1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/debug.h>
#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/cmn_err.h>
#include <sys/modctl.h>
#include <sys/disp.h>
#include <sys/atomic.h>
#include <sys/filio.h>
#include <sys/stat.h> /* needed for S_IFBLK and S_IFCHR */
#include <sys/kstat.h>
#include <sys/ddi.h>
#include <sys/devops.h>
#include <sys/sunddi.h>
#include <sys/esunddi.h>
#include <sys/priv_names.h>
#include <sys/fssnap.h>
#include <sys/fssnap_if.h>
/*
* This module implements the file system snapshot code, which provides a
* point-in-time image of a file system for the purposes of online backup.
* There are essentially two parts to this project: the driver half and the
* file system half. The driver half is a pseudo device driver called
* "fssnap" that represents the snapshot. Each snapshot is assigned a
* number that corresponds to the minor number of the device, and a control
* device with a high minor number is used to initiate snapshot creation and
* deletion. For all practical purposes the driver half acts like a
* read-only disk device whose contents are exactly the same as the master
* file system at the time the snapshot was created.
*
* The file system half provides interfaces necessary for performing the
* file system dependent operations required to create and delete snapshots
* and a special driver strategy routine that must always be used by the file
* system for snapshots to work correctly.
*
* When a snapshot is to be created, the user utility will send an ioctl to
* the control device of the driver half specifying the file system to be
* snapshotted, the file descriptor of a backing-store file which is used to
* hold old data before it is overwritten, and other snapshot parameters.
* This ioctl is passed on to the file system specified in the original
* ioctl request. The file system is expected to be able to flush
* everything out to make the file system consistent and lock it to ensure
* no changes occur while the snapshot is being created. It then calls
* fssnap_create() to create state for a new snapshot, from which an opaque
* handle is returned with the snapshot locked. Next, the file system must
* populate the "candidate bitmap", which tells the snapshot code which
* "chunks" should be considered for copy-on-write (a chunk is the unit of
* granularity used for copy-on-write, which is independent of the device
* and file system block sizes). This is typically done by scanning the
* file system allocation bitmaps to determine which chunks contain
* allocated blocks in the file system at the time the snapshot was created.
* If a chunk has no allocated blocks, it does not need to be copied before
* being written to. Once the candidate bitmap is populated with
* fssnap_set_candidate(), the file system calls fssnap_create_done() to
* complete the snapshot creation and unlock the snapshot. The file system
* may now be unlocked and modifications to it resumed.
*
* Once a snapshot is created, the file system must perform all writes
* through a special strategy routine, fssnap_strategy(). This strategy
* routine determines whether the chunks contained by the write must be
* copied before being overwritten by consulting the candidate bitmap
* described above, and the "hastrans bitmap" which tells it whether the chunk
* has been copied already or not. If the chunk is a candidate but has not
* been copied, it reads the old data in and adds it to a queue. The
* old data can then be overwritten with the new data. An asynchronous
* task queue is dispatched for each old chunk read in which writes the old
* data to the backing file specified at snapshot creation time. The
* backing file is a sparse file the same size as the file system that
* contains the old data at the offset that data originally had in the
* file system. If the queue containing in-memory chunks gets too large,
* writes to the file system may be throttled by a semaphore until the
* task queues have a chance to push some of the chunks to the backing file.
*
* With the candidate bitmap, the hastrans bitmap, the data on the master
* file system, and the old data in memory and in the backing file, the
* snapshot pseudo-driver can piece together the original file system
* information to satisfy read requests. If the requested chunk is not a
* candidate, it returns a zeroed buffer. If the chunk is a candidate but
* has not been copied it reads it from the master file system. If it is a
* candidate and has been copied, it either copies the data from the
* in-memory queue or it reads it in from the backing file. The result is
* a replication of the original file system that can be backed up, mounted,
* or manipulated by other file system utilities that work on a read-only
* device.
*
* This module is divided into three roughly logical sections:
*
* - The snapshot driver, which is a character/block driver
* representing the snapshot itself. These routines are
* prefixed with "snap_".
*
* - The library routines that are defined in fssnap_if.h that
* are used by file systems that use this snapshot implementation.
* These functions are prefixed with "fssnap_" and are called through
* a function vector from the file system.
*
* - The helper routines used by the snapshot driver and the fssnap
* library routines for managing the translation table and other
* useful functions. These routines are all static and are
* prefixed with either "fssnap_" or "transtbl_" if they
* are specifically used for translation table activities.
