summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/inet/tcp/tcp_fusion.c
blob: e73c34de34ecb40a2b5d37e80955c4839aa0f337 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 2015 by Delphix. All rights reserved.
 */

#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strsun.h>
#include <sys/strsubr.h>
#include <sys/debug.h>
#include <sys/sdt.h>
#include <sys/cmn_err.h>
#include <sys/tihdr.h>

#include <inet/common.h>
#include <inet/optcom.h>
#include <inet/ip.h>
#include <inet/ip_if.h>
#include <inet/ip_impl.h>
#include <inet/tcp.h>
#include <inet/tcp_impl.h>
#include <inet/ipsec_impl.h>
#include <inet/ipclassifier.h>
#include <inet/ipp_common.h>
#include <inet/ip_if.h>

/*
 * This file implements TCP fusion - a protocol-less data path for TCP
 * loopback connections.  The fusion of two local TCP endpoints occurs
 * at connection establishment time.  Various conditions (see details
 * in tcp_fuse()) need to be met for fusion to be successful.  If it
 * fails, we fall back to the regular TCP data path; if it succeeds,
 * both endpoints proceed to use tcp_fuse_output() as the transmit path.
 * tcp_fuse_output() enqueues application data directly onto the peer's
 * receive queue; no protocol processing is involved.
 *
 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
 * One of the requirements for fusion to succeed is that both endpoints
 * need to be using the same squeue.  This ensures that neither side
 * can disappear while the other side is still sending data. Flow
 * control information is manipulated outside the squeue, so the
 * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
 */

/*
 * Setting this to false means we disable fusion altogether and
 * loopback connections would go through the protocol paths.
 */
boolean_t do_tcp_fusion = B_TRUE;

/*
 * This routine gets called by the eager tcp upon changing state from
 * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
 * and the active connect tcp such that the regular tcp processings
 * may be bypassed under allowable circumstances.  Because the fusion
 * requires both endpoints to be in the same squeue, it does not work
 * for simultaneous active connects because there is no easy way to
 * switch from one squeue to another once the connection is created.
 * This is different from the eager tcp case where we assign it the
 * same squeue as the one given to the active connect tcp during open.
 */
void
tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha)
{
	conn_t		*peer_connp, *connp = tcp->tcp_connp;
	tcp_t		*peer_tcp;
	tcp_stack_t	*tcps = tcp->tcp_tcps;
	netstack_t	*ns;
	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;

	ASSERT(!tcp->tcp_fused);
	ASSERT(tcp->tcp_loopback);
	ASSERT(tcp->tcp_loopback_peer == NULL);
	/*
	 * We need to inherit conn_rcvbuf of the listener tcp,
	 * but we can't really use tcp_listener since we get here after
	 * sending up T_CONN_IND and tcp_tli_accept() may be called
	 * independently, at which point tcp_listener is cleared;
	 * this is why we use tcp_saved_listener. The listener itself
	 * is guaranteed to be around until tcp_accept_finish() is called
	 * on this eager -- this won't happen until we're done since we're
	 * inside the eager's perimeter now.
	 */
	ASSERT(tcp->tcp_saved_listener != NULL);
	/*
	 * Lookup peer endpoint; search for the remote endpoint having
	 * the reversed address-port quadruplet in ESTABLISHED state,
	 * which is guaranteed to be unique in the system.  Zone check
	 * is applied accordingly for loopback address, but not for
	 * local address since we want fusion to happen across Zones.
	 */
	if (connp->conn_ipversion == IPV4_VERSION) {
		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
		    (ipha_t *)iphdr, tcpha, ipst);
	} else {
		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
		    (ip6_t *)iphdr, tcpha, ipst);
	}

