ? "" : " not"));
	} else if (DEVI(dip)->devi_flags & DEVI_CT_NOP) {
		DEVI(dip)->devi_flags &= ~DEVI_CT_NOP;
		result = CT_ACK;
		goto out;
	}

	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
	(void) ddi_pathname(dip, path);

	mutex_enter(&(DEVI(dip)->devi_ct_lock));

	/*
	 * Negotiation end - set the state of the device in the contract
	 */
	if (evtype == CT_EV_NEGEND) {
		CT_DEBUG((CE_NOTE, "publish: negend: setting cond state"));
		set_cond_state(dip);
	}

	/*
	 * If this device didn't go through negotiation, don't publish
	 * a NEGEND event - simply release the barrier to allow other
	 * device events in.
	 */
	negend = 0;
	if (evtype == CT_EV_NEGEND && !DEVI(dip)->devi_ct_neg) {
		CT_DEBUG((CE_NOTE, "publish: no negend reqd. release barrier"));
		ct_barrier_release(dip);
		mutex_exit(&(DEVI(dip)->devi_ct_lock));
		result = CT_ACK;
		goto out;
	} else if (evtype == CT_EV_NEGEND) {
		/*
		 * There are negotiated contract breakages that
		 * need a NEGEND event
		 */
		ASSERT(ct_barrier_held(dip));
		negend = 1;
		CT_DEBUG((CE_NOTE, "publish: setting negend flag"));
	} else {
		/*
		 * This is a new event, not a NEGEND event. Wait for previous
		 * contract events to complete.
		 */
		ct_barrier_acquire(dip);
	}


	match = 0;
	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL;
	    ctd = list_next(&(DEVI(dip)->devi_ct), ctd)) {

		ctid_t ctid;
		size_t len = strlen(path);

		mutex_enter(&ctd->cond_contract.ct_lock);

		ASSERT(ctd->cond_dip == dip);
		ASSERT(ctd->cond_minor);
		ASSERT(strncmp(ctd->cond_minor, path, len) == 0 &&
		    ctd->cond_minor[len] == ':');

		if (dev != DDI_DEV_T_ANY && dev != ctd->cond_devt) {
			mutex_exit(&ctd->cond_contract.ct_lock);
			continue;
		}
		if (dev != DDI_DEV_T_ANY && spec_type != ctd->cond_spec) {
			mutex_exit(&ctd->cond_contract.ct_lock);
			continue;
		}

		/* We have a matching contract */
		match = 1;
		ctid = ctd->cond_contract.ct_id;
		CT_DEBUG((CE_NOTE, "publish: found matching contract: %d",
		    ctid));

		/*
		 * There are 4 possible cases
		 * 1. A contract is broken (dev not in acceptable state) and
		 *    the state change is synchronous - start negotiation
		 *    by sending a CTE_NEG critical event.
		 * 2. A contract is broken and the state change is
		 *    asynchronous - just send a critical event and
		 *    break the contract.
		 * 3. Contract is not broken, but consumer has subscribed
		 *    to the event as a critical or informative event
		 *    - just send the appropriate event
		 * 4. contract waiting for negend event - just send the critical
		 *    NEGEND event.
		 */
		broken = 0;
		if (!negend && !(evtype & ctd->cond_aset)) {
			broken = 1;
			CT_DEBUG((CE_NOTE, "publish: Contract broken: %d",
			    ctid));
		}

		/*
		 * Don't send event if
		 *	- contract is not broken AND
		 *	- contract holder has not subscribed to this event AND
		 *	- contract not waiting for a NEGEND event
		 */
		if (!broken && !EVSENDP(ctd, evtype) &&
		    !ctd->cond_neg) {
			CT_DEBUG((CE_NOTE, "contract_device_publish(): "
			    "contract (%d): no publish reqd: event %d",
			    ctd->cond_contract.ct_id, evtype));
			mutex_exit(&ctd->cond_contract.ct_lock);
			continue;
		}