*/
static dev_info_t *fssnap_dip = NULL;
static struct snapshot_id *snapshot = NULL;
static struct snapshot_id snap_ctl;
static int num_snapshots = 0;
static kmutex_t snapshot_mutex;
static char snapname[] = SNAP_NAME;
/* "tunable" parameters */
static int fssnap_taskq_nthreads = FSSNAP_TASKQ_THREADS;
static uint_t fssnap_max_mem_chunks = FSSNAP_MAX_MEM_CHUNKS;
static int fssnap_taskq_maxtasks = FSSNAP_TASKQ_MAXTASKS;
/* static function prototypes */
/* snapshot driver */
static int snap_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
static int snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
static int snap_open(dev_t *devp, int flag, int otyp, cred_t *cred);
static int snap_close(dev_t dev, int flag, int otyp, cred_t *cred);
static int snap_strategy(struct buf *bp);
static int snap_read(dev_t dev, struct uio *uiop, cred_t *credp);
static int snap_print(dev_t dev, char *str);
static int snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
cred_t *credp, int *rvalp);
static int snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
int flags, char *name, caddr_t valuep, int *lengthp);
static int snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk,
int offset, int len, char *buffer);
/* fssnap interface implementations (see fssnap_if.h) */
static void fssnap_strategy_impl(void *, struct buf *);
static void *fssnap_create_impl(chunknumber_t, uint_t, u_offset_t,
struct vnode *, int, struct vnode **, char *, u_offset_t);
static void fssnap_set_candidate_impl(void *, chunknumber_t);
static int fssnap_is_candidate_impl(void *, u_offset_t);
static int fssnap_create_done_impl(void *);
static int fssnap_delete_impl(void *);
/* fssnap interface support routines */
static int fssnap_translate(struct snapshot_id **, struct buf *);
static void fssnap_write_taskq(void *);
static void fssnap_create_kstats(snapshot_id_t *, int, const char *,
const char *);
static int fssnap_update_kstat_num(kstat_t *, int);
static void fssnap_delete_kstats(struct cow_info *);
/* translation table prototypes */
static cow_map_node_t *transtbl_add(cow_map_t *, chunknumber_t, caddr_t);
static cow_map_node_t *transtbl_get(cow_map_t *, chunknumber_t);
static void transtbl_delete(cow_map_t *, cow_map_node_t *);
static void transtbl_free(cow_map_t *);
static kstat_t *fssnap_highwater_kstat;
/* ************************************************************************ */
/* Device and Module Structures */
static struct cb_ops snap_cb_ops = {
snap_open,
snap_close,
snap_strategy,
snap_print,
nodev, /* no snap_dump */
snap_read,
nodev, /* no snap_write */
snap_ioctl,
nodev, /* no snap_devmap */
nodev, /* no snap_mmap */
nodev, /* no snap_segmap */
nochpoll,
snap_prop_op,
NULL, /* streamtab */
D_64BIT | D_NEW | D_MP, /* driver compatibility */
CB_REV,
nodev, /* async I/O read entry point */
nodev /* async I/O write entry point */
};
static struct dev_ops snap_ops = {
DEVO_REV,
0, /* ref count */
snap_getinfo,
nulldev, /* snap_identify obsolete */
nulldev, /* no snap_probe */
snap_attach,
snap_detach,
nodev, /* no snap_reset */
&snap_cb_ops,
(struct bus_ops *)NULL,
nulldev, /* no snap_power() */
ddi_quiesce_not_needed, /* quiesce */
};
extern struct mod_ops mod_driverops;
static struct modldrv md = {
&mod_driverops, /* Type of module. This is a driver */
"snapshot driver", /* Name of the module */
&snap_ops,
};
static struct modlinkage ml = {
MODREV_1,
&md,
NULL
};
static void *statep;
int
_init(void)
{
int error;
kstat_t *ksp;
kstat_named_t *ksdata;
error = ddi_soft_state_init(&statep, sizeof (struct snapshot_id *), 1);
if (error) {
cmn_err(CE_WARN, "_init: failed to init ddi_soft_state.");
return (error);
}
error = mod_install(&ml);
if (error) {
cmn_err(CE_WARN, "_init: failed to mod_install.");
ddi_soft_state_fini(&statep);
return (error);
}
/*
* Fill in the snapshot operations vector for file systems
* (defined in fssnap_if.c)
*/
snapops.fssnap_create = fssnap_create_impl;
snapops.fssnap_set_candidate = fssnap_set_candidate_impl;
snapops.fssnap_is_candidate = fssnap_is_candidate_impl;
