1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Vnode operations for the High Sierra filesystem
*/
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/signal.h>
#include <sys/cred.h>
#include <sys/user.h>
#include <sys/buf.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/stat.h>
#include <sys/vnode.h>
#include <sys/mode.h>
#include <sys/proc.h>
#include <sys/disp.h>
#include <sys/file.h>
#include <sys/fcntl.h>
#include <sys/flock.h>
#include <sys/kmem.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/errno.h>
#include <sys/mman.h>
#include <sys/pathname.h>
#include <sys/debug.h>
#include <sys/vmsystm.h>
#include <sys/cmn_err.h>
#include <sys/fbuf.h>
#include <sys/dirent.h>
#include <sys/errno.h>
#include <sys/dkio.h>
#include <sys/cmn_err.h>
#include <sys/atomic.h>
#include <vm/hat.h>
#include <vm/page.h>
#include <vm/pvn.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/seg_map.h>
#include <vm/seg_kmem.h>
#include <vm/seg_vn.h>
#include <vm/rm.h>
#include <vm/page.h>
#include <sys/swap.h>
#include <sys/avl.h>
#include <sys/sunldi.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sdt.h>
/*
* For struct modlinkage
*/
#include <sys/modctl.h>
#include <sys/fs/hsfs_spec.h>
#include <sys/fs/hsfs_node.h>
#include <sys/fs/hsfs_impl.h>
#include <sys/fs/hsfs_susp.h>
#include <sys/fs/hsfs_rrip.h>
#include <fs/fs_subr.h>
/* # of contiguous requests to detect sequential access pattern */
static int seq_contig_requests = 2;
/*
* This is the max number os taskq threads that will be created
* if required. Since we are using a Dynamic TaskQ by default only
* one thread is created initially.
*
* NOTE: In the usual hsfs use case this per fs instance number
* of taskq threads should not place any undue load on a system.
* Even on an unusual system with say 100 CDROM drives, 800 threads
* will not be created unless all the drives are loaded and all
* of them are saturated with I/O at the same time! If there is at
* all a complaint of system load due to such an unusual case it
* should be easy enough to change to one per-machine Dynamic TaskQ
* for all hsfs mounts with a nthreads of say 32.
*/
static int hsfs_taskq_nthreads = 8; /* # of taskq threads per fs */
/* Min count of adjacent bufs that will avoid buf coalescing */
static int hsched_coalesce_min = 2;
/*
* Kmem caches for heavily used small allocations. Using these kmem
* caches provides a factor of 3 reduction in system time and greatly
* aids overall throughput esp. on SPARC.
*/
struct kmem_cache *hio_cache;
struct kmem_cache *hio_info_cache;
/*
* This tunable allows us to ignore inode numbers from rrip-1.12.
* In this case, we fall back to our default inode algorithm.
*/
extern int use_rrip_inodes;
/*
* Free behind logic from UFS to tame our thirst for
* the page cache.
* See usr/src/uts/common/fs/ufs/ufs_vnops.c for more
* explanation.
*/
static int freebehind = 1;
static int smallfile = 0;
static int cache_read_ahead = 0;
static u_offset_t smallfile64 = 32 * 1024;
#define SMALLFILE1_D 1000
#define SMALLFILE2_D 10
static u_offset_t smallfile1 = 32 * 1024;
static u_offset_t smallfile2 = 32 * 1024;
static clock_t smallfile_update = 0; /* when to recompute */
static uint_t smallfile1_d = SMALLFILE1_D;
static uint_t smallfile2_d = SMALLFILE2_D;
static int hsched_deadline_compare(const void *x1, const void *x2);
static int hsched_offset_compare(const void *x1, const void *x2);
static void hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra);
int hsched_invoke_strategy(struct hsfs *fsp);
/* ARGSUSED */
static int
hsfs_fsync(vnode_t *cp,
int syncflag,
cred_t *cred,
caller_context_t *ct)
{
return (0);
}
/*ARGSUSED*/
static int
hsfs_read(struct vnode *vp,
struct uio *uiop,
int ioflag,
struct cred *cred,
struct caller_context *ct)
{
caddr_t base;
offset_t diff;
int error;
struct hsnode *hp;
uint_t filesize;
int dofree;
hp = VTOH(vp);
/*
* if vp is of type VDIR, make sure dirent
* is filled up with all info (because of ptbl)
*/
if (vp->v_type == VDIR) {
if (hp->hs_dirent.ext_size == 0)
hs_filldirent(vp, &hp->hs_dirent);
}
filesize = hp->hs_dirent.ext_size;
/* Sanity checks. */
if (uiop->uio_resid == 0 || /* No data wanted. */
uiop->uio_loffset > HS_MAXFILEOFF || /* Offset too big. */
uiop->uio_loffset >= filesize) /* Past EOF. */
return (0);
do {
/*
* We want to ask for only the "right" amount of data.
* In this case that means:-
*
* We can't get data from beyond our EOF. If asked,
* we will give a short read.
*
* segmap_getmapflt returns buffers of MAXBSIZE bytes.
* These buffers are always MAXBSIZE aligned.
* If our starting offset is not MAXBSIZE aligned,
* we can only ask for less than MAXBSIZE bytes.
*
* If our requested offset and length are such that
* they belong in different MAXBSIZE aligned slots
* then we'll be making more than one call on
* segmap_getmapflt.
*
* This diagram shows the variables we use and their
* relationships.
*
* |<-----MAXBSIZE----->|
* +--------------------------...+
* |.....mapon->|<--n-->|....*...|EOF
* +--------------------------...+
* uio_loffset->|
* uio_resid....|<---------->|
* diff.........|<-------------->|
*
* So, in this case our offset is not aligned
* and our request takes us outside of the
* MAXBSIZE window. We will break this up into
* two segmap_getmapflt calls.
*/
size_t nbytes;
offset_t mapon;
size_t n;
uint_t flags;
mapon = uiop->uio_loffset & MAXBOFFSET;
diff = filesize - uiop->uio_loffset;
nbytes = (size_t)MIN(MAXBSIZE - mapon, uiop->uio_resid);
n = MIN(diff, nbytes);
if (n <= 0) {
/* EOF or request satisfied. */
return (0);
}
/*
* Freebehind computation taken from:
* usr/src/uts/common/fs/ufs/ufs_vnops.c
*/
if (drv_hztousec(ddi_get_lbolt()) >= smallfile_update) {
uint64_t percpufreeb;
if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
smallfile1 = percpufreeb / smallfile1_d;
smallfile2 = percpufreeb / smallfile2_d;
smallfile1 = MAX(smallfile1, smallfile);
smallfile1 = MAX(smallfile1, smallfile64);
smallfile2 = MAX(smallfile1, smallfile2);
smallfile_update = drv_hztousec(ddi_get_lbolt())
+ 1000000;
}
dofree = freebehind &&
hp->hs_prev_offset == uiop->uio_loffset &&
hp->hs_ra_bytes > 0;
base = segmap_getmapflt(segkmap, vp,
(u_offset_t)uiop->uio_loffset, n, 1, S_READ);
error = uiomove(base + mapon, n, UIO_READ, uiop);
if (error == 0) {
/*
* if read a whole block, or read to eof,
* won't need this buffer again soon.
*/
if (n + mapon == MAXBSIZE ||
uiop->uio_loffset == filesize)
flags = SM_DONTNEED;
else
flags = 0;
if (dofree) {
flags = SM_FREE | SM_ASYNC;
if ((cache_read_ahead == 0) &&
uiop->uio_loffset > smallfile2)
flags |= SM_DONTNEED;
}
error = segmap_release(segkmap, base, flags);
} else
(void) segmap_release(segkmap, base, 0);
} while (error == 0 && uiop->uio_resid > 0);
return (error);
}
/*ARGSUSED2*/
static int
hsfs_getattr(
struct vnode *vp,
struct vattr *vap,
int flags,
struct cred *cred,
caller_context_t *ct)
{
struct hsnode *hp;
struct vfs *vfsp;
struct hsfs *fsp;
hp = VTOH(vp);
fsp = VFS_TO_HSFS(vp->v_vfsp);
vfsp = vp->v_vfsp;
if ((hp->hs_dirent.ext_size == 0) && (vp->v_type == VDIR)) {
hs_filldirent(vp, &hp->hs_dirent);
}
vap->va_type = IFTOVT(hp->hs_dirent.mode);
vap->va_mode = hp->hs_dirent.mode;
vap->va_uid = hp->hs_dirent.uid;
vap->va_gid = hp->hs_dirent.gid;
vap->va_fsid = vfsp->vfs_dev;
vap->va_nodeid = (ino64_t)hp->hs_nodeid;
vap->va_nlink = hp->hs_dirent.nlink;
vap->va_size = (offset_t)hp->hs_dirent.ext_size;
vap->va_atime.tv_sec = hp->hs_dirent.adate.tv_sec;
vap->va_atime.tv_nsec = hp->hs_dirent.adate.tv_usec*1000;
vap->va_mtime.tv_sec = hp->hs_dirent.mdate.tv_sec;
vap->va_mtime.tv_nsec = hp->hs_dirent.mdate.tv_usec*1000;
vap->va_ctime.tv_sec = hp->hs_dirent.cdate.tv_sec;
vap->va_ctime.tv_nsec = hp->hs_dirent.cdate.tv_usec*1000;
if (vp->v_type == VCHR || vp->v_type == VBLK)
vap->va_rdev = hp->hs_dirent.r_dev;
else
vap->va_rdev = 0;
vap->va_blksize = vfsp->vfs_bsize;
/* no. of blocks = no. of data blocks + no. of xar blocks */
vap->va_nblocks = (fsblkcnt64_t)howmany(vap->va_size + (u_longlong_t)
(hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift), DEV_BSIZE);
vap->va_seq = hp->hs_seq;
return (0);
}
/*ARGSUSED*/
static int
hsfs_readlink(struct vnode *vp,
struct uio *uiop,
struct cred *cred,
caller_context_t *ct)
{
struct hsnode *hp;
if (vp->v_type != VLNK)
return (EINVAL);
hp = VTOH(vp);
if (hp->hs_dirent.sym_link == (char *)NULL)
return (ENOENT);
return (uiomove(hp->hs_dirent.sym_link,
(size_t)MIN(hp->hs_dirent.ext_size,
uiop->uio_resid), UIO_READ, uiop));
}
/*ARGSUSED*/
static void
hsfs_inactive(struct vnode *vp,
struct cred *cred,
caller_context_t *ct)
{
struct hsnode *hp;
struct hsfs *fsp;
int nopage;
hp = VTOH(vp);
fsp = VFS_TO_HSFS(vp->v_vfsp);
/*
* Note: acquiring and holding v_lock for quite a while
* here serializes on the vnode; this is unfortunate, but
* likely not to overly impact performance, as the underlying
* device (CDROM drive) is quite slow.