		/*
		 * Note: need to kmem_zalloc() the event so mutexes are
		 * initialized automatically
		 */
		ct = &ctd->cond_contract;
		event = kmem_zalloc(sizeof (ct_kevent_t), KM_SLEEP);
		event->cte_type = evtype;

		if (broken && sync) {
			CT_DEBUG((CE_NOTE, "publish: broken + sync: "
			    "ctid: %d", ctid));
			ASSERT(!negend);
			ASSERT(ctd->cond_currev_id == 0);
			ASSERT(ctd->cond_currev_type == 0);
			ASSERT(ctd->cond_currev_ack == 0);
			ASSERT(ctd->cond_neg == 0);
			if (ctd->cond_noneg) {
				/* Nothing to publish. Event has been blocked */
				CT_DEBUG((CE_NOTE, "publish: sync and noneg:"
				    "not publishing blocked ev: ctid: %d",
				    ctid));
				result = CT_NACK;
				kmem_free(event, sizeof (ct_kevent_t));
				mutex_exit(&ctd->cond_contract.ct_lock);
				continue;
			}
			event->cte_flags = CTE_NEG; /* critical neg. event */
			ctd->cond_currev_type = event->cte_type;
			ct_barrier_incr(dip);
			DEVI(dip)->devi_ct_neg = 1; /* waiting for negend */
			ctd->cond_neg = 1;
		} else if (broken && !sync) {
			CT_DEBUG((CE_NOTE, "publish: broken + async: ctid: %d",
			    ctid));
			ASSERT(!negend);
			ASSERT(ctd->cond_currev_id == 0);
			ASSERT(ctd->cond_currev_type == 0);
			ASSERT(ctd->cond_currev_ack == 0);
			ASSERT(ctd->cond_neg == 0);
			event->cte_flags = 0; /* critical event */
		} else if (EVSENDP(ctd, event->cte_type)) {
			CT_DEBUG((CE_NOTE, "publish: event suscrib: ctid: %d",
			    ctid));
			ASSERT(!negend);
			ASSERT(ctd->cond_currev_id == 0);
			ASSERT(ctd->cond_currev_type == 0);
			ASSERT(ctd->cond_currev_ack == 0);
			ASSERT(ctd->cond_neg == 0);
			event->cte_flags = EVINFOP(ctd, event->cte_type) ?
			    CTE_INFO : 0;
		} else if (ctd->cond_neg) {
			CT_DEBUG((CE_NOTE, "publish: NEGEND: ctid: %d", ctid));
			ASSERT(negend);
			ASSERT(ctd->cond_noneg == 0);
			nevid = ctd->cond_contract.ct_nevent ?
			    ctd->cond_contract.ct_nevent->cte_id : 0;
			ASSERT(ctd->cond_currev_id == nevid);
			event->cte_flags = 0;	/* NEGEND is always critical */
			ctd->cond_currev_id = 0;
			ctd->cond_currev_type = 0;
			ctd->cond_currev_ack = 0;
			ctd->cond_neg = 0;
		} else {
			CT_DEBUG((CE_NOTE, "publish: not publishing event for "
			    "ctid: %d, evtype: %d",
			    ctd->cond_contract.ct_id, event->cte_type));
			ASSERT(!negend);
			ASSERT(ctd->cond_currev_id == 0);
			ASSERT(ctd->cond_currev_type == 0);
			ASSERT(ctd->cond_currev_ack == 0);
			ASSERT(ctd->cond_neg == 0);
			kmem_free(event, sizeof (ct_kevent_t));
			mutex_exit(&ctd->cond_contract.ct_lock);
			continue;
		}

		nvl = NULL;
		if (tnvl) {
			VERIFY(nvlist_dup(tnvl, &nvl, 0) == 0);
			if (negend) {
				int32_t newct = 0;
				ASSERT(ctd->cond_noneg == 0);
				VERIFY(nvlist_add_uint64(nvl, CTS_NEVID, nevid)
				    == 0);
				VERIFY(nvlist_lookup_int32(nvl, CTS_NEWCT,
				    &newct) == 0);
				VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
				    newct == 1 ? 0 :
				    ctd->cond_contract.ct_id) == 0);
				CT_DEBUG((CE_NOTE, "publish: negend: ctid: %d "
				    "CTS_NEVID: %llu, CTS_NEWCT: %s",
				    ctid, (unsigned long long)nevid,
				    newct ? "success" : "failure"));

			}
		}

		if (ctd->cond_neg) {
			ASSERT(ctd->cond_contract.ct_ntime.ctm_start == -1);
			ASSERT(ctd->cond_contract.ct_qtime.ctm_start == -1);
			ctd->cond_contract.ct_ntime.ctm_start = ddi_get_lbolt();
			ctd->cond_contract.ct_qtime.ctm_start =
			    ctd->cond_contract.ct_ntime.ctm_start;
		}