snapops.fssnap_create_done = fssnap_create_done_impl;
snapops.fssnap_delete = fssnap_delete_impl;
snapops.fssnap_strategy = fssnap_strategy_impl;
mutex_init(&snapshot_mutex, NULL, MUTEX_DEFAULT, NULL);
/*
* Initialize the fssnap highwater kstat
*/
ksp = kstat_create(snapname, 0, FSSNAP_KSTAT_HIGHWATER, "misc",
KSTAT_TYPE_NAMED, 1, 0);
if (ksp != NULL) {
ksdata = (kstat_named_t *)ksp->ks_data;
kstat_named_init(ksdata, FSSNAP_KSTAT_HIGHWATER,
KSTAT_DATA_UINT32);
ksdata->value.ui32 = 0;
kstat_install(ksp);
} else {
cmn_err(CE_WARN, "_init: failed to create highwater kstat.");
}
fssnap_highwater_kstat = ksp;
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&ml, modinfop));
}
int
_fini(void)
{
int error;
error = mod_remove(&ml);
if (error)
return (error);
ddi_soft_state_fini(&statep);
/*
* delete the fssnap highwater kstat
*/
kstat_delete(fssnap_highwater_kstat);
mutex_destroy(&snapshot_mutex);
/* Clear out the file system operations vector */
snapops.fssnap_create = NULL;
snapops.fssnap_set_candidate = NULL;
snapops.fssnap_create_done = NULL;
snapops.fssnap_delete = NULL;
snapops.fssnap_strategy = NULL;
return (0);
}
/* ************************************************************************ */
/*
* Snapshot Driver Routines
*
* This section implements the snapshot character and block drivers. The
* device will appear to be a consistent read-only file system to
* applications that wish to back it up or mount it. The snapshot driver
* communicates with the file system through the translation table, which
* tells the snapshot driver where to find the data necessary to piece
* together the frozen file system. The data may either be on the master
* device (no translation exists), in memory (a translation exists but has
* not been flushed to the backing store), or in the backing store file.
* The read request may require the snapshot driver to retrieve data from
* several different places and piece it together to look like a single
* contiguous read.
*
* The device minor number corresponds to the snapshot number in the list of
* snapshot identifiers. The soft state for each minor number is simply a
* pointer to the snapshot id, which holds all of the snapshot state. One
* minor number is designated as the control device. All snapshot create
* and delete requests go through the control device to ensure this module
* is properly loaded and attached before the file system starts calling
* routines defined here.
*/
/*
* snap_getinfo() - snapshot driver getinfo(9E) routine
*
*/
/*ARGSUSED*/
static int
snap_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
*result = fssnap_dip;
return (DDI_SUCCESS);
case DDI_INFO_DEVT2INSTANCE:
*result = 0; /* we only have one instance */
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
/*
* snap_attach() - snapshot driver attach(9E) routine
*
* sets up snapshot control device and control state. The control state
* is a pointer to an "anonymous" snapshot_id for tracking opens and closes
*/
static int
snap_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int error;
switch (cmd) {
case DDI_ATTACH:
/* create the control device */
error = ddi_create_priv_minor_node(dip, SNAP_CTL_NODE, S_IFCHR,
SNAP_CTL_MINOR, DDI_PSEUDO, PRIVONLY_DEV,
PRIV_SYS_CONFIG, PRIV_SYS_CONFIG, 0666);
if (error == DDI_FAILURE) {
return (DDI_FAILURE);
}
rw_init(&snap_ctl.sid_rwlock, NULL, RW_DEFAULT, NULL);
rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
fssnap_dip = dip;
snap_ctl.sid_snapnumber = SNAP_CTL_MINOR;
/* the control sid is not linked into the snapshot list */
snap_ctl.sid_next = NULL;
snap_ctl.sid_cowinfo = NULL;
snap_ctl.sid_flags = 0;
rw_exit(&snap_ctl.sid_rwlock);
ddi_report_dev(dip);
return (DDI_SUCCESS);
case DDI_PM_RESUME:
return (DDI_SUCCESS);
case DDI_RESUME:
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*
* snap_detach() - snapshot driver detach(9E) routine
*
* destroys snapshot control device and control state. If any snapshots
* are active (ie. num_snapshots != 0), the device will refuse to detach.