	/*
	 * We can only proceed if peer exists, resides in the same squeue
	 * as our conn and is not raw-socket. We also restrict fusion to
	 * endpoints of the same type (STREAMS or non-STREAMS). The squeue
	 * assignment of this eager tcp was done earlier at the time of SYN
	 * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
	 * itself doesn't guarantee a safe condition to fuse, hence we perform
	 * additional tests below.
	 */
	ASSERT(peer_connp == NULL || peer_connp != connp);
	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
	    !IPCL_IS_TCP(peer_connp) ||
	    IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
		if (peer_connp != NULL) {
			TCP_STAT(tcps, tcp_fusion_unqualified);
			CONN_DEC_REF(peer_connp);
		}
		return;
	}
	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */

	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
	ASSERT(peer_tcp->tcp_loopback_peer == NULL);
	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);

	/*
	 * Due to IRE changes the peer and us might not agree on tcp_loopback.
	 * We bail in that case.
	 */
	if (!peer_tcp->tcp_loopback) {
		TCP_STAT(tcps, tcp_fusion_unqualified);
		CONN_DEC_REF(peer_connp);
		return;
	}
	/*
	 * Fuse the endpoints; we perform further checks against both
	 * tcp endpoints to ensure that a fusion is allowed to happen.
	 */
	ns = tcps->tcps_netstack;
	ipst = ns->netstack_ip;

	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
	    tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) {
		mblk_t *mp;
		queue_t *peer_rq = peer_connp->conn_rq;

		ASSERT(!TCP_IS_DETACHED(peer_tcp));
		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);

		/*
		 * We need to drain data on both endpoints during unfuse.
		 * If we need to send up SIGURG at the time of draining,
		 * we want to be sure that an mblk is readily available.
		 * This is why we pre-allocate the M_PCSIG mblks for both
		 * endpoints which will only be used during/after unfuse.
		 * The mblk might already exist if we are doing a re-fuse.
		 */
		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
			ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));

			if (tcp->tcp_fused_sigurg_mp == NULL) {
				if ((mp = allocb(1, BPRI_HI)) == NULL)
					goto failed;
				tcp->tcp_fused_sigurg_mp = mp;
			}

			if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
				if ((mp = allocb(1, BPRI_HI)) == NULL)
					goto failed;
				peer_tcp->tcp_fused_sigurg_mp = mp;
			}

			if ((mp = allocb(sizeof (struct stroptions),
			    BPRI_HI)) == NULL)
				goto failed;
		}

		/* Fuse both endpoints */
		peer_tcp->tcp_loopback_peer = tcp;
		tcp->tcp_loopback_peer = peer_tcp;
		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;

		/*
		 * We never use regular tcp paths in fusion and should
		 * therefore clear tcp_unsent on both endpoints.  Having
		 * them set to non-zero values means asking for trouble
		 * especially after unfuse, where we may end up sending
		 * through regular tcp paths which expect xmit_list and
		 * friends to be correctly setup.
		 */
		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;

		tcp_timers_stop(tcp);
		tcp_timers_stop(peer_tcp);

		/*
		 * Set receive buffer and max packet size for the
		 * active open tcp.
		 * eager's values will be set in tcp_accept_finish.
		 */
		(void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf);

		/*
		 * Set the write offset value to zero since we won't
		 * be needing any room for TCP/IP headers.
		 */
		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
			struct stroptions *stropt;

			DB_TYPE(mp) = M_SETOPTS;
			mp->b_wptr += sizeof (*stropt);

			stropt = (struct stroptions *)mp->b_rptr;
			stropt->so_flags = SO_WROFF | SO_MAXBLK;
			stropt->so_wroff = 0;
			stropt->so_maxblk = INFPSZ;

			/* Send the options up */
			putnext(peer_rq, mp);
		} else {
			struct sock_proto_props sopp;

			/* The peer is a non-STREAMS end point */
			ASSERT(IPCL_IS_TCP(peer_connp));

			sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK;
			sopp.sopp_wroff = 0;
			sopp.sopp_maxblk = INFPSZ;
			(*peer_connp->conn_upcalls->su_set_proto_props)
			    (peer_connp->conn_upper_handle, &sopp);
		}
	} else {
		TCP_STAT(tcps, tcp_fusion_unqualified);
	}
	CONN_DEC_REF(peer_connp);
	return;

failed:
	if (tcp->tcp_fused_sigurg_mp != NULL) {
		freeb(tcp->tcp_fused_sigurg_mp);
		tcp->tcp_fused_sigurg_mp = NULL;
	}
	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
		freeb(peer_tcp->tcp_fused_sigurg_mp);
		peer_tcp->tcp_fused_sigurg_mp = NULL;
	}
	CONN_DEC_REF(peer_connp);
}

