1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1988 AT&T */
/* All Rights Reserved */
/*
* drand48, etc. pseudo-random number generator
* This implementation assumes unsigned short integers of at least
* 16 bits, long integers of at least 32 bits, and ignores
* overflows on adding or multiplying two unsigned integers.
* Two's-complement representation is assumed in a few places.
* Some extra masking is done if unsigneds are exactly 16 bits
* or longs are exactly 32 bits, but so what?
* An assembly-language implementation would run significantly faster.
*/
/*
* New assumptions (supercede those stated above) for 64-bit work.
* Longs are now 64 bits, and we are bound by standards to return
* type long, hovever all internal calculations where long was
* previously used (32 bit precision) are now using the int32_t
* type (32 bit precision in both ILP32 and LP64 worlds).
*/
#include <sys/mutex.h>
static kmutex_t seed_lock;
static int init48done = 0;
#define EXPORT0(TYPE, fn, fnu) TYPE fn() { \
TYPE res; \
mutex_enter(&seed_lock); \
res = fnu(); \
mutex_exit(&seed_lock); \
return (res); }
#define EXPORT1(TYPE, fn, fnu) TYPE fn(unsigned short xsubi[3]) { \
TYPE res; \
mutex_enter(&seed_lock); \
res = fnu(xsubi); \
mutex_exit(&seed_lock); \
return (res); }
#define N 16
#define MASK ((unsigned)(1 << (N - 1)) + (1 << (N - 1)) - 1)
#define LOW(x) ((unsigned)(x) & MASK)
#define HIGH(x) LOW((x) >> N)
#define MUL(x, y, z) { int32_t l = (int32_t)(x) * (int32_t)(y); \
(z)[0] = LOW(l); (z)[1] = HIGH(l); }
#define CARRY(x, y) ((int32_t)(x) + (int32_t)(y) > MASK)
#define ADDEQU(x, y, z) (z = CARRY(x, (y)), x = LOW(x + (y)))
#define X0 0x330E
#define X1 0xABCD
#define X2 0x1234
#define A0 0xE66D
#define A1 0xDEEC
#define A2 0x5
#define C 0xB
#define SET3(x, x0, x1, x2) ((x)[0] = (x0), (x)[1] = (x1), (x)[2] = (x2))
#define SETLOW(x, y, n) SET3(x, LOW((y)[n]), LOW((y)[(n)+1]), LOW((y)[(n)+2]))
#define SEED(x0, x1, x2) (SET3(x, x0, x1, x2), SET3(a, A0, A1, A2), c = C)
#define REST(v) for (i = 0; i < 3; i++) { xsubi[i] = x[i]; x[i] = temp[i]; } \
return (v)
#define NEST(TYPE, f, F) static TYPE f(unsigned short *xsubi) { \
int i; TYPE v; unsigned temp[3]; \
for (i = 0; i < 3; i++) { temp[i] = x[i]; x[i] = LOW(xsubi[i]); } \
v = F(); REST(v); }
/* Way ugly solution to problem names, but it works */
#define x _drand48_x
#define a _drand48_a
#define c _drand48_c
/* End way ugly */
static unsigned x[3] = { X0, X1, X2 }, a[3] = { A0, A1, A2 }, c = C;
static unsigned short lastx[3];
static void next(void);
static long
ipf_r_lrand48_u(void)
{
next();
return ((long)((int32_t)x[2] << (N - 1)) + (x[1] >> 1));
}
static void
init48(void)
{
mutex_init(&seed_lock, 0L, MUTEX_DRIVER, 0L);
init48done = 1;
}
static long
ipf_r_mrand48_u(void)
{
next();
return ((long)((int32_t)x[2] << N) + x[1]);
}
static void
next(void)
{
unsigned p[2], q[2], r[2], carry0, carry1;
MUL(a[0], x[0], p);
ADDEQU(p[0], c, carry0);
ADDEQU(p[1], carry0, carry1);
MUL(a[0], x[1], q);
ADDEQU(p[1], q[0], carry0);
MUL(a[1], x[0], r);
x[2] = LOW(carry0 + carry1 + CARRY(p[1], r[0]) + q[1] + r[1] +
a[0] * x[2] + a[1] * x[1] + a[2] * x[0]);
x[1] = LOW(p[1] + r[0]);
x[0] = LOW(p[0]);
}
void
ipf_r_srand48(long seedval)
{
int32_t fixseed = (int32_t)seedval; /* limit to 32 bits */
if (init48done == 0)
init48();
mutex_enter(&seed_lock);
SEED(X0, LOW(fixseed), HIGH(fixseed));
mutex_exit(&seed_lock);
}
EXPORT0(long, ipf_r_lrand48, ipf_r_lrand48_u)
#include <sys/random.h>
unsigned
ipf_random()
{
static int seeded = 0;
if (seeded == 0) {
long seed;
/*
* Keep reseeding until some good randomness comes from the
* kernel. One of two things will happen: it will succeed or
* it will fail (with poor randomness), thus creating NAT
* sessions will be "slow" until enough randomness is gained
* to not need to get more. It isn't necessary to initialise
* seed as it will just pickup whatever random garbage has
* been left on the heap and that's good enough until we
* get some good garbage.
*/
if (random_get_bytes((uint8_t *)&seed, sizeof (seed)) == 0)
seeded = 1;
ipf_r_srand48(seed);
}
return (unsigned)ipf_r_lrand48();
}
|