*/
static int
snap_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
struct snapshot_id *sidp, *sidnextp;
switch (cmd) {
case DDI_DETACH:
/* do not detach if the device is active */
mutex_enter(&snapshot_mutex);
if ((num_snapshots != 0) ||
((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0)) {
mutex_exit(&snapshot_mutex);
return (DDI_FAILURE);
}
/* free up the snapshot list */
for (sidp = snapshot; sidp != NULL; sidp = sidnextp) {
ASSERT(SID_AVAILABLE(sidp) &&
!RW_LOCK_HELD(&sidp->sid_rwlock));
sidnextp = sidp->sid_next;
rw_destroy(&sidp->sid_rwlock);
kmem_free(sidp, sizeof (struct snapshot_id));
}
snapshot = NULL;
/* delete the control device */
ddi_remove_minor_node(dip, SNAP_CTL_NODE);
fssnap_dip = NULL;
ASSERT((snap_ctl.sid_flags & SID_CHAR_BUSY) == 0);
rw_destroy(&snap_ctl.sid_rwlock);
mutex_exit(&snapshot_mutex);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/*
* snap_open() - snapshot driver open(9E) routine
*
* marks the snapshot id as busy so it will not be recycled when deleted
* until the snapshot is closed.
*/
/* ARGSUSED */
static int
snap_open(dev_t *devp, int flag, int otyp, cred_t *cred)
{
minor_t minor;
struct snapshot_id **sidpp, *sidp;
/* snapshots are read-only */
if (flag & FWRITE)
return (EROFS);
minor = getminor(*devp);
if (minor == SNAP_CTL_MINOR) {
/* control device must be opened exclusively */
if (((flag & FEXCL) != FEXCL) || (otyp != OTYP_CHR))
return (EINVAL);
rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
if ((snap_ctl.sid_flags & SID_CHAR_BUSY) != 0) {
rw_exit(&snap_ctl.sid_rwlock);
return (EBUSY);
}
snap_ctl.sid_flags |= SID_CHAR_BUSY;
rw_exit(&snap_ctl.sid_rwlock);
return (0);
}
sidpp = ddi_get_soft_state(statep, minor);
if (sidpp == NULL || *sidpp == NULL)
return (ENXIO);
sidp = *sidpp;
rw_enter(&sidp->sid_rwlock, RW_WRITER);
if ((flag & FEXCL) && SID_BUSY(sidp)) {
rw_exit(&sidp->sid_rwlock);
return (EAGAIN);
}
ASSERT(sidpp != NULL && sidp != NULL);
/* check to see if this snapshot has been killed on us */
if (SID_INACTIVE(sidp)) {
cmn_err(CE_WARN, "snap_open: snapshot %d does not exist.",
minor);
rw_exit(&sidp->sid_rwlock);
return (ENXIO);
}
switch (otyp) {
case OTYP_CHR:
sidp->sid_flags |= SID_CHAR_BUSY;
break;
case OTYP_BLK:
sidp->sid_flags |= SID_BLOCK_BUSY;
break;
default:
rw_exit(&sidp->sid_rwlock);
return (EINVAL);
}
rw_exit(&sidp->sid_rwlock);
/*
* at this point if a valid snapshot was found then it has
* been marked busy and we can use it.
*/
return (0);
}
/*
* snap_close() - snapshot driver close(9E) routine
*
* unsets the busy bits in the snapshot id. If the snapshot has been
* deleted while the snapshot device was open, the close call will clean
* up the remaining state information.
*/
/* ARGSUSED */
static int
snap_close(dev_t dev, int flag, int otyp, cred_t *cred)
{
struct snapshot_id **sidpp, *sidp;
minor_t minor;
char name[20];
minor = getminor(dev);
/* if this is the control device, close it and return */
if (minor == SNAP_CTL_MINOR) {
rw_enter(&snap_ctl.sid_rwlock, RW_WRITER);
snap_ctl.sid_flags &= ~(SID_CHAR_BUSY);
rw_exit(&snap_ctl.sid_rwlock);
return (0);
}
sidpp = ddi_get_soft_state(statep, minor);
if (sidpp == NULL || *sidpp == NULL) {
cmn_err(CE_WARN, "snap_close: could not find state for "
"snapshot %d.", minor);
return (ENXIO);
}
sidp = *sidpp;
mutex_enter(&snapshot_mutex);
rw_enter(&sidp->sid_rwlock, RW_WRITER);
/* Mark the snapshot as not being busy anymore */
switch (otyp) {
case OTYP_CHR:
sidp->sid_flags &= ~(SID_CHAR_BUSY);
break;
case OTYP_BLK:
sidp->sid_flags &= ~(SID_BLOCK_BUSY);
break;
default:
mutex_exit(&snapshot_mutex);
rw_exit(&sidp->sid_rwlock);
return (EINVAL);
}
if (SID_AVAILABLE(sidp)) {
/*
* if this is the last close on a snapshot that has been
* deleted, then free up the soft state. The snapdelete
* ioctl does not free this when the device is in use so
* we do it here after the last reference goes away.