*/
rw_enter(&fsp->hsfs_hash_lock, RW_WRITER);
mutex_enter(&hp->hs_contents_lock);
mutex_enter(&vp->v_lock);
if (vp->v_count < 1) {
panic("hsfs_inactive: v_count < 1");
/*NOTREACHED*/
}
if (vp->v_count > 1 || (hp->hs_flags & HREF) == 0) {
vp->v_count--; /* release hold from vn_rele */
mutex_exit(&vp->v_lock);
mutex_exit(&hp->hs_contents_lock);
rw_exit(&fsp->hsfs_hash_lock);
return;
}
vp->v_count--; /* release hold from vn_rele */
if (vp->v_count == 0) {
/*
* Free the hsnode.
* If there are no pages associated with the
* hsnode, give it back to the kmem_cache,
* else put at the end of this file system's
* internal free list.
*/
nopage = !vn_has_cached_data(vp);
hp->hs_flags = 0;
/*
* exit these locks now, since hs_freenode may
* kmem_free the hsnode and embedded vnode
*/
mutex_exit(&vp->v_lock);
mutex_exit(&hp->hs_contents_lock);
hs_freenode(vp, fsp, nopage);
} else {
mutex_exit(&vp->v_lock);
mutex_exit(&hp->hs_contents_lock);
}
rw_exit(&fsp->hsfs_hash_lock);
}
/*ARGSUSED*/
static int
hsfs_lookup(
struct vnode *dvp,
char *nm,
struct vnode **vpp,
struct pathname *pnp,
int flags,
struct vnode *rdir,
struct cred *cred,
caller_context_t *ct,
int *direntflags,
pathname_t *realpnp)
{
int error;
int namelen = (int)strlen(nm);
if (*nm == '\0') {
VN_HOLD(dvp);
*vpp = dvp;
return (0);
}
/*
* If we're looking for ourself, life is simple.
*/
if (namelen == 1 && *nm == '.') {
if (error = hs_access(dvp, (mode_t)VEXEC, cred))
return (error);
VN_HOLD(dvp);
*vpp = dvp;
return (0);
}
return (hs_dirlook(dvp, nm, namelen, vpp, cred));
}
/*ARGSUSED*/
static int
hsfs_readdir(
struct vnode *vp,
struct uio *uiop,
struct cred *cred,
int *eofp,
caller_context_t *ct,
int flags)
{
struct hsnode *dhp;
struct hsfs *fsp;
struct hs_direntry hd;
struct dirent64 *nd;
int error;
uint_t offset; /* real offset in directory */
uint_t dirsiz; /* real size of directory */
uchar_t *blkp;
int hdlen; /* length of hs directory entry */
long ndlen; /* length of dirent entry */
int bytes_wanted;
size_t bufsize; /* size of dirent buffer */
char *outbuf; /* ptr to dirent buffer */
char *dname;
int dnamelen;
size_t dname_size;
struct fbuf *fbp;
uint_t last_offset; /* last index into current dir block */
ino64_t dirino; /* temporary storage before storing in dirent */
off_t diroff;
dhp = VTOH(vp);
fsp = VFS_TO_HSFS(vp->v_vfsp);
if (dhp->hs_dirent.ext_size == 0)
hs_filldirent(vp, &dhp->hs_dirent);
dirsiz = dhp->hs_dirent.ext_size;
if (uiop->uio_loffset >= dirsiz) { /* at or beyond EOF */
if (eofp)
*eofp = 1;
return (0);
}
ASSERT(uiop->uio_loffset <= HS_MAXFILEOFF);
offset = uiop->uio_loffset;
dname_size = fsp->hsfs_namemax + 1; /* 1 for the ending NUL */
dname = kmem_alloc(dname_size, KM_SLEEP);
bufsize = uiop->uio_resid + sizeof (struct dirent64);
outbuf = kmem_alloc(bufsize, KM_SLEEP);
nd = (struct dirent64 *)outbuf;
while (offset < dirsiz) {
bytes_wanted = MIN(MAXBSIZE, dirsiz - (offset & MAXBMASK));
error = fbread(vp, (offset_t)(offset & MAXBMASK),
(unsigned int)bytes_wanted, S_READ, &fbp);
if (error)
goto done;
blkp = (uchar_t *)fbp->fb_addr;
last_offset = (offset & MAXBMASK) + fbp->fb_count;
#define rel_offset(offset) ((offset) & MAXBOFFSET) /* index into blkp */
while (offset < last_offset) {
/*
* Very similar validation code is found in
* process_dirblock(), hsfs_node.c.
* For an explanation, see there.
* It may make sense for the future to
* "consolidate" the code in hs_parsedir(),
* process_dirblock() and hsfs_readdir() into
* a single utility function.
*/
hdlen = (int)((uchar_t)
HDE_DIR_LEN(&blkp[rel_offset(offset)]));
if (hdlen < HDE_ROOT_DIR_REC_SIZE ||
offset + hdlen > last_offset) {
/*
* advance to next sector boundary
*/
offset = roundup(offset + 1, HS_SECTOR_SIZE);
if (hdlen)
hs_log_bogus_disk_warning(fsp,
HSFS_ERR_TRAILING_JUNK, 0);
continue;
}
bzero(&hd, sizeof (hd));
/*
* Just ignore invalid directory entries.
* XXX - maybe hs_parsedir() will detect EXISTENCE bit
*/
if (!hs_parsedir(fsp, &blkp[rel_offset(offset)],
&hd, dname, &dnamelen, last_offset - offset)) {
/*
* Determine if there is enough room
*/
ndlen = (long)DIRENT64_RECLEN((dnamelen));
if ((ndlen + ((char *)nd - outbuf)) >
uiop->uio_resid) {
fbrelse(fbp, S_READ);
goto done; /* output buffer full */
}
diroff = offset + hdlen;
/*
* If the media carries rrip-v1.12 or newer,
* and we trust the inodes from the rrip data
* (use_rrip_inodes != 0), use that data. If the
* media has been created by a recent mkisofs
* version, we may trust all numbers in the
* starting extent number; otherwise, we cannot
* do this for zero sized files and symlinks,
* because if we did we'd end up mapping all of
* them to the same node. We use HS_DUMMY_INO
* in this case and make sure that we will not
* map all files to the same meta data.
*/
if (hd.inode != 0 && use_rrip_inodes) {
dirino = hd.inode;
} else if ((hd.ext_size == 0 ||
hd.sym_link != (char *)NULL) &&
(fsp->hsfs_flags & HSFSMNT_INODE) == 0) {
dirino = HS_DUMMY_INO;
} else {
dirino = hd.ext_lbn;
}
/* strncpy(9f) will zero uninitialized bytes */
ASSERT(strlen(dname) + 1 <=
DIRENT64_NAMELEN(ndlen));
(void) strncpy(nd->d_name, dname,
DIRENT64_NAMELEN(ndlen));
nd->d_reclen = (ushort_t)ndlen;
nd->d_off = (offset_t)diroff;
nd->d_ino = dirino;
nd = (struct dirent64 *)((char *)nd + ndlen);
/*
* free up space allocated for symlink
*/
if (hd.sym_link != (char *)NULL) {
kmem_free(hd.sym_link,
(size_t)(hd.ext_size+1));
hd.sym_link = (char *)NULL;
}
}
offset += hdlen;
}
fbrelse(fbp, S_READ);
}
/*
* Got here for one of the following reasons:
* 1) outbuf is full (error == 0)
* 2) end of directory reached (error == 0)
* 3) error reading directory sector (error != 0)
* 4) directory entry crosses sector boundary (error == 0)
*
* If any directory entries have been copied, don't report
* case 4. Instead, return the valid directory entries.