/*
 * Unfuse a previously-fused pair of tcp loopback endpoints.
 */
void
tcp_unfuse(tcp_t *tcp)
{
	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
	tcp_stack_t *tcps = tcp->tcp_tcps;

	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);

	/*
	 * Cancel any pending push timers.
	 */
	if (tcp->tcp_push_tid != 0) {
		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
		tcp->tcp_push_tid = 0;
	}
	if (peer_tcp->tcp_push_tid != 0) {
		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
		peer_tcp->tcp_push_tid = 0;
	}

	/*
	 * Drain any pending data; Note that in case of a detached tcp, the
	 * draining will happen later after the tcp is unfused.  For non-
	 * urgent data, this can be handled by the regular tcp_rcv_drain().
	 * If we have urgent data sitting in the receive list, we will
	 * need to send up a SIGURG signal first before draining the data.
	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
	 * when called from tcp_rcv_drain().
	 */
	if (!TCP_IS_DETACHED(tcp)) {
		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp,
		    &tcp->tcp_fused_sigurg_mp);
	}
	if (!TCP_IS_DETACHED(peer_tcp)) {
		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq,
		    peer_tcp,  &peer_tcp->tcp_fused_sigurg_mp);
	}

	/* Lift up any flow-control conditions */
	mutex_enter(&tcp->tcp_non_sq_lock);
	if (tcp->tcp_flow_stopped) {
		tcp_clrqfull(tcp);
		TCP_STAT(tcps, tcp_fusion_backenabled);
	}
	mutex_exit(&tcp->tcp_non_sq_lock);

	mutex_enter(&peer_tcp->tcp_non_sq_lock);
	if (peer_tcp->tcp_flow_stopped) {
		tcp_clrqfull(peer_tcp);
		TCP_STAT(tcps, tcp_fusion_backenabled);
	}
	mutex_exit(&peer_tcp->tcp_non_sq_lock);

	/*
	 * Update tha_seq and tha_ack in the header template
	 */
	tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt);
	tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
	peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt);
	peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt);

	/* Unfuse the endpoints */
	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
}

/*
 * Fusion output routine used to handle urgent data sent by STREAMS based
 * endpoints. This routine is called by tcp_fuse_output() for handling
 * non-M_DATA mblks.
 */
void
tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
{
	mblk_t *mp1;
	struct T_exdata_ind *tei;
	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
	mblk_t *head, *prev_head = NULL;
	tcp_stack_t	*tcps = tcp->tcp_tcps;

	ASSERT(tcp->tcp_fused);
	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);

	/*
	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
	 * Each occurence denotes a new urgent pointer.  For each new
	 * urgent pointer we signal (SIGURG) the receiving app to indicate
	 * that it needs to go into urgent mode.  This is similar to the
	 * urgent data handling in the regular tcp.  We don't need to keep
	 * track of where the urgent pointer is, because each T_EXDATA_REQ
	 * "advances" the urgent pointer for us.
	 *
	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
	 * by a T_EXDATA_IND before being enqueued behind any existing data
	 * destined for the receiving app.  There is only a single urgent
	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
	 * data arrives before the receiving app reads some existing urgent
	 * data, the previous marker is lost.  This behavior is emulated
	 * accordingly below, by removing any existing T_EXDATA_IND messages
	 * and essentially converting old urgent data into non-urgent.
	 */
	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
	/* Let sender get out of urgent mode */
	tcp->tcp_valid_bits &= ~TCP_URG_VALID;