*/
/* remove the device nodes */
ASSERT(fssnap_dip != NULL);
(void) snprintf(name, sizeof (name), "%d",
sidp->sid_snapnumber);
ddi_remove_minor_node(fssnap_dip, name);
(void) snprintf(name, sizeof (name), "%d,raw",
sidp->sid_snapnumber);
ddi_remove_minor_node(fssnap_dip, name);
/* delete the state structure */
ddi_soft_state_free(statep, sidp->sid_snapnumber);
num_snapshots--;
}
mutex_exit(&snapshot_mutex);
rw_exit(&sidp->sid_rwlock);
return (0);
}
/*
* snap_read() - snapshot driver read(9E) routine
*
* reads data from the snapshot by calling snap_strategy() through physio()
*/
/* ARGSUSED */
static int
snap_read(dev_t dev, struct uio *uiop, cred_t *credp)
{
minor_t minor;
struct snapshot_id **sidpp;
minor = getminor(dev);
sidpp = ddi_get_soft_state(statep, minor);
if (sidpp == NULL || *sidpp == NULL) {
cmn_err(CE_WARN,
"snap_read: could not find state for snapshot %d.", minor);
return (ENXIO);
}
return (physio(snap_strategy, NULL, dev, B_READ, minphys, uiop));
}
/*
* snap_strategy() - snapshot driver strategy(9E) routine
*
* cycles through each chunk in the requested buffer and calls
* snap_getchunk() on each chunk to retrieve it from the appropriate
* place. Once all of the parts are put together the requested buffer
* is returned. The snapshot driver is read-only, so a write is invalid.
*/
static int
snap_strategy(struct buf *bp)
{
struct snapshot_id **sidpp, *sidp;
minor_t minor;
chunknumber_t chunk;
int off, len;
u_longlong_t reqptr;
int error = 0;
size_t chunksz;
caddr_t buf;
/* snapshot device is read-only */
if (bp->b_flags & B_WRITE) {
bioerror(bp, EROFS);
bp->b_resid = bp->b_bcount;
biodone(bp);
return (0);
}
minor = getminor(bp->b_edev);
sidpp = ddi_get_soft_state(statep, minor);
if (sidpp == NULL || *sidpp == NULL) {
cmn_err(CE_WARN,
"snap_strategy: could not find state for snapshot %d.",
minor);
bioerror(bp, ENXIO);
bp->b_resid = bp->b_bcount;
biodone(bp);
return (0);
}
sidp = *sidpp;
ASSERT(sidp);
rw_enter(&sidp->sid_rwlock, RW_READER);
if (SID_INACTIVE(sidp)) {
bioerror(bp, ENXIO);
bp->b_resid = bp->b_bcount;
biodone(bp);
rw_exit(&sidp->sid_rwlock);
return (0);
}
if (bp->b_flags & (B_PAGEIO|B_PHYS))
bp_mapin(bp);
bp->b_resid = bp->b_bcount;
ASSERT(bp->b_un.b_addr);
buf = bp->b_un.b_addr;
chunksz = sidp->sid_cowinfo->cow_map.cmap_chunksz;
/* reqptr is the current DEV_BSIZE offset into the device */
/* chunk is the chunk containing reqptr */
/* len is the length of the request (in the current chunk) in bytes */
/* off is the byte offset into the current chunk */
reqptr = bp->b_lblkno;
while (bp->b_resid > 0) {
chunk = dbtocowchunk(&sidp->sid_cowinfo->cow_map, reqptr);
off = (reqptr % (chunksz >> DEV_BSHIFT)) << DEV_BSHIFT;
len = min(chunksz - off, bp->b_resid);
ASSERT((off + len) <= chunksz);
if ((error = snap_getchunk(sidp, chunk, off, len, buf)) != 0) {
/*
* EINVAL means the user tried to go out of range.
* Anything else means it's likely that we're
* confused.