*
* If no entries have been copied, report the error.
* If case 4, this will be indistiguishable from EOF.
*/
done:
ndlen = ((char *)nd - outbuf);
if (ndlen != 0) {
error = uiomove(outbuf, (size_t)ndlen, UIO_READ, uiop);
uiop->uio_loffset = offset;
}
kmem_free(dname, dname_size);
kmem_free(outbuf, bufsize);
if (eofp && error == 0)
*eofp = (uiop->uio_loffset >= dirsiz);
return (error);
}
/*ARGSUSED2*/
static int
hsfs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
{
struct hsnode *hp;
struct hsfid *fid;
if (fidp->fid_len < (sizeof (*fid) - sizeof (fid->hf_len))) {
fidp->fid_len = sizeof (*fid) - sizeof (fid->hf_len);
return (ENOSPC);
}
fid = (struct hsfid *)fidp;
fid->hf_len = sizeof (*fid) - sizeof (fid->hf_len);
hp = VTOH(vp);
mutex_enter(&hp->hs_contents_lock);
fid->hf_dir_lbn = hp->hs_dir_lbn;
fid->hf_dir_off = (ushort_t)hp->hs_dir_off;
fid->hf_ino = hp->hs_nodeid;
mutex_exit(&hp->hs_contents_lock);
return (0);
}
/*ARGSUSED*/
static int
hsfs_open(struct vnode **vpp,
int flag,
struct cred *cred,
caller_context_t *ct)
{
return (0);
}
/*ARGSUSED*/
static int
hsfs_close(
struct vnode *vp,
int flag,
int count,
offset_t offset,
struct cred *cred,
caller_context_t *ct)
{
(void) cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
cleanshares(vp, ttoproc(curthread)->p_pid);
return (0);
}
/*ARGSUSED2*/
static int
hsfs_access(struct vnode *vp,
int mode,
int flags,
cred_t *cred,
caller_context_t *ct)
{
return (hs_access(vp, (mode_t)mode, cred));
}
/*
* the seek time of a CD-ROM is very slow, and data transfer
* rate is even worse (max. 150K per sec). The design
* decision is to reduce access to cd-rom as much as possible,
* and to transfer a sizable block (read-ahead) of data at a time.
* UFS style of read ahead one block at a time is not appropriate,
* and is not supported
*/
/*
* KLUSTSIZE should be a multiple of PAGESIZE and <= MAXPHYS.
*/
#define KLUSTSIZE (56 * 1024)
/* we don't support read ahead */
int hsfs_lostpage; /* no. of times we lost original page */
/*
* Used to prevent biodone() from releasing buf resources that
* we didn't allocate in quite the usual way.
*/
/*ARGSUSED*/
int
hsfs_iodone(struct buf *bp)
{
sema_v(&bp->b_io);
return (0);
}
/*
* The taskq thread that invokes the scheduling function to ensure
* that all readaheads are complete and cleans up the associated
* memory and releases the page lock.
*/
void
hsfs_ra_task(void *arg)
{
struct hio_info *info = arg;
uint_t count;
struct buf *wbuf;
ASSERT(info->pp != NULL);
for (count = 0; count < info->bufsused; count++) {
wbuf = &(info->bufs[count]);
DTRACE_PROBE1(hsfs_io_wait_ra, struct buf *, wbuf);
while (sema_tryp(&(info->sema[count])) == 0) {
if (hsched_invoke_strategy(info->fsp)) {
sema_p(&(info->sema[count]));
break;
}
}
sema_destroy(&(info->sema[count]));
DTRACE_PROBE1(hsfs_io_done_ra, struct buf *, wbuf);
biofini(&(info->bufs[count]));
}
for (count = 0; count < info->bufsused; count++) {
if (info->vas[count] != NULL) {
ppmapout(info->vas[count]);
}
}
kmem_free(info->vas, info->bufcnt * sizeof (caddr_t));
kmem_free(info->bufs, info->bufcnt * sizeof (struct buf));
kmem_free(info->sema, info->bufcnt * sizeof (ksema_t));
pvn_read_done(info->pp, 0);
kmem_cache_free(hio_info_cache, info);
}
/*
* Submit asynchronous readahead requests to the I/O scheduler
* depending on the number of pages to read ahead. These requests
* are asynchronous to the calling thread but I/O requests issued
* subsequently by other threads with higher LBNs must wait for
* these readaheads to complete since we have a single ordered
* I/O pipeline. Thus these readaheads are semi-asynchronous.
* A TaskQ handles waiting for the readaheads to complete.
*
* This function is mostly a copy of hsfs_getapage but somewhat
* simpler. A readahead request is aborted if page allocation
* fails.
*/
/*ARGSUSED*/
static int
hsfs_getpage_ra(
struct vnode *vp,
u_offset_t off,
struct seg *seg,
caddr_t addr,
struct hsnode *hp,
struct hsfs *fsp,
int xarsiz,
offset_t bof,
int chunk_lbn_count,
int chunk_data_bytes)
{
struct buf *bufs;
caddr_t *vas;
caddr_t va;
struct page *pp, *searchp, *lastp;
struct vnode *devvp;
ulong_t byte_offset;
size_t io_len_tmp;
uint_t io_off, io_len;
uint_t xlen;
uint_t filsiz;
uint_t secsize;
uint_t bufcnt;
uint_t bufsused;
uint_t count;
uint_t io_end;
uint_t which_chunk_lbn;
uint_t offset_lbn;
uint_t offset_extra;
offset_t offset_bytes;
uint_t remaining_bytes;
uint_t extension;
int remainder; /* must be signed */
diskaddr_t driver_block;
u_offset_t io_off_tmp;
ksema_t *fio_done;
struct hio_info *info;
size_t len;
ASSERT(fsp->hqueue != NULL);
if (addr >= seg->s_base + seg->s_size) {
return (-1);
}
devvp = fsp->hsfs_devvp;
secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */
/* file data size */
filsiz = hp->hs_dirent.ext_size;
if (off >= filsiz)
return (0);
extension = 0;
pp = NULL;
extension += hp->hs_ra_bytes;
/*
* Some CD writers (e.g. Kodak Photo CD writers)
* create CDs in TAO mode and reserve tracks that
* are not completely written. Some sectors remain
* unreadable for this reason and give I/O errors.
* Also, there's no point in reading sectors
* we'll never look at. So, if we're asked to go
* beyond the end of a file, truncate to the length
* of that file.
*
* Additionally, this behaviour is required by section
* 6.4.5 of ISO 9660:1988(E).
*/
len = MIN(extension ? extension : PAGESIZE, filsiz - off);
/* A little paranoia */
if (len <= 0)
return (-1);
/*
* After all that, make sure we're asking for things in units
* that bdev_strategy() will understand (see bug 4202551).
*/
len = roundup(len, DEV_BSIZE);
pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
&io_len_tmp, off, len, 1);
if (pp == NULL) {
hp->hs_num_contig = 0;
hp->hs_ra_bytes = 0;
hp->hs_prev_offset = 0;
return (-1);
}
io_off = (uint_t)io_off_tmp;
io_len = (uint_t)io_len_tmp;
/* check for truncation */
/*
* xxx Clean up and return EIO instead?
* xxx Ought to go to u_offset_t for everything, but we
* xxx call lots of things that want uint_t arguments.
*/
ASSERT(io_off == io_off_tmp);
/*
* get enough buffers for worst-case scenario
* (i.e., no coalescing possible).
*/
bufcnt = (len + secsize - 1) / secsize;
bufs = kmem_alloc(bufcnt * sizeof (struct buf), KM_SLEEP);
vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
/*
* Allocate a array of semaphores since we are doing I/O
* scheduling.
*/
fio_done = kmem_alloc(bufcnt * sizeof (ksema_t), KM_SLEEP);
/*
* If our filesize is not an integer multiple of PAGESIZE,
* we zero that part of the last page that's between EOF and
* the PAGESIZE boundary.