	/*
	 * This flag indicates that a signal needs to be sent up.
	 * This flag will only get cleared once SIGURG is delivered and
	 * is not affected by the tcp_fused flag -- delivery will still
	 * happen even after an endpoint is unfused, to handle the case
	 * where the sending endpoint immediately closes/unfuses after
	 * sending urgent data and the accept is not yet finished.
	 */
	peer_tcp->tcp_fused_sigurg = B_TRUE;

	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
	DB_TYPE(mp) = M_PROTO;
	tei = (struct T_exdata_ind *)mp->b_rptr;
	tei->PRIM_type = T_EXDATA_IND;
	tei->MORE_flag = 0;
	mp->b_wptr = (uchar_t *)&tei[1];

	TCP_STAT(tcps, tcp_fusion_urg);
	TCPS_BUMP_MIB(tcps, tcpOutUrg);

	head = peer_tcp->tcp_rcv_list;
	while (head != NULL) {
		/*
		 * Remove existing T_EXDATA_IND, keep the data which follows
		 * it and relink our list.  Note that we don't modify the
		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
		 */
		if (DB_TYPE(head) != M_DATA) {
			mp1 = head;

			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
			head = mp1->b_cont;
			mp1->b_cont = NULL;
			head->b_next = mp1->b_next;
			mp1->b_next = NULL;
			if (prev_head != NULL)
				prev_head->b_next = head;
			if (peer_tcp->tcp_rcv_list == mp1)
				peer_tcp->tcp_rcv_list = head;
			if (peer_tcp->tcp_rcv_last_head == mp1)
				peer_tcp->tcp_rcv_last_head = head;
			freeb(mp1);
		}
		prev_head = head;
		head = head->b_next;
	}
}

/*
 * Fusion output routine, called by tcp_output() and tcp_wput_proto().
 * If we are modifying any member that can be changed outside the squeue,
 * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
 */
boolean_t
tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
{
	conn_t		*connp = tcp->tcp_connp;
	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
	conn_t		*peer_connp = peer_tcp->tcp_connp;
	boolean_t	flow_stopped, peer_data_queued = B_FALSE;
	boolean_t	urgent = (DB_TYPE(mp) != M_DATA);
	boolean_t	push = B_TRUE;
	mblk_t		*mp1 = mp;
	uint_t		ip_hdr_len;
	uint32_t	recv_size = send_size;
	tcp_stack_t	*tcps = tcp->tcp_tcps;
	netstack_t	*ns = tcps->tcps_netstack;
	ip_stack_t	*ipst = ns->netstack_ip;
	ipsec_stack_t	*ipss = ns->netstack_ipsec;
	iaflags_t	ixaflags = connp->conn_ixa->ixa_flags;
	boolean_t	do_ipsec, hooks_out, hooks_in, ipobs_enabled;

	ASSERT(tcp->tcp_fused);
	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
	ASSERT(connp->conn_sqp == peer_connp->conn_sqp);
	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
	    DB_TYPE(mp) == M_PCPROTO);

	if (send_size == 0) {
		freemsg(mp);
		return (B_TRUE);
	}

	/*
	 * Handle urgent data; we either send up SIGURG to the peer now
	 * or do it later when we drain, in case the peer is detached
	 * or if we're short of memory for M_PCSIG mblk.
	 */
	if (urgent) {
		tcp_fuse_output_urg(tcp, mp);

		mp1 = mp->b_cont;
	}

	/*
	 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before
	 * further processes.
	 */
	if (!ip_output_verify_local(connp->conn_ixa))
		goto unfuse;

	/*
	 * Build IP and TCP header in case we have something that needs the
	 * headers. Those cases are:
	 * 1. IPsec
	 * 2. IPobs
	 * 3. FW_HOOKS
	 *
	 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection
	 * and back to regular path.
	 */
	if (ixaflags & IXAF_IS_IPV4) {
		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
		    CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss);

		hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst);
		hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst);
		ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0);
	} else {
		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
		    CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss);

		hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst);
		hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst);
		ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0);
	}

	/* We do logical 'or' for efficiency */
	if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) {
		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
			/* If tcp_xmit_mp fails, use regular path */
			goto unfuse;