*/
if (error != EINVAL) {
cmn_err(CE_WARN, "snap_strategy: error "
"calling snap_getchunk, chunk = %llu, "
"offset = %d, len = %d, resid = %lu, "
"error = %d.",
chunk, off, len, bp->b_resid, error);
}
bioerror(bp, error);
biodone(bp);
rw_exit(&sidp->sid_rwlock);
return (0);
}
bp->b_resid -= len;
reqptr += (len >> DEV_BSHIFT);
buf += len;
}
ASSERT(bp->b_resid == 0);
biodone(bp);
rw_exit(&sidp->sid_rwlock);
return (0);
}
/*
* snap_getchunk() - helper function for snap_strategy()
*
* gets the requested data from the appropriate place and fills in the
* buffer. chunk is the chunk number of the request, offset is the
* offset into that chunk and must be less than the chunk size. len is
* the length of the request starting at offset, and must not exceed a
* chunk boundary. buffer is the address to copy the data to. len
* bytes are copied into the buffer starting at the location specified.
*
* A chunk is located according to the following algorithm:
* - If the chunk does not have a translation or is not a candidate
* for translation, it is read straight from the master device.
* - If the chunk does have a translation, then it is either on
* disk or in memory:
* o If it is in memory the requested data is simply copied out
* of the in-memory buffer.
* o If it is in the backing store, it is read from there.
*
* This function does the real work of the snapshot driver.
*/
static int
snap_getchunk(struct snapshot_id *sidp, chunknumber_t chunk, int offset,
int len, char *buffer)
{
cow_map_t *cmap = &sidp->sid_cowinfo->cow_map;
cow_map_node_t *cmn;
struct buf *snapbuf;
int error = 0;
char *newbuffer;
int newlen = 0;
int partial = 0;
ASSERT(RW_READ_HELD(&sidp->sid_rwlock));
ASSERT(offset + len <= cmap->cmap_chunksz);
/*
* Check if the chunk number is out of range and if so bail out
*/
if (chunk >= (cmap->cmap_bmsize * NBBY)) {
return (EINVAL);
}
/*
* If the chunk is not a candidate for translation, then the chunk
* was not allocated when the snapshot was taken. Since it does
* not contain data associated with this snapshot, just return a
* zero buffer instead.
*/
if (isclr(cmap->cmap_candidate, chunk)) {
bzero(buffer, len);
return (0);
}
/*
* if the chunk is a candidate for translation but a
* translation does not exist, then read through to the
* original file system. The rwlock is held until the read
* completes if it hasn't been translated to make sure the
* file system does not translate the block before we
* access it. If it has already been translated we don't
* need the lock, because the translation will never go away.
*/
rw_enter(&cmap->cmap_rwlock, RW_READER);
if (isclr(cmap->cmap_hastrans, chunk)) {
snapbuf = getrbuf(KM_SLEEP);
/*
* Reading into the buffer saves having to do a copy,
* but gets tricky if the request size is not a
* multiple of DEV_BSIZE. However, we are filling the
* buffer left to right, so future reads will write
* over any extra data we might have read.
*/
partial = len % DEV_BSIZE;
snapbuf->b_bcount = len;
snapbuf->b_lblkno = lbtodb(chunk * cmap->cmap_chunksz + offset);
snapbuf->b_un.b_addr = buffer;
snapbuf->b_iodone = NULL;
snapbuf->b_proc = NULL; /* i.e. the kernel */
snapbuf->b_flags = B_READ | B_BUSY;
snapbuf->b_edev = sidp->sid_fvp->v_vfsp->vfs_dev;
if (partial) {
/*
* Partial block read in progress.
* This is bad as modules further down the line
* assume buf's are exact multiples of DEV_BSIZE
* and we end up with fewer, or zero, bytes read.
* To get round this we need to round up to the
* nearest full block read and then return only
* len bytes.
*/
newlen = (len - partial) + DEV_BSIZE;
newbuffer = kmem_alloc(newlen, KM_SLEEP);
snapbuf->b_bcount = newlen;
snapbuf->b_un.b_addr = newbuffer;
}
(void) bdev_strategy(snapbuf);
(void) biowait(snapbuf);
error = geterror(snapbuf);
if (partial) {
/*
* Partial block read. Now we need to bcopy the
* correct number of bytes back into the
* supplied buffer, and tidy up our temp
* buffer.