*/
xlen = io_len & PAGEOFFSET;
if (xlen != 0)
pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
DTRACE_PROBE2(hsfs_readahead, struct vnode *, vp, uint_t, io_len);
va = NULL;
lastp = NULL;
searchp = pp;
io_end = io_off + io_len;
for (count = 0, byte_offset = io_off;
byte_offset < io_end;
count++) {
ASSERT(count < bufcnt);
bioinit(&bufs[count]);
bufs[count].b_edev = devvp->v_rdev;
bufs[count].b_dev = cmpdev(devvp->v_rdev);
bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
bufs[count].b_iodone = hsfs_iodone;
bufs[count].b_vp = vp;
bufs[count].b_file = vp;
/* Compute disk address for interleaving. */
/* considered without skips */
which_chunk_lbn = byte_offset / chunk_data_bytes;
/* factor in skips */
offset_lbn = which_chunk_lbn * chunk_lbn_count;
/* convert to physical byte offset for lbn */
offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
/* don't forget offset into lbn */
offset_extra = byte_offset % chunk_data_bytes;
/* get virtual block number for driver */
driver_block = lbtodb(bof + xarsiz
+ offset_bytes + offset_extra);
if (lastp != searchp) {
/* this branch taken first time through loop */
va = vas[count] = ppmapin(searchp, PROT_WRITE,
(caddr_t)-1);
/* ppmapin() guarantees not to return NULL */
} else {
vas[count] = NULL;
}
bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
bufs[count].b_offset =
(offset_t)(byte_offset - io_off + off);
/*
* We specifically use the b_lblkno member here
* as even in the 32 bit world driver_block can
* get very large in line with the ISO9660 spec.
*/
bufs[count].b_lblkno = driver_block;
remaining_bytes = ((which_chunk_lbn + 1) * chunk_data_bytes)
- byte_offset;
/*
* remaining_bytes can't be zero, as we derived
* which_chunk_lbn directly from byte_offset.
*/
if ((remaining_bytes + byte_offset) < (off + len)) {
/* coalesce-read the rest of the chunk */
bufs[count].b_bcount = remaining_bytes;
} else {
/* get the final bits */
bufs[count].b_bcount = off + len - byte_offset;
}
remainder = PAGESIZE - (byte_offset % PAGESIZE);
if (bufs[count].b_bcount > remainder) {
bufs[count].b_bcount = remainder;
}
bufs[count].b_bufsize = bufs[count].b_bcount;
if (((offset_t)byte_offset + bufs[count].b_bcount) >
HS_MAXFILEOFF) {
break;
}
byte_offset += bufs[count].b_bcount;
/*
* We are scheduling I/O so we need to enqueue
* requests rather than calling bdev_strategy
* here. A later invocation of the scheduling
* function will take care of doing the actual
* I/O as it selects requests from the queue as
* per the scheduling logic.
*/
struct hio *hsio = kmem_cache_alloc(hio_cache,
KM_SLEEP);
sema_init(&fio_done[count], 0, NULL,
SEMA_DEFAULT, NULL);
hsio->bp = &bufs[count];
hsio->sema = &fio_done[count];
hsio->io_lblkno = bufs[count].b_lblkno;
hsio->nblocks = howmany(hsio->bp->b_bcount,
DEV_BSIZE);
/* used for deadline */
hsio->io_timestamp = drv_hztousec(ddi_get_lbolt());
/* for I/O coalescing */
hsio->contig_chain = NULL;
hsched_enqueue_io(fsp, hsio, 1);
lwp_stat_update(LWP_STAT_INBLK, 1);
lastp = searchp;
if ((remainder - bufs[count].b_bcount) < 1) {
searchp = searchp->p_next;
}
}
bufsused = count;
info = kmem_cache_alloc(hio_info_cache, KM_SLEEP);
info->bufs = bufs;
info->vas = vas;
info->sema = fio_done;
info->bufsused = bufsused;
info->bufcnt = bufcnt;
info->fsp = fsp;
info->pp = pp;
(void) taskq_dispatch(fsp->hqueue->ra_task,
hsfs_ra_task, info, KM_SLEEP);
/*
* The I/O locked pages are unlocked in our taskq thread.
*/
return (0);
}
/*
* Each file may have a different interleaving on disk. This makes
* things somewhat interesting. The gist is that there are some
* number of contiguous data sectors, followed by some other number
* of contiguous skip sectors. The sum of those two sets of sectors
* defines the interleave size. Unfortunately, it means that we generally
* can't simply read N sectors starting at a given offset to satisfy
* any given request.
*
* What we do is get the relevant memory pages via pvn_read_kluster(),
* then stride through the interleaves, setting up a buf for each
* sector that needs to be brought in. Instead of kmem_alloc'ing
* space for the sectors, though, we just point at the appropriate
* spot in the relevant page for each of them. This saves us a bunch
* of copying.
*
* NOTICE: The code below in hsfs_getapage is mostly same as the code
* in hsfs_getpage_ra above (with some omissions). If you are
* making any change to this function, please also look at
* hsfs_getpage_ra.
*/
/*ARGSUSED*/
static int
hsfs_getapage(
struct vnode *vp,
u_offset_t off,
size_t len,
uint_t *protp,
struct page *pl[],
size_t plsz,
struct seg *seg,
caddr_t addr,
enum seg_rw rw,
struct cred *cred)
{
struct hsnode *hp;
struct hsfs *fsp;
int err;
struct buf *bufs;
caddr_t *vas;
caddr_t va;
struct page *pp, *searchp, *lastp;
page_t *pagefound;
offset_t bof;
struct vnode *devvp;
ulong_t byte_offset;
size_t io_len_tmp;
uint_t io_off, io_len;
uint_t xlen;
uint_t filsiz;
uint_t secsize;
uint_t bufcnt;
uint_t bufsused;
uint_t count;
uint_t io_end;
uint_t which_chunk_lbn;
uint_t offset_lbn;
uint_t offset_extra;
offset_t offset_bytes;
uint_t remaining_bytes;
uint_t extension;
int remainder; /* must be signed */
int chunk_lbn_count;
int chunk_data_bytes;
int xarsiz;
diskaddr_t driver_block;
u_offset_t io_off_tmp;
ksema_t *fio_done;
int calcdone;
/*
* We don't support asynchronous operation at the moment, so
* just pretend we did it. If the pages are ever actually
* needed, they'll get brought in then.
*/
if (pl == NULL)
return (0);
hp = VTOH(vp);
fsp = VFS_TO_HSFS(vp->v_vfsp);
devvp = fsp->hsfs_devvp;
secsize = fsp->hsfs_vol.lbn_size; /* bytes per logical block */
/* file data size */
filsiz = hp->hs_dirent.ext_size;
/* disk addr for start of file */
bof = LBN_TO_BYTE((offset_t)hp->hs_dirent.ext_lbn, vp->v_vfsp);
/* xarsiz byte must be skipped for data */
xarsiz = hp->hs_dirent.xar_len << fsp->hsfs_vol.lbn_shift;
/* how many logical blocks in an interleave (data+skip) */
chunk_lbn_count = hp->hs_dirent.intlf_sz + hp->hs_dirent.intlf_sk;
if (chunk_lbn_count == 0) {
chunk_lbn_count = 1;
}
/*
* Convert interleaving size into bytes. The zero case
* (no interleaving) optimization is handled as a side-
* effect of the read-ahead logic.
*/
if (hp->hs_dirent.intlf_sz == 0) {
chunk_data_bytes = LBN_TO_BYTE(1, vp->v_vfsp);
/*
* Optimization: If our pagesize is a multiple of LBN
* bytes, we can avoid breaking up a page into individual
* lbn-sized requests.
*/
if (PAGESIZE % chunk_data_bytes == 0) {
chunk_lbn_count = BYTE_TO_LBN(PAGESIZE, vp->v_vfsp);
chunk_data_bytes = PAGESIZE;
}
} else {
chunk_data_bytes =
LBN_TO_BYTE(hp->hs_dirent.intlf_sz, vp->v_vfsp);
}
reread:
err = 0;
pagefound = 0;
calcdone = 0;
/*
* Do some read-ahead. This mostly saves us a bit of
* system cpu time more than anything else when doing
* sequential reads. At some point, could do the
* read-ahead asynchronously which might gain us something
* on wall time, but it seems unlikely....
*
* We do the easy case here, which is to read through
* the end of the chunk, minus whatever's at the end that
* won't exactly fill a page.
*/
if (hp->hs_ra_bytes > 0 && chunk_data_bytes != PAGESIZE) {
which_chunk_lbn = (off + len) / chunk_data_bytes;
extension = ((which_chunk_lbn + 1) * chunk_data_bytes) - off;
extension -= (extension % PAGESIZE);
} else {
extension = roundup(len, PAGESIZE);
}
atomic_inc_64(&fsp->total_pages_requested);
pp = NULL;
again:
/* search for page in buffer */
if ((pagefound = page_exists(vp, off)) == 0) {
/*
* Need to really do disk IO to get the page.
*/
if (!calcdone) {
extension += hp->hs_ra_bytes;
/*
* Some cd writers don't write sectors that aren't
* used. Also, there's no point in reading sectors
* we'll never look at. So, if we're asked to go
* beyond the end of a file, truncate to the length
* of that file.
*
* Additionally, this behaviour is required by section
* 6.4.5 of ISO 9660:1988(E).
*/
len = MIN(extension ? extension : PAGESIZE,
filsiz - off);
/* A little paranoia. */
ASSERT(len > 0);
/*
* After all that, make sure we're asking for things
* in units that bdev_strategy() will understand
* (see bug 4202551).