		/*
		 * Leave all IP relevant processes to ip_output_process_local(),
		 * which handles IPsec, IPobs, and FW_HOOKS.
		 */
		mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out,
		    hooks_in, do_ipsec ? peer_connp : NULL);

		/* If the message is dropped for any reason. */
		if (mp1 == NULL)
			goto unfuse;

		/*
		 * Data length might have been changed by FW_HOOKS.
		 * We assume that the first mblk contains the TCP/IP headers.
		 */
		if (hooks_in || hooks_out) {
			tcpha_t *tcpha;

			ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ?
			    IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) :
			    ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr);

			tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len];
			ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <=
			    mp1->b_wptr);
			recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt;

		}

		/*
		 * The message duplicated by tcp_xmit_mp is freed.
		 * Note: the original message passed in remains unchanged.
		 */
		freemsg(mp1);
	}

	/*
	 * Enqueue data into the peer's receive list; we may or may not
	 * drain the contents depending on the conditions below.
	 *
	 * For non-STREAMS sockets we normally queue data directly in the
	 * socket by calling the su_recv upcall. However, if the peer is
	 * detached we use tcp_rcv_enqueue() instead. Queued data will be
	 * drained when the accept completes (in tcp_accept_finish()).
	 */
	if (IPCL_IS_NONSTR(peer_connp) &&
	    !TCP_IS_DETACHED(peer_tcp)) {
		int error;
		int flags = 0;

		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
		    (tcp->tcp_urg == tcp->tcp_snxt)) {
			flags = MSG_OOB;
			(*peer_connp->conn_upcalls->su_signal_oob)
			    (peer_connp->conn_upper_handle, 0);
			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
		}
		if ((*peer_connp->conn_upcalls->su_recv)(
		    peer_connp->conn_upper_handle, mp, recv_size,
		    flags, &error, &push) < 0) {
			ASSERT(error != EOPNOTSUPP);
			peer_data_queued = B_TRUE;
		}
	} else {
		if (IPCL_IS_NONSTR(peer_connp) &&
		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
		    (tcp->tcp_urg == tcp->tcp_snxt)) {
			/*
			 * Can not deal with urgent pointers
			 * that arrive before the connection has been
			 * accept()ed.
			 */
			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
			freemsg(mp);
			return (B_TRUE);
		}

		tcp_rcv_enqueue(peer_tcp, mp, recv_size,
		    tcp->tcp_connp->conn_cred);

		/* In case it wrapped around and also to keep it constant */
		peer_tcp->tcp_rwnd += recv_size;
	}

	/*
	 * Exercise flow-control when needed; we will get back-enabled
	 * in either tcp_accept_finish(), tcp_unfuse(), or when data is
	 * consumed. If peer endpoint is detached, we emulate streams flow
	 * control by checking the peer's queue size and high water mark;
	 * otherwise we simply use canputnext() to decide if we need to stop
	 * our flow.
	 *
	 * Since we are accessing our tcp_flow_stopped and might modify it,
	 * we need to take tcp->tcp_non_sq_lock.
	 */
	mutex_enter(&tcp->tcp_non_sq_lock);
	flow_stopped = tcp->tcp_flow_stopped;
	if ((TCP_IS_DETACHED(peer_tcp) &&
	    (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) ||
	    (!TCP_IS_DETACHED(peer_tcp) &&
	    !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) {
		peer_data_queued = B_TRUE;
	}

	if (!flow_stopped && (peer_data_queued ||
	    (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) {
		tcp_setqfull(tcp);
		flow_stopped = B_TRUE;
		TCP_STAT(tcps, tcp_fusion_flowctl);
		DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
	} else if (flow_stopped && !peer_data_queued &&
	    (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) {
		tcp_clrqfull(tcp);
		TCP_STAT(tcps, tcp_fusion_backenabled);
		flow_stopped = B_FALSE;
	}
	mutex_exit(&tcp->tcp_non_sq_lock);

	ipst->ips_loopback_packets++;
	tcp->tcp_last_sent_len = send_size;