		/*
		 * by holding the dip's devi_ct_lock we ensure that
		 * all ACK/NACKs are held up until we have finished
		 * publishing to all contracts.
		 */
		mutex_exit(&ctd->cond_contract.ct_lock);
		evid = cte_publish_all(ct, event, nvl, NULL);
		mutex_enter(&ctd->cond_contract.ct_lock);

		if (ctd->cond_neg) {
			ASSERT(!negend);
			ASSERT(broken);
			ASSERT(sync);
			ASSERT(!ctd->cond_noneg);
			CT_DEBUG((CE_NOTE, "publish: sync break, setting evid"
			    ": %d", ctid));
			ctd->cond_currev_id = evid;
		} else if (negend) {
			ctd->cond_contract.ct_ntime.ctm_start = -1;
			ctd->cond_contract.ct_qtime.ctm_start = -1;
		}
		mutex_exit(&ctd->cond_contract.ct_lock);
	}

	/*
	 * If "negend" set counter back to initial state (-1) so that
	 * other events can be published. Also clear the negotiation flag
	 * on dip.
	 *
	 * 0 .. n are used for counting.
	 * -1 indicates counter is available for use.
	 */
	if (negend) {
		/*
		 * devi_ct_count not necessarily 0. We may have
		 * timed out in which case, count will be non-zero.
		 */
		ct_barrier_release(dip);
		DEVI(dip)->devi_ct_neg = 0;
		CT_DEBUG((CE_NOTE, "publish: negend: reset dip state: dip=%p",
		    (void *)dip));
	} else if (DEVI(dip)->devi_ct_neg) {
		ASSERT(match);
		ASSERT(!ct_barrier_empty(dip));
		CT_DEBUG((CE_NOTE, "publish: sync count=%d, dip=%p",
		    DEVI(dip)->devi_ct_count, (void *)dip));
	} else {
		/*
		 * for non-negotiated events or subscribed events or no
		 * matching contracts
		 */
		ASSERT(ct_barrier_empty(dip));
		ASSERT(DEVI(dip)->devi_ct_neg == 0);
		CT_DEBUG((CE_NOTE, "publish: async/non-nego/subscrib/no-match: "
		    "dip=%p", (void *)dip));

		/*
		 * only this function when called from contract_device_negend()
		 * can reset the counter to READY state i.e. -1. This function
		 * is so called for every event whether a NEGEND event is needed
		 * or not, but the negend event is only published if the event
		 * whose end they signal is a negotiated event for the contract.
		 */
	}

	if (!match) {
		/* No matching contracts */
		CT_DEBUG((CE_NOTE, "publish: No matching contract"));
		result = CT_NONE;
	} else if (result == CT_NACK) {
		/* a non-negotiable contract exists and this is a neg. event */
		CT_DEBUG((CE_NOTE, "publish: found 1 or more NONEG contract"));
		(void) wait_for_acks(dip, dev, spec_type, evtype);
	} else if (DEVI(dip)->devi_ct_neg) {
		/* one or more contracts going through negotations  */
		CT_DEBUG((CE_NOTE, "publish: sync contract: waiting"));
		result = wait_for_acks(dip, dev, spec_type, evtype);
	} else {
		/* no negotiated contracts or no broken contracts or NEGEND */
		CT_DEBUG((CE_NOTE, "publish: async/no-break/negend"));
		result = CT_ACK;
	}

	/*
	 * Release the lock only now so that the only point where we
	 * drop the lock is in wait_for_acks(). This is so that we don't
	 * miss cv_signal/cv_broadcast from contract holders
	 */
	CT_DEBUG((CE_NOTE, "publish: dropping devi_ct_lock"));
	mutex_exit(&(DEVI(dip)->devi_ct_lock));

out:
	if (tnvl)
		nvlist_free(tnvl);
	if (path)
		kmem_free(path, MAXPATHLEN);


	CT_DEBUG((CE_NOTE, "publish: result = %s", result_str(result)));
	return (result);
}


/*
 * contract_device_offline
 *
 * Event publishing routine called by I/O framework when a device is offlined.
 */
ct_ack_t
contract_device_offline(dev_info_t *dip, dev_t dev, int spec_type)
{
	nvlist_t *nvl;
	uint_t result;
	uint_t evtype;