*/
len = roundup(len, DEV_BSIZE);
calcdone = 1;
}
pp = pvn_read_kluster(vp, off, seg, addr, &io_off_tmp,
&io_len_tmp, off, len, 0);
if (pp == NULL) {
/*
* Pressure on memory, roll back readahead
*/
hp->hs_num_contig = 0;
hp->hs_ra_bytes = 0;
hp->hs_prev_offset = 0;
goto again;
}
io_off = (uint_t)io_off_tmp;
io_len = (uint_t)io_len_tmp;
/* check for truncation */
/*
* xxx Clean up and return EIO instead?
* xxx Ought to go to u_offset_t for everything, but we
* xxx call lots of things that want uint_t arguments.
*/
ASSERT(io_off == io_off_tmp);
/*
* get enough buffers for worst-case scenario
* (i.e., no coalescing possible).
*/
bufcnt = (len + secsize - 1) / secsize;
bufs = kmem_zalloc(bufcnt * sizeof (struct buf), KM_SLEEP);
vas = kmem_alloc(bufcnt * sizeof (caddr_t), KM_SLEEP);
/*
* Allocate a array of semaphores if we are doing I/O
* scheduling.
*/
if (fsp->hqueue != NULL)
fio_done = kmem_alloc(bufcnt * sizeof (ksema_t),
KM_SLEEP);
for (count = 0; count < bufcnt; count++) {
bioinit(&bufs[count]);
bufs[count].b_edev = devvp->v_rdev;
bufs[count].b_dev = cmpdev(devvp->v_rdev);
bufs[count].b_flags = B_NOCACHE|B_BUSY|B_READ;
bufs[count].b_iodone = hsfs_iodone;
bufs[count].b_vp = vp;
bufs[count].b_file = vp;
}
/*
* If our filesize is not an integer multiple of PAGESIZE,
* we zero that part of the last page that's between EOF and
* the PAGESIZE boundary.
*/
xlen = io_len & PAGEOFFSET;
if (xlen != 0)
pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
va = NULL;
lastp = NULL;
searchp = pp;
io_end = io_off + io_len;
for (count = 0, byte_offset = io_off;
byte_offset < io_end; count++) {
ASSERT(count < bufcnt);
/* Compute disk address for interleaving. */
/* considered without skips */
which_chunk_lbn = byte_offset / chunk_data_bytes;
/* factor in skips */
offset_lbn = which_chunk_lbn * chunk_lbn_count;
/* convert to physical byte offset for lbn */
offset_bytes = LBN_TO_BYTE(offset_lbn, vp->v_vfsp);
/* don't forget offset into lbn */
offset_extra = byte_offset % chunk_data_bytes;
/* get virtual block number for driver */
driver_block =
lbtodb(bof + xarsiz + offset_bytes + offset_extra);
if (lastp != searchp) {
/* this branch taken first time through loop */
va = vas[count] =
ppmapin(searchp, PROT_WRITE, (caddr_t)-1);
/* ppmapin() guarantees not to return NULL */
} else {
vas[count] = NULL;
}
bufs[count].b_un.b_addr = va + byte_offset % PAGESIZE;
bufs[count].b_offset =
(offset_t)(byte_offset - io_off + off);
/*
* We specifically use the b_lblkno member here
* as even in the 32 bit world driver_block can
* get very large in line with the ISO9660 spec.
*/
bufs[count].b_lblkno = driver_block;
remaining_bytes =
((which_chunk_lbn + 1) * chunk_data_bytes)
- byte_offset;
/*
* remaining_bytes can't be zero, as we derived
* which_chunk_lbn directly from byte_offset.
*/
if ((remaining_bytes + byte_offset) < (off + len)) {
/* coalesce-read the rest of the chunk */
bufs[count].b_bcount = remaining_bytes;
} else {
/* get the final bits */
bufs[count].b_bcount = off + len - byte_offset;
}
/*
* It would be nice to do multiple pages'
* worth at once here when the opportunity
* arises, as that has been shown to improve
* our wall time. However, to do that
* requires that we use the pageio subsystem,
* which doesn't mix well with what we're
* already using here. We can't use pageio
* all the time, because that subsystem
* assumes that a page is stored in N
* contiguous blocks on the device.
* Interleaving violates that assumption.
*
* Update: This is now not so big a problem
* because of the I/O scheduler sitting below
* that can re-order and coalesce I/O requests.
*/
remainder = PAGESIZE - (byte_offset % PAGESIZE);
if (bufs[count].b_bcount > remainder) {
bufs[count].b_bcount = remainder;
}
bufs[count].b_bufsize = bufs[count].b_bcount;
if (((offset_t)byte_offset + bufs[count].b_bcount) >
HS_MAXFILEOFF) {
break;
}
byte_offset += bufs[count].b_bcount;
if (fsp->hqueue == NULL) {
(void) bdev_strategy(&bufs[count]);
} else {
/*
* We are scheduling I/O so we need to enqueue
* requests rather than calling bdev_strategy
* here. A later invocation of the scheduling
* function will take care of doing the actual
* I/O as it selects requests from the queue as
* per the scheduling logic.
*/
struct hio *hsio = kmem_cache_alloc(hio_cache,
KM_SLEEP);
sema_init(&fio_done[count], 0, NULL,
SEMA_DEFAULT, NULL);
hsio->bp = &bufs[count];
hsio->sema = &fio_done[count];
hsio->io_lblkno = bufs[count].b_lblkno;
hsio->nblocks = howmany(hsio->bp->b_bcount,
DEV_BSIZE);
/* used for deadline */
hsio->io_timestamp =
drv_hztousec(ddi_get_lbolt());
/* for I/O coalescing */
hsio->contig_chain = NULL;
hsched_enqueue_io(fsp, hsio, 0);
}
lwp_stat_update(LWP_STAT_INBLK, 1);
lastp = searchp;
if ((remainder - bufs[count].b_bcount) < 1) {
searchp = searchp->p_next;
}
}
bufsused = count;
/* Now wait for everything to come in */
if (fsp->hqueue == NULL) {
for (count = 0; count < bufsused; count++) {
if (err == 0) {
err = biowait(&bufs[count]);
} else
(void) biowait(&bufs[count]);
}
} else {
for (count = 0; count < bufsused; count++) {
struct buf *wbuf;
/*
* Invoke scheduling function till our buf
* is processed. In doing this it might
* process bufs enqueued by other threads
* which is good.
*/
wbuf = &bufs[count];
DTRACE_PROBE1(hsfs_io_wait, struct buf *, wbuf);
while (sema_tryp(&fio_done[count]) == 0) {
/*
* hsched_invoke_strategy will return 1
* if the I/O queue is empty. This means
* that there is another thread who has
* issued our buf and is waiting. So we
* just block instead of spinning.
*/
if (hsched_invoke_strategy(fsp)) {
sema_p(&fio_done[count]);
break;
}
}
sema_destroy(&fio_done[count]);
DTRACE_PROBE1(hsfs_io_done, struct buf *, wbuf);
if (err == 0) {
err = geterror(wbuf);
}
}
kmem_free(fio_done, bufcnt * sizeof (ksema_t));
}
/* Don't leak resources */
for (count = 0; count < bufcnt; count++) {
biofini(&bufs[count]);
if (count < bufsused && vas[count] != NULL) {
ppmapout(vas[count]);
}
}
kmem_free(vas, bufcnt * sizeof (caddr_t));
kmem_free(bufs, bufcnt * sizeof (struct buf));
}
if (err) {
pvn_read_done(pp, B_ERROR);
return (err);
}
/*
* Lock the requested page, and the one after it if possible.
* Don't bother if our caller hasn't given us a place to stash
* the page pointers, since otherwise we'd lock pages that would
* never get unlocked.
*/
if (pagefound) {
int index;
ulong_t soff;
/*
* Make sure it's in memory before we say it's here.
*/
if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) {
hsfs_lostpage++;
goto reread;
}
pl[0] = pp;
index = 1;
atomic_inc_64(&fsp->cache_read_pages);
/*
* Try to lock the next page, if it exists, without
* blocking.
*/
plsz -= PAGESIZE;
/* LINTED (plsz is unsigned) */
for (soff = off + PAGESIZE; plsz > 0;
soff += PAGESIZE, plsz -= PAGESIZE) {
pp = page_lookup_nowait(vp, (u_offset_t)soff,
SE_SHARED);
if (pp == NULL)
break;
pl[index++] = pp;
}
pl[index] = NULL;
/*
* Schedule a semi-asynchronous readahead if we are
* accessing the last cached page for the current
* file.
*
* Doing this here means that readaheads will be
* issued only if cache-hits occur. This is an advantage
* since cache-hits would mean that readahead is giving
* the desired benefit. If cache-hits do not occur there
* is no point in reading ahead of time - the system
* is loaded anyway.