	/* Need to adjust the following SNMP MIB-related variables */
	tcp->tcp_snxt += send_size;
	tcp->tcp_suna = tcp->tcp_snxt;
	peer_tcp->tcp_rnxt += recv_size;
	peer_tcp->tcp_last_recv_len = recv_size;
	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;

	TCPS_BUMP_MIB(tcps, tcpOutDataSegs);
	TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
	TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size);
	tcp->tcp_cs.tcp_out_data_bytes += send_size;
	tcp->tcp_cs.tcp_out_data_segs++;

	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
	TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
	TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size);
	peer_tcp->tcp_cs.tcp_in_data_inorder_bytes += send_size;
	peer_tcp->tcp_cs.tcp_in_data_inorder_segs++;

	DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa,
	    __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp,
	    __dtrace_tcp_tcph_t *, NULL);
	DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *,
	    peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL,
	    tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL);

	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
	    !TCP_IS_DETACHED(peer_tcp)) {
		/*
		 * Drain the peer's receive queue it has urgent data or if
		 * we're not flow-controlled.
		 */
		if (urgent || !flow_stopped) {
			ASSERT(peer_tcp->tcp_rcv_list != NULL);
			/*
			 * For TLI-based streams, a thread in tcp_accept_swap()
			 * can race with us.  That thread will ensure that the
			 * correct peer_connp->conn_rq is globally visible
			 * before peer_tcp->tcp_detached is visible as clear,
			 * but we must also ensure that the load of conn_rq
			 * cannot be reordered to be before the tcp_detached
			 * check.
			 */
			membar_consumer();
			(void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp,
			    NULL);
		}
	}
	return (B_TRUE);
unfuse:
	tcp_unfuse(tcp);
	return (B_FALSE);
}

/*
 * This routine gets called to deliver data upstream on a fused or
 * previously fused tcp loopback endpoint; the latter happens only
 * when there is a pending SIGURG signal plus urgent data that can't
 * be sent upstream in the past.
 */
boolean_t
tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
{
	mblk_t *mp;
	conn_t	*connp = tcp->tcp_connp;

#ifdef DEBUG
	uint_t cnt = 0;
#endif
	tcp_stack_t	*tcps = tcp->tcp_tcps;
	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;

	ASSERT(tcp->tcp_loopback);
	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);

	/* No need for the push timer now, in case it was scheduled */
	if (tcp->tcp_push_tid != 0) {
		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
		tcp->tcp_push_tid = 0;
	}
	/*
	 * If there's urgent data sitting in receive list and we didn't
	 * get a chance to send up a SIGURG signal, make sure we send
	 * it first before draining in order to ensure that SIOCATMARK
	 * works properly.
	 */
	if (tcp->tcp_fused_sigurg) {
		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));

		tcp->tcp_fused_sigurg = B_FALSE;
		/*
		 * sigurg_mpp is normally NULL, i.e. when we're still
		 * fused and didn't get here because of tcp_unfuse().
		 * In this case try hard to allocate the M_PCSIG mblk.
		 */
		if (sigurg_mpp == NULL &&
		    (mp = allocb(1, BPRI_HI)) == NULL &&
		    (mp = allocb_tryhard(1)) == NULL) {
			/* Alloc failed; try again next time */
			tcp->tcp_push_tid = TCP_TIMER(tcp,
			    tcp_push_timer, tcps->tcps_push_timer_interval);
			return (B_TRUE);
		} else if (sigurg_mpp != NULL) {
			/*
			 * Use the supplied M_PCSIG mblk; it means we're
			 * either unfused or in the process of unfusing,
			 * and the drain must happen now.
			 */
			mp = *sigurg_mpp;
			*sigurg_mpp = NULL;
		}
		ASSERT(mp != NULL);

		/* Send up the signal */
		DB_TYPE(mp) = M_PCSIG;
		*mp->b_wptr++ = (uchar_t)SIGURG;
		putnext(q, mp);

		/*
		 * Let the regular tcp_rcv_drain() path handle
		 * draining the data if we're no longer fused.
		 */
		if (!tcp->tcp_fused)
			return (B_FALSE);
	}