*/
bcopy(newbuffer, buffer, len);
kmem_free(newbuffer, newlen);
}
freerbuf(snapbuf);
rw_exit(&cmap->cmap_rwlock);
return (error);
}
/*
* finally, if the chunk is a candidate for translation and it
* has been translated, then we clone the chunk of the buffer
* that was copied aside by the file system.
* The cmap_rwlock does not need to be held after we know the
* data has already been copied. Once a chunk has been copied
* to the backing file, it is stable read only data.
*/
cmn = transtbl_get(cmap, chunk);
/* check whether the data is in memory or in the backing file */
if (cmn != NULL) {
ASSERT(cmn->cmn_buf);
/* already in memory */
bcopy(cmn->cmn_buf + offset, buffer, len);
rw_exit(&cmap->cmap_rwlock);
} else {
ssize_t resid = len;
int bf_index;
/*
* can cause deadlock with writer if we don't drop the
* cmap_rwlock before trying to get the backing store file
* vnode rwlock.
*/
rw_exit(&cmap->cmap_rwlock);
bf_index = chunk / cmap->cmap_chunksperbf;
/* read buffer from backing file */
error = vn_rdwr(UIO_READ,
(sidp->sid_cowinfo->cow_backfile_array)[bf_index],
buffer, len, ((chunk % cmap->cmap_chunksperbf) *
cmap->cmap_chunksz) + offset, UIO_SYSSPACE, 0,
RLIM64_INFINITY, kcred, &resid);
}
return (error);
}
/*
* snap_print() - snapshot driver print(9E) routine
*
* prints the device identification string.
*/
static int
snap_print(dev_t dev, char *str)
{
struct snapshot_id **sidpp;
minor_t minor;
minor = getminor(dev);
sidpp = ddi_get_soft_state(statep, minor);
if (sidpp == NULL || *sidpp == NULL) {
cmn_err(CE_WARN,
"snap_print: could not find state for snapshot %d.", minor);
return (ENXIO);
}
cmn_err(CE_NOTE, "snap_print: snapshot %d: %s", minor, str);
return (0);
}
/*
* snap_prop_op() - snapshot driver prop_op(9E) routine
*
* get 32-bit and 64-bit values for size (character driver) and nblocks
* (block driver).
*/
static int
snap_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
int flags, char *name, caddr_t valuep, int *lengthp)
{
int minor;
struct snapshot_id **sidpp;
dev_t mdev;
dev_info_t *mdip;
int error;
minor = getminor(dev);
/*
* If this is the control device just check for .conf properties,
* if the wildcard DDI_DEV_T_ANY was passed in via the dev_t
* just fall back to the defaults.
*/
if ((minor == SNAP_CTL_MINOR) || (dev == DDI_DEV_T_ANY))
return (ddi_prop_op(dev, dip, prop_op, flags, name,
valuep, lengthp));
/* check to see if there is a master device plumbed */
sidpp = ddi_get_soft_state(statep, minor);
if (sidpp == NULL || *sidpp == NULL) {
cmn_err(CE_WARN,
"snap_prop_op: could not find state for "
"snapshot %d.", minor);
return (DDI_PROP_NOT_FOUND);
}
if (((*sidpp)->sid_fvp == NULL) || ((*sidpp)->sid_fvp->v_vfsp == NULL))
return (ddi_prop_op(dev, dip, prop_op, flags, name,
valuep, lengthp));
/* hold master device and pass operation down */
mdev = (*sidpp)->sid_fvp->v_vfsp->vfs_dev;
if (mdip = e_ddi_hold_devi_by_dev(mdev, 0)) {
/* get size information from the master device. */
error = cdev_prop_op(mdev, mdip,
prop_op, flags, name, valuep, lengthp);
ddi_release_devi(mdip);
if (error == DDI_PROP_SUCCESS)
return (error);
}
/* master device did not service the request, try framework */
return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp));
}
/*
* snap_ioctl() - snapshot driver ioctl(9E) routine
*
* only applies to the control device. The control device accepts two
* ioctl requests: create a snapshot or delete a snapshot. In either
* case, the vnode for the requested file system is extracted, and the
* request is passed on to the file system via the same ioctl. The file
* system is responsible for doing the things necessary for creating or
* destroying a snapshot, including any file system specific operations
* that must be performed as well as setting up and deleting the snapshot
* state through the fssnap interfaces.