*/
if (fsp->hqueue != NULL &&
hp->hs_prev_offset - off == PAGESIZE &&
hp->hs_prev_offset < filsiz &&
hp->hs_ra_bytes > 0 &&
!page_exists(vp, hp->hs_prev_offset)) {
(void) hsfs_getpage_ra(vp, hp->hs_prev_offset, seg,
addr + PAGESIZE, hp, fsp, xarsiz, bof,
chunk_lbn_count, chunk_data_bytes);
}
return (0);
}
if (pp != NULL) {
pvn_plist_init(pp, pl, plsz, off, io_len, rw);
}
return (err);
}
/*ARGSUSED*/
static int
hsfs_getpage(
struct vnode *vp,
offset_t off,
size_t len,
uint_t *protp,
struct page *pl[],
size_t plsz,
struct seg *seg,
caddr_t addr,
enum seg_rw rw,
struct cred *cred,
caller_context_t *ct)
{
int err;
uint_t filsiz;
struct hsfs *fsp;
struct hsnode *hp;
fsp = VFS_TO_HSFS(vp->v_vfsp);
hp = VTOH(vp);
/* does not support write */
if (rw == S_WRITE) {
panic("write attempt on READ ONLY HSFS");
/*NOTREACHED*/
}
if (vp->v_flag & VNOMAP) {
return (ENOSYS);
}
ASSERT(off <= HS_MAXFILEOFF);
/*
* Determine file data size for EOF check.
*/
filsiz = hp->hs_dirent.ext_size;
if ((off + len) > (offset_t)(filsiz + PAGEOFFSET) && seg != segkmap)
return (EFAULT); /* beyond EOF */
/*
* Async Read-ahead computation.
* This attempts to detect sequential access pattern and
* enables reading extra pages ahead of time.
*/
if (fsp->hqueue != NULL) {
/*
* This check for sequential access also takes into
* account segmap weirdness when reading in chunks
* less than the segmap size of 8K.
*/
if (hp->hs_prev_offset == off || (off <
hp->hs_prev_offset && off + MAX(len, PAGESIZE)
>= hp->hs_prev_offset)) {
if (hp->hs_num_contig <
(seq_contig_requests - 1)) {
hp->hs_num_contig++;
} else {
/*
* We increase readahead quantum till
* a predefined max. max_readahead_bytes
* is a multiple of PAGESIZE.
*/
if (hp->hs_ra_bytes <
fsp->hqueue->max_ra_bytes) {
hp->hs_ra_bytes += PAGESIZE;
}
}
} else {
/*
* Not contiguous so reduce read ahead counters.
*/
if (hp->hs_ra_bytes > 0)
hp->hs_ra_bytes -= PAGESIZE;
if (hp->hs_ra_bytes <= 0) {
hp->hs_ra_bytes = 0;
if (hp->hs_num_contig > 0)
hp->hs_num_contig--;
}
}
/*
* Length must be rounded up to page boundary.
* since we read in units of pages.
*/
hp->hs_prev_offset = off + roundup(len, PAGESIZE);
DTRACE_PROBE1(hsfs_compute_ra, struct hsnode *, hp);
}
if (protp != NULL)
*protp = PROT_ALL;
if (len <= PAGESIZE)
err = hsfs_getapage(vp, (u_offset_t)off, len, protp, pl, plsz,
seg, addr, rw, cred);
else
err = pvn_getpages(hsfs_getapage, vp, off, len, protp,
pl, plsz, seg, addr, rw, cred);
return (err);
}
/*
* This function should never be called. We need to have it to pass
* it as an argument to other functions.
*/
/*ARGSUSED*/
int
hsfs_putapage(
vnode_t *vp,
page_t *pp,
u_offset_t *offp,
size_t *lenp,
int flags,
cred_t *cr)
{
/* should never happen - just destroy it */
cmn_err(CE_NOTE, "hsfs_putapage: dirty HSFS page");
pvn_write_done(pp, B_ERROR | B_WRITE | B_INVAL | B_FORCE | flags);
return (0);
}
/*
* The only flags we support are B_INVAL, B_FREE and B_DONTNEED.
* B_INVAL is set by:
*
* 1) the MC_SYNC command of memcntl(2) to support the MS_INVALIDATE flag.
* 2) the MC_ADVISE command of memcntl(2) with the MADV_DONTNEED advice
* which translates to an MC_SYNC with the MS_INVALIDATE flag.
*
* The B_FREE (as well as the B_DONTNEED) flag is set when the
* MADV_SEQUENTIAL advice has been used. VOP_PUTPAGE is invoked
* from SEGVN to release pages behind a pagefault.
*/
/*ARGSUSED*/
static int
hsfs_putpage(
struct vnode *vp,
offset_t off,
size_t len,
int flags,
struct cred *cr,
caller_context_t *ct)
{
int error = 0;
if (vp->v_count == 0) {
panic("hsfs_putpage: bad v_count");
/*NOTREACHED*/
}
if (vp->v_flag & VNOMAP)
return (ENOSYS);
ASSERT(off <= HS_MAXFILEOFF);
if (!vn_has_cached_data(vp)) /* no pages mapped */
return (0);
if (len == 0) { /* from 'off' to EOF */
error = pvn_vplist_dirty(vp, off, hsfs_putapage, flags, cr);
} else {
offset_t end_off = off + len;
offset_t file_size = VTOH(vp)->hs_dirent.ext_size;
offset_t io_off;
file_size = (file_size + PAGESIZE - 1) & PAGEMASK;
if (end_off > file_size)
end_off = file_size;
for (io_off = off; io_off < end_off; io_off += PAGESIZE) {
page_t *pp;
/*
* We insist on getting the page only if we are
* about to invalidate, free or write it and
* the B_ASYNC flag is not set.
*/
if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
pp = page_lookup(vp, io_off,
(flags & (B_INVAL | B_FREE)) ?
SE_EXCL : SE_SHARED);
} else {
pp = page_lookup_nowait(vp, io_off,
(flags & B_FREE) ? SE_EXCL : SE_SHARED);
}
if (pp == NULL)
continue;
/*
* Normally pvn_getdirty() should return 0, which
* impies that it has done the job for us.
* The shouldn't-happen scenario is when it returns 1.
* This means that the page has been modified and
* needs to be put back.
* Since we can't write on a CD, we fake a failed
* I/O and force pvn_write_done() to destroy the page.
*/
if (pvn_getdirty(pp, flags) == 1) {
cmn_err(CE_NOTE,
"hsfs_putpage: dirty HSFS page");
pvn_write_done(pp, flags |
B_ERROR | B_WRITE | B_INVAL | B_FORCE);
}
}
}
return (error);
}
/*ARGSUSED*/
static int
hsfs_map(
struct vnode *vp,
offset_t off,
struct as *as,
caddr_t *addrp,
size_t len,
uchar_t prot,
uchar_t maxprot,
uint_t flags,
struct cred *cred,
caller_context_t *ct)
{
struct segvn_crargs vn_a;
int error;
/* VFS_RECORD(vp->v_vfsp, VS_MAP, VS_CALL); */
if (vp->v_flag & VNOMAP)
return (ENOSYS);
if (off > HS_MAXFILEOFF || off < 0 ||
(off + len) < 0 || (off + len) > HS_MAXFILEOFF)
return (ENXIO);
if (vp->v_type != VREG) {
return (ENODEV);
}
/*
* If file is being locked, disallow mapping.
*/
if (vn_has_mandatory_locks(vp, VTOH(vp)->hs_dirent.mode))
return (EAGAIN);
as_rangelock(as);
error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
if (error != 0) {
as_rangeunlock(as);
return (error);
}
vn_a.vp = vp;
vn_a.offset = off;
vn_a.type = flags & MAP_TYPE;
vn_a.prot = prot;
vn_a.maxprot = maxprot;
vn_a.flags = flags & ~MAP_TYPE;
vn_a.cred = cred;
vn_a.amp = NULL;
vn_a.szc = 0;
vn_a.lgrp_mem_policy_flags = 0;
error = as_map(as, *addrp, len, segvn_create, &vn_a);
as_rangeunlock(as);
return (error);
}
/* ARGSUSED */
static int
hsfs_addmap(
struct vnode *vp,
offset_t off,
struct as *as,
caddr_t addr,
size_t len,
uchar_t prot,
uchar_t maxprot,
uint_t flags,
struct cred *cr,
caller_context_t *ct)
{
struct hsnode *hp;
if (vp->v_flag & VNOMAP)
return (ENOSYS);
hp = VTOH(vp);
mutex_enter(&hp->hs_contents_lock);
hp->hs_mapcnt += btopr(len);
mutex_exit(&hp->hs_contents_lock);
return (0);
}
/*ARGSUSED*/
static int
hsfs_delmap(
struct vnode *vp,
offset_t off,
struct as *as,
caddr_t addr,
size_t len,
uint_t prot,
uint_t maxprot,
uint_t flags,
struct cred *cr,
caller_context_t *ct)
{
struct hsnode *hp;
if (vp->v_flag & VNOMAP)
return (ENOSYS);
hp = VTOH(vp);
mutex_enter(&hp->hs_contents_lock);
hp->hs_mapcnt -= btopr(len); /* Count released mappings */
ASSERT(hp->hs_mapcnt >= 0);
mutex_exit(&hp->hs_contents_lock);
return (0);
}
/* ARGSUSED */
static int
hsfs_seek(
struct vnode *vp,
offset_t ooff,
offset_t *noffp,
caller_context_t *ct)
{
return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
}
/* ARGSUSED */
static int
hsfs_frlock(
struct vnode *vp,
int cmd,
struct flock64 *bfp,
int flag,
offset_t offset,
struct flk_callback *flk_cbp,
cred_t *cr,
caller_context_t *ct)
{
struct hsnode *hp = VTOH(vp);
/*
* If the file is being mapped, disallow fs_frlock.