	/* Drain the data */
	while ((mp = tcp->tcp_rcv_list) != NULL) {
		tcp->tcp_rcv_list = mp->b_next;
		mp->b_next = NULL;
#ifdef DEBUG
		cnt += msgdsize(mp);
#endif
		ASSERT(!IPCL_IS_NONSTR(connp));
		putnext(q, mp);
		TCP_STAT(tcps, tcp_fusion_putnext);
	}

#ifdef DEBUG
	ASSERT(cnt == tcp->tcp_rcv_cnt);
#endif
	tcp->tcp_rcv_last_head = NULL;
	tcp->tcp_rcv_last_tail = NULL;
	tcp->tcp_rcv_cnt = 0;
	tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf;

	mutex_enter(&peer_tcp->tcp_non_sq_lock);
	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
	    peer_tcp->tcp_connp->conn_sndlowat)) {
		tcp_clrqfull(peer_tcp);
		TCP_STAT(tcps, tcp_fusion_backenabled);
	}
	mutex_exit(&peer_tcp->tcp_non_sq_lock);

	return (B_TRUE);
}

/*
 * Calculate the size of receive buffer for a fused tcp endpoint.
 */
size_t
tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
{
	tcp_stack_t	*tcps = tcp->tcp_tcps;
	uint32_t	max_win;

	ASSERT(tcp->tcp_fused);

	/* Ensure that value is within the maximum upper bound */
	if (rwnd > tcps->tcps_max_buf)
		rwnd = tcps->tcps_max_buf;
	/*
	 * Round up to system page size in case SO_RCVBUF is modified
	 * after SO_SNDBUF; the latter is also similarly rounded up.
	 */
	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
	max_win = TCP_MAXWIN << tcp->tcp_rcv_ws;
	if (rwnd > max_win) {
		rwnd = max_win - (max_win % tcp->tcp_mss);
		if (rwnd < tcp->tcp_mss)
			rwnd = max_win;
	}

	/*
	 * Record high water mark, this is used for flow-control
	 * purposes in tcp_fuse_output().
	 */
	tcp->tcp_connp->conn_rcvbuf = rwnd;
	tcp->tcp_rwnd = rwnd;
	return (rwnd);
}

/*
 * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
 */
int
tcp_fuse_maxpsz(tcp_t *tcp)
{
	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
	conn_t *connp = tcp->tcp_connp;
	uint_t sndbuf = connp->conn_sndbuf;
	uint_t maxpsz = sndbuf;

	ASSERT(tcp->tcp_fused);
	ASSERT(peer_tcp != NULL);
	ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0);
	/*
	 * In the fused loopback case, we want the stream head to split
	 * up larger writes into smaller chunks for a more accurate flow-
	 * control accounting.  Our maxpsz is half of the sender's send
	 * buffer or the receiver's receive buffer, whichever is smaller.
	 * We round up the buffer to system page size due to the lack of
	 * TCP MSS concept in Fusion.
	 */
	if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf)
		maxpsz = peer_tcp->tcp_connp->conn_rcvbuf;
	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;

	return (maxpsz);
}

/*
 * Called to release flow control.
 */
void
tcp_fuse_backenable(tcp_t *tcp)
{
	tcp_t *peer_tcp = tcp->tcp_loopback_peer;

	ASSERT(tcp->tcp_fused);
	ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
	ASSERT(peer_tcp->tcp_loopback_peer == tcp);
	ASSERT(!TCP_IS_DETACHED(tcp));
	ASSERT(tcp->tcp_connp->conn_sqp ==
	    peer_tcp->tcp_connp->conn_sqp);

	if (tcp->tcp_rcv_list != NULL)
		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL);

	mutex_enter(&peer_tcp->tcp_non_sq_lock);
	if (peer_tcp->tcp_flow_stopped &&
	    (TCP_UNSENT_BYTES(peer_tcp) <=
	    peer_tcp->tcp_connp->conn_sndlowat)) {
		tcp_clrqfull(peer_tcp);
	}
	mutex_exit(&peer_tcp->tcp_non_sq_lock);

	TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
}