	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);

	evtype = CT_DEV_EV_OFFLINE;
	result = contract_device_publish(dip, dev, spec_type, evtype, nvl);

	/*
	 * If a contract offline is NACKED, the framework expects us to call
	 * NEGEND ourselves, since we know the final result
	 */
	if (result == CT_NACK) {
		contract_device_negend(dip, dev, spec_type, CT_EV_FAILURE);
	}

	return (result);
}

/*
 * contract_device_degrade
 *
 * Event publishing routine called by I/O framework when a device
 * moves to degrade state.
 */
/*ARGSUSED*/
void
contract_device_degrade(dev_info_t *dip, dev_t dev, int spec_type)
{
	nvlist_t *nvl;
	uint_t evtype;

	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);

	evtype = CT_DEV_EV_DEGRADED;
	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
}

/*
 * contract_device_undegrade
 *
 * Event publishing routine called by I/O framework when a device
 * moves from degraded state to online state.
 */
/*ARGSUSED*/
void
contract_device_undegrade(dev_info_t *dip, dev_t dev, int spec_type)
{
	nvlist_t *nvl;
	uint_t evtype;

	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);

	evtype = CT_DEV_EV_ONLINE;
	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);
}

/*
 * For all contracts which have undergone a negotiation (because the device
 * moved out of the acceptable state for that contract and the state
 * change is synchronous i.e. requires negotiation) this routine publishes
 * a CT_EV_NEGEND event with the final disposition of the event.
 *
 * This event is always a critical event.
 */
void
contract_device_negend(dev_info_t *dip, dev_t dev, int spec_type, int result)
{
	nvlist_t *nvl;
	uint_t evtype;

	ASSERT(result == CT_EV_SUCCESS || result == CT_EV_FAILURE);

	CT_DEBUG((CE_NOTE, "contract_device_negend(): entered: result: %d, "
	    "dip: %p", result, (void *)dip));

	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
	VERIFY(nvlist_add_int32(nvl, CTS_NEWCT,
	    result == CT_EV_SUCCESS ? 1 : 0) == 0);

	evtype = CT_EV_NEGEND;
	(void) contract_device_publish(dip, dev, spec_type, evtype, nvl);

	CT_DEBUG((CE_NOTE, "contract_device_negend(): exit dip: %p",
	    (void *)dip));
}

/*
 * Wrapper routine called by other subsystems (such as LDI) to start
 * negotiations when a synchronous device state change occurs.
 * Returns CT_ACK or CT_NACK.
 */
ct_ack_t
contract_device_negotiate(dev_info_t *dip, dev_t dev, int spec_type,
    uint_t evtype)
{
	int	result;

	ASSERT(dip);
	ASSERT(dev != NODEV);
	ASSERT(dev != DDI_DEV_T_ANY);
	ASSERT(dev != DDI_DEV_T_NONE);
	ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);

	switch (evtype) {
	case CT_DEV_EV_OFFLINE:
		result = contract_device_offline(dip, dev, spec_type);
		break;
	default:
		cmn_err(CE_PANIC, "contract_device_negotiate(): Negotiation "
		    "not supported: event (%d) for dev_t (%lu) and spec (%d), "
		    "dip (%p)", evtype, dev, spec_type, (void *)dip);
		result = CT_NACK;
		break;
	}

	return (result);
}

/*
 * A wrapper routine called by other subsystems (such as the LDI) to
 * finalize event processing for a state change event. For synchronous
 * state changes, this publishes NEGEND events. For asynchronous i.e.
 * non-negotiable events this publishes the event.
 */
void
contract_device_finalize(dev_info_t *dip, dev_t dev, int spec_type,
    uint_t evtype, int ct_result)
{
	ASSERT(dip);
	ASSERT(dev != NODEV);
	ASSERT(dev != DDI_DEV_T_ANY);
	ASSERT(dev != DDI_DEV_T_NONE);
	ASSERT(spec_type == S_IFBLK || spec_type == S_IFCHR);

	switch (evtype) {
	case CT_DEV_EV_OFFLINE:
		contract_device_negend(dip, dev, spec_type, ct_result);
		break;
	case CT_DEV_EV_DEGRADED:
		contract_device_degrade(dip, dev, spec_type);
		contract_device_negend(dip, dev, spec_type, ct_result);
		break;
	case CT_DEV_EV_ONLINE:
		contract_device_undegrade(dip, dev, spec_type);
		contract_device_negend(dip, dev, spec_type, ct_result);
		break;
	default:
		cmn_err(CE_PANIC, "contract_device_finalize(): Unsupported "
		    "event (%d) for dev_t (%lu) and spec (%d), dip (%p)",
		    evtype, dev, spec_type, (void *)dip);
		break;
	}
}