* We are not holding the hs_contents_lock while checking
* hs_mapcnt because the current locking strategy drops all
* locks before calling fs_frlock.
* So, hs_mapcnt could change before we enter fs_frlock making
* it meaningless to have held hs_contents_lock in the first place.
*/
if (hp->hs_mapcnt > 0 && MANDLOCK(vp, hp->hs_dirent.mode))
return (EAGAIN);
return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
}
static int
hsched_deadline_compare(const void *x1, const void *x2)
{
const struct hio *h1 = x1;
const struct hio *h2 = x2;
if (h1->io_timestamp < h2->io_timestamp)
return (-1);
if (h1->io_timestamp > h2->io_timestamp)
return (1);
if (h1->io_lblkno < h2->io_lblkno)
return (-1);
if (h1->io_lblkno > h2->io_lblkno)
return (1);
if (h1 < h2)
return (-1);
if (h1 > h2)
return (1);
return (0);
}
static int
hsched_offset_compare(const void *x1, const void *x2)
{
const struct hio *h1 = x1;
const struct hio *h2 = x2;
if (h1->io_lblkno < h2->io_lblkno)
return (-1);
if (h1->io_lblkno > h2->io_lblkno)
return (1);
if (h1 < h2)
return (-1);
if (h1 > h2)
return (1);
return (0);
}
void
hsched_init_caches(void)
{
hio_cache = kmem_cache_create("hsfs_hio_cache",
sizeof (struct hio), 0, NULL,
NULL, NULL, NULL, NULL, 0);
hio_info_cache = kmem_cache_create("hsfs_hio_info_cache",
sizeof (struct hio_info), 0, NULL,
NULL, NULL, NULL, NULL, 0);
}
void
hsched_fini_caches(void)
{
kmem_cache_destroy(hio_cache);
kmem_cache_destroy(hio_info_cache);
}
/*
* Initialize I/O scheduling structures. This is called via hsfs_mount
*/
void
hsched_init(struct hsfs *fsp, int fsid, struct modlinkage *modlinkage)
{
struct hsfs_queue *hqueue = fsp->hqueue;
struct vnode *vp = fsp->hsfs_devvp;
/* TaskQ name of the form: hsched_task_ + stringof(int) */
char namebuf[23];
int error, err;
struct dk_cinfo info;
ldi_handle_t lh;
ldi_ident_t li;
/*
* Default maxtransfer = 16k chunk
*/
hqueue->dev_maxtransfer = 16384;
/*
* Try to fetch the maximum device transfer size. This is used to
* ensure that a coalesced block does not exceed the maxtransfer.
*/
err = ldi_ident_from_mod(modlinkage, &li);
if (err) {
cmn_err(CE_NOTE, "hsched_init: Querying device failed");
cmn_err(CE_NOTE, "hsched_init: ldi_ident_from_mod err=%d\n",
err);
goto set_ra;
}
err = ldi_open_by_dev(&(vp->v_rdev), OTYP_CHR, FREAD, CRED(), &lh, li);
ldi_ident_release(li);
if (err) {
cmn_err(CE_NOTE, "hsched_init: Querying device failed");
cmn_err(CE_NOTE, "hsched_init: ldi_open err=%d\n", err);
goto set_ra;
}
error = ldi_ioctl(lh, DKIOCINFO, (intptr_t)&info, FKIOCTL,
CRED(), &err);
err = ldi_close(lh, FREAD, CRED());
if (err) {
cmn_err(CE_NOTE, "hsched_init: Querying device failed");
cmn_err(CE_NOTE, "hsched_init: ldi_close err=%d\n", err);
}
if (error == 0) {
hqueue->dev_maxtransfer = ldbtob(info.dki_maxtransfer);
}
set_ra:
/*
* Max size of data to read ahead for sequential access pattern.
* Conservative to avoid letting the underlying CD drive to spin
* down, in case the application is reading slowly.
* We read ahead upto a max of 4 pages.
*/
hqueue->max_ra_bytes = PAGESIZE * 8;
mutex_init(&(hqueue->hsfs_queue_lock), NULL, MUTEX_DEFAULT, NULL);
mutex_init(&(hqueue->strategy_lock), NULL, MUTEX_DEFAULT, NULL);
avl_create(&(hqueue->read_tree), hsched_offset_compare,
sizeof (struct hio), offsetof(struct hio, io_offset_node));
avl_create(&(hqueue->deadline_tree), hsched_deadline_compare,
sizeof (struct hio), offsetof(struct hio, io_deadline_node));
(void) snprintf(namebuf, sizeof (namebuf), "hsched_task_%d", fsid);
hqueue->ra_task = taskq_create(namebuf, hsfs_taskq_nthreads,
minclsyspri + 2, 1, 104857600 / PAGESIZE, TASKQ_DYNAMIC);
hqueue->next = NULL;
hqueue->nbuf = kmem_zalloc(sizeof (struct buf), KM_SLEEP);
}
void
hsched_fini(struct hsfs_queue *hqueue)
{
if (hqueue != NULL) {
/*
* Remove the sentinel if there was one.
*/
if (hqueue->next != NULL) {
avl_remove(&hqueue->read_tree, hqueue->next);
kmem_cache_free(hio_cache, hqueue->next);
}
avl_destroy(&(hqueue->read_tree));
avl_destroy(&(hqueue->deadline_tree));
mutex_destroy(&(hqueue->hsfs_queue_lock));
mutex_destroy(&(hqueue->strategy_lock));
/*
* If there are any existing readahead threads running
* taskq_destroy will wait for them to finish.
*/
taskq_destroy(hqueue->ra_task);
kmem_free(hqueue->nbuf, sizeof (struct buf));
}
}
/*
* Determine if two I/O requests are adjacent to each other so
* that they can coalesced.
*/
#define IS_ADJACENT(io, nio) \
(((io)->io_lblkno + (io)->nblocks == (nio)->io_lblkno) && \
(io)->bp->b_edev == (nio)->bp->b_edev)
/*
* This performs the actual I/O scheduling logic. We use the Circular
* Look algorithm here. Sort the I/O requests in ascending order of
* logical block number and process them starting with the lowest
* numbered block and progressing towards higher block numbers in the
* queue. Once there are no more higher numbered blocks, start again
* with the lowest one. This is good for CD/DVD as you keep moving
* the head in one direction along the outward spiral track and avoid
* too many seeks as much as possible. The re-ordering also allows
* us to coalesce adjacent requests into one larger request.
* This is thus essentially a 1-way Elevator with front merging.
*
* In addition each read request here has a deadline and will be
* processed out of turn if the deadline (500ms) expires.
*
* This function is necessarily serialized via hqueue->strategy_lock.
* This function sits just below hsfs_getapage and processes all read
* requests orginating from that function.
*/
int
hsched_invoke_strategy(struct hsfs *fsp)
{
struct hsfs_queue *hqueue;
struct buf *nbuf;
struct hio *fio, *nio, *tio, *prev, *last;
size_t bsize, soffset, offset, data;
int bioret, bufcount;
struct vnode *fvp;
ksema_t *io_done;
caddr_t iodata;
hqueue = fsp->hqueue;
mutex_enter(&hqueue->strategy_lock);
mutex_enter(&hqueue->hsfs_queue_lock);
/*
* Check for Deadline expiration first
*/
fio = avl_first(&hqueue->deadline_tree);
/*
* Paranoid check for empty I/O queue. Both deadline
* and read trees contain same data sorted in different
* ways. So empty deadline tree = empty read tree.
*/
if (fio == NULL) {
/*
* Remove the sentinel if there was one.
*/
if (hqueue->next != NULL) {
avl_remove(&hqueue->read_tree, hqueue->next);
kmem_cache_free(hio_cache, hqueue->next);
hqueue->next = NULL;
}
mutex_exit(&hqueue->hsfs_queue_lock);
mutex_exit(&hqueue->strategy_lock);
return (1);
}
if (drv_hztousec(ddi_get_lbolt()) - fio->io_timestamp
< HSFS_READ_DEADLINE) {
/*
* Apply standard scheduling logic. This uses the
* C-LOOK approach. Process I/O requests in ascending
* order of logical block address till no subsequent
* higher numbered block request remains. Then start
* again from the lowest numbered block in the queue.
*
* We do this cheaply here by means of a sentinel.
* The last processed I/O structure from the previous
* invocation of this func, is left dangling in the
* read_tree so that we can easily scan to the next
* higher numbered request and remove the sentinel.
*/
fio = NULL;
if (hqueue->next != NULL) {
fio = AVL_NEXT(&hqueue->read_tree, hqueue->next);
avl_remove(&hqueue->read_tree, hqueue->next);
kmem_cache_free(hio_cache, hqueue->next);
hqueue->next = NULL;
}
if (fio == NULL) {
fio = avl_first(&hqueue->read_tree);
}
} else if (hqueue->next != NULL) {
DTRACE_PROBE1(hsfs_deadline_expiry, struct hio *, fio);
avl_remove(&hqueue->read_tree, hqueue->next);
kmem_cache_free(hio_cache, hqueue->next);
hqueue->next = NULL;
}
/*
* In addition we try to coalesce contiguous
* requests into one bigger request.
*/
bufcount = 1;
bsize = ldbtob(fio->nblocks);
fvp = fio->bp->b_file;
nio = AVL_NEXT(&hqueue->read_tree, fio);
tio = fio;
while (nio != NULL && IS_ADJACENT(tio, nio) &&
bsize < hqueue->dev_maxtransfer) {
avl_remove(&hqueue->deadline_tree, tio);
avl_remove(&hqueue->read_tree, tio);
tio->contig_chain = nio;
bsize += ldbtob(nio->nblocks);
prev = tio;
tio = nio;
/*
* This check is required to detect the case where
* we are merging adjacent buffers belonging to
* different files. fvp is used to set the b_file
* parameter in the coalesced buf. b_file is used
* by DTrace so we do not want DTrace to accrue
* requests to two different files to any one file.
*/
if (fvp && tio->bp->b_file != fvp) {
fvp = NULL;
}
nio = AVL_NEXT(&hqueue->read_tree, nio);
bufcount++;
}
/*
* tio is not removed from the read_tree as it serves as a sentinel
* to cheaply allow us to scan to the next higher numbered I/O
* request.
*/
hqueue->next = tio;
avl_remove(&hqueue->deadline_tree, tio);
mutex_exit(&hqueue->hsfs_queue_lock);
DTRACE_PROBE3(hsfs_io_dequeued, struct hio *, fio, int, bufcount,
size_t, bsize);
/*
* The benefit of coalescing occurs if the the savings in I/O outweighs
* the cost of doing the additional work below.
* It was observed that coalescing 2 buffers results in diminishing
* returns, so we do coalescing if we have >2 adjacent bufs.
*/
if (bufcount > hsched_coalesce_min) {
/*
* We have coalesced blocks. First allocate mem and buf for
* the entire coalesced chunk.
* Since we are guaranteed single-threaded here we pre-allocate
* one buf at mount time and that is re-used every time. This
* is a synthesized buf structure that uses kmem_alloced chunk.
* Not quite a normal buf attached to pages.
*/
fsp->coalesced_bytes += bsize;
nbuf = hqueue->nbuf;
bioinit(nbuf);
nbuf->b_edev = fio->bp->b_edev;
nbuf->b_dev = fio->bp->b_dev;
nbuf->b_flags = fio->bp->b_flags;
nbuf->b_iodone = fio->bp->b_iodone;
iodata = kmem_alloc(bsize, KM_SLEEP);
nbuf->b_un.b_addr = iodata;
nbuf->b_lblkno = fio->bp->b_lblkno;
nbuf->b_vp = fvp;
nbuf->b_file = fvp;
nbuf->b_bcount = bsize;
nbuf->b_bufsize = bsize;
DTRACE_PROBE3(hsfs_coalesced_io_start, struct hio *, fio, int,
bufcount, size_t, bsize);
/*
* Perform I/O for the coalesced block.
*/
(void) bdev_strategy(nbuf);
/*
* Duplicate the last IO node to leave the sentinel alone.
* The sentinel is freed in the next invocation of this
* function.
*/
prev->contig_chain = kmem_cache_alloc(hio_cache, KM_SLEEP);
prev->contig_chain->bp = tio->bp;
prev->contig_chain->sema = tio->sema;
tio = prev->contig_chain;
tio->contig_chain = NULL;
soffset = ldbtob(fio->bp->b_lblkno);
nio = fio;
bioret = biowait(nbuf);
data = bsize - nbuf->b_resid;
biofini(nbuf);
mutex_exit(&hqueue->strategy_lock);
/*
* We use the b_resid parameter to detect how much
* data was succesfully transferred. We will signal
* a success to all the fully retrieved actual bufs
* before coalescing, rest is signaled as error,
* if any.
*/
tio = nio;
DTRACE_PROBE3(hsfs_coalesced_io_done, struct hio *, nio,
int, bioret, size_t, data);
/*
* Copy data and signal success to all the bufs
* which can be fully satisfied from b_resid.
*/
while (nio != NULL && data >= nio->bp->b_bcount) {
offset = ldbtob(nio->bp->b_lblkno) - soffset;
bcopy(iodata + offset, nio->bp->b_un.b_addr,
nio->bp->b_bcount);
data -= nio->bp->b_bcount;
bioerror(nio->bp, 0);
biodone(nio->bp);
sema_v(nio->sema);
tio = nio;
nio = nio->contig_chain;
kmem_cache_free(hio_cache, tio);
}
/*
* Signal error to all the leftover bufs (if any)
* after b_resid data is exhausted.
*/
while (nio != NULL) {
nio->bp->b_resid = nio->bp->b_bcount - data;
bzero(nio->bp->b_un.b_addr + data, nio->bp->b_resid);
bioerror(nio->bp, bioret);
biodone(nio->bp);
sema_v(nio->sema);
tio = nio;
nio = nio->contig_chain;
kmem_cache_free(hio_cache, tio);
data = 0;
}
kmem_free(iodata, bsize);
} else {
nbuf = tio->bp;
io_done = tio->sema;
nio = fio;
last = tio;
while (nio != NULL) {
(void) bdev_strategy(nio->bp);
nio = nio->contig_chain;
}
nio = fio;
mutex_exit(&hqueue->strategy_lock);
while (nio != NULL) {
if (nio == last) {
(void) biowait(nbuf);
sema_v(io_done);
break;
/* sentinel last not freed. See above. */
} else {
(void) biowait(nio->bp);
sema_v(nio->sema);
}
tio = nio;
nio = nio->contig_chain;
kmem_cache_free(hio_cache, tio);
}
}
return (0);
}
/*
* Insert an I/O request in the I/O scheduler's pipeline
* Using AVL tree makes it easy to reorder the I/O request
* based on logical block number.
*/
static void
hsched_enqueue_io(struct hsfs *fsp, struct hio *hsio, int ra)
{
struct hsfs_queue *hqueue = fsp->hqueue;
mutex_enter(&hqueue->hsfs_queue_lock);
fsp->physical_read_bytes += hsio->bp->b_bcount;
if (ra)
fsp->readahead_bytes += hsio->bp->b_bcount;
avl_add(&hqueue->deadline_tree, hsio);
avl_add(&hqueue->read_tree, hsio);
DTRACE_PROBE3(hsfs_io_enqueued, struct hio *, hsio,
struct hsfs_queue *, hqueue, int, ra);
mutex_exit(&hqueue->hsfs_queue_lock);
}
/* ARGSUSED */
static int
hsfs_pathconf(struct vnode *vp,
int cmd,
ulong_t *valp,
struct cred *cr,
caller_context_t *ct)
{
struct hsfs *fsp;
int error = 0;
switch (cmd) {
case _PC_NAME_MAX:
fsp = VFS_TO_HSFS(vp->v_vfsp);
*valp = fsp->hsfs_namemax;
break;
case _PC_FILESIZEBITS:
*valp = 33; /* Without multi extent support: 4 GB - 2k */
break;
case _PC_TIMESTAMP_RESOLUTION:
/*
* HSFS keeps, at best, 1/100 second timestamp resolution.
*/
*valp = 10000000L;
break;
default:
error = fs_pathconf(vp, cmd, valp, cr, ct);
break;
}
return (error);
}
const fs_operation_def_t hsfs_vnodeops_template[] = {
VOPNAME_OPEN, { .vop_open = hsfs_open },
VOPNAME_CLOSE, { .vop_close = hsfs_close },
VOPNAME_READ, { .vop_read = hsfs_read },
VOPNAME_GETATTR, { .vop_getattr = hsfs_getattr },
VOPNAME_ACCESS, { .vop_access = hsfs_access },
VOPNAME_LOOKUP, { .vop_lookup = hsfs_lookup },
VOPNAME_READDIR, { .vop_readdir = hsfs_readdir },
VOPNAME_READLINK, { .vop_readlink = hsfs_readlink },
VOPNAME_FSYNC, { .vop_fsync = hsfs_fsync },
VOPNAME_INACTIVE, { .vop_inactive = hsfs_inactive },
VOPNAME_FID, { .vop_fid = hsfs_fid },
VOPNAME_SEEK, { .vop_seek = hsfs_seek },
VOPNAME_FRLOCK, { .vop_frlock = hsfs_frlock },
VOPNAME_GETPAGE, { .vop_getpage = hsfs_getpage },
VOPNAME_PUTPAGE, { .vop_putpage = hsfs_putpage },
VOPNAME_MAP, { .vop_map = hsfs_map },
VOPNAME_ADDMAP, { .vop_addmap = hsfs_addmap },
VOPNAME_DELMAP, { .vop_delmap = hsfs_delmap },
VOPNAME_PATHCONF, { .vop_pathconf = hsfs_pathconf },
NULL, NULL
};
struct vnodeops *hsfs_vnodeops;
|