/*
 * Called by I/O framework when a devinfo node is freed to remove the
 * association between a devinfo node and its contracts.
 */
void
contract_device_remove_dip(dev_info_t *dip)
{
	cont_device_t *ctd;
	cont_device_t *next;
	contract_t *ct;

	mutex_enter(&(DEVI(dip)->devi_ct_lock));
	ct_barrier_wait_for_release(dip);

	for (ctd = list_head(&(DEVI(dip)->devi_ct)); ctd != NULL; ctd = next) {
		next = list_next(&(DEVI(dip)->devi_ct), ctd);
		list_remove(&(DEVI(dip)->devi_ct), ctd);
		ct = &ctd->cond_contract;
		/*
		 * Unlink the dip associated with this contract
		 */
		mutex_enter(&ct->ct_lock);
		ASSERT(ctd->cond_dip == dip);
		ctd->cond_dip = NULL; /* no longer linked to dip */
		contract_rele(ct);	/* remove hold for dip linkage */
		CT_DEBUG((CE_NOTE, "ct: remove_dip: removed dip from contract: "
		    "ctid: %d", ct->ct_id));
		mutex_exit(&ct->ct_lock);
	}
	ASSERT(list_is_empty(&(DEVI(dip)->devi_ct)));
	mutex_exit(&(DEVI(dip)->devi_ct_lock));
}

/*
 * Barrier related routines
 */
static void
ct_barrier_acquire(dev_info_t *dip)
{
	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
	CT_DEBUG((CE_NOTE, "ct_barrier_acquire: waiting for barrier"));
	while (DEVI(dip)->devi_ct_count != -1)
		cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
	DEVI(dip)->devi_ct_count = 0;
	CT_DEBUG((CE_NOTE, "ct_barrier_acquire: thread owns barrier"));
}

static void
ct_barrier_release(dev_info_t *dip)
{
	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
	ASSERT(DEVI(dip)->devi_ct_count != -1);
	DEVI(dip)->devi_ct_count = -1;
	cv_broadcast(&(DEVI(dip)->devi_ct_cv));
	CT_DEBUG((CE_NOTE, "ct_barrier_release: Released barrier"));
}

static int
ct_barrier_held(dev_info_t *dip)
{
	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
	return (DEVI(dip)->devi_ct_count != -1);
}

static int
ct_barrier_empty(dev_info_t *dip)
{
	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
	ASSERT(DEVI(dip)->devi_ct_count != -1);
	return (DEVI(dip)->devi_ct_count == 0);
}

static void
ct_barrier_wait_for_release(dev_info_t *dip)
{
	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
	while (DEVI(dip)->devi_ct_count != -1)
		cv_wait(&(DEVI(dip)->devi_ct_cv), &(DEVI(dip)->devi_ct_lock));
}

static void
ct_barrier_decr(dev_info_t *dip)
{
	CT_DEBUG((CE_NOTE, "barrier_decr:  ct_count before decr: %d",
	    DEVI(dip)->devi_ct_count));

	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));
	ASSERT(DEVI(dip)->devi_ct_count > 0);

	DEVI(dip)->devi_ct_count--;
	if (DEVI(dip)->devi_ct_count == 0) {
		cv_broadcast(&DEVI(dip)->devi_ct_cv);
		CT_DEBUG((CE_NOTE, "barrier_decr: cv_broadcast"));
	}
}

static void
ct_barrier_incr(dev_info_t *dip)
{
	ASSERT(ct_barrier_held(dip));
	DEVI(dip)->devi_ct_count++;
}

static int
ct_barrier_wait_for_empty(dev_info_t *dip, int secs)
{
	clock_t abstime;

	ASSERT(MUTEX_HELD(&(DEVI(dip)->devi_ct_lock)));

	abstime = ddi_get_lbolt() + drv_usectohz(secs*1000000);
	while (DEVI(dip)->devi_ct_count) {
		if (cv_timedwait(&(DEVI(dip)->devi_ct_cv),
		    &(DEVI(dip)->devi_ct_lock), abstime) == -1) {
			return (-1);
		}
	}
	return (0);
}