*/
static int
snap_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
minor_t minor;
int error = 0;
minor = getminor(dev);
if (minor != SNAP_CTL_MINOR) {
return (EINVAL);
}
switch (cmd) {
case _FIOSNAPSHOTCREATE:
{
struct fiosnapcreate fc;
struct file *fp;
struct vnode *vp;
if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
return (EFAULT);
/* get vnode for file system mount point */
if ((fp = getf(fc.rootfiledesc)) == NULL)
return (EBADF);
ASSERT(fp->f_vnode);
vp = fp->f_vnode;
VN_HOLD(vp);
releasef(fc.rootfiledesc);
/* pass ioctl request to file system */
error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL);
VN_RELE(vp);
break;
}
case _FIOSNAPSHOTCREATE_MULTI:
{
struct fiosnapcreate_multi fc;
struct file *fp;
struct vnode *vp;
if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
return (EFAULT);
/* get vnode for file system mount point */
if ((fp = getf(fc.rootfiledesc)) == NULL)
return (EBADF);
ASSERT(fp->f_vnode);
vp = fp->f_vnode;
VN_HOLD(vp);
releasef(fc.rootfiledesc);
/* pass ioctl request to file system */
error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL);
VN_RELE(vp);
break;
}
case _FIOSNAPSHOTDELETE:
{
major_t major;
struct fiosnapdelete fc;
snapshot_id_t *sidp = NULL;
snapshot_id_t *sidnextp = NULL;
struct file *fp = NULL;
struct vnode *vp = NULL;
struct vfs *vfsp = NULL;
vfsops_t *vfsops = EIO_vfsops;
if (ddi_copyin((void *)arg, &fc, sizeof (fc), mode))
return (EFAULT);
/* get vnode for file system mount point */
if ((fp = getf(fc.rootfiledesc)) == NULL)
return (EBADF);
ASSERT(fp->f_vnode);
vp = fp->f_vnode;
VN_HOLD(vp);
releasef(fc.rootfiledesc);
/*
* Test for two formats of delete and set correct minor/vp:
* pseudo device:
* fssnap -d [/dev/fssnap/x]
* or
* mount point:
* fssnap -d [/mntpt]
* Note that minor is verified to be equal to SNAP_CTL_MINOR
* at this point which is an invalid minor number.
*/
ASSERT(fssnap_dip != NULL);
major = ddi_driver_major(fssnap_dip);
mutex_enter(&snapshot_mutex);
for (sidp = snapshot; sidp != NULL; sidp = sidnextp) {
rw_enter(&sidp->sid_rwlock, RW_READER);
sidnextp = sidp->sid_next;
/* pseudo device: */
if (major == getmajor(vp->v_rdev)) {
minor = getminor(vp->v_rdev);
if (sidp->sid_snapnumber == (uint_t)minor &&
sidp->sid_fvp) {
VN_RELE(vp);
vp = sidp->sid_fvp;
VN_HOLD(vp);
rw_exit(&sidp->sid_rwlock);
break;
}
/* Mount point: */
} else {
if (sidp->sid_fvp == vp) {
minor = sidp->sid_snapnumber;
rw_exit(&sidp->sid_rwlock);
break;
}
}
rw_exit(&sidp->sid_rwlock);
}
mutex_exit(&snapshot_mutex);
/* Verify minor got set correctly above */
if (minor == SNAP_CTL_MINOR) {
VN_RELE(vp);
return (EINVAL);
}
dev = makedevice(major, minor);
/*
* Create dummy vfs entry
* to use as a locking semaphore across the IOCTL
* for mount in progress cases...
*/
vfsp = vfs_alloc(KM_SLEEP);
VFS_INIT(vfsp, vfsops, NULL);
VFS_HOLD(vfsp);
vfs_addmip(dev, vfsp);
if ((vfs_devmounting(dev, vfsp)) ||
(vfs_devismounted(dev))) {
vfs_delmip(vfsp);
VFS_RELE(vfsp);
VN_RELE(vp);
return (EBUSY);
}
/*
* Nobody mounted but do not release mount in progress lock
* until IOCTL complete to prohibit a mount sneaking
* in
*/
error = VOP_IOCTL(vp, cmd, arg, 0, credp, rvalp, NULL);
vfs_delmip(vfsp);
VFS_RELE(vfsp);
VN_RELE(vp);
break;
}
default:
cmn_err(CE_WARN, "snap_ioctl: Invalid ioctl cmd %d, minor %d.",
cmd, minor);
return (EINVAL);
}
return (error);
}
/* ************************************************************************ */
/*
* Translation Table Routines
*
* These support routines implement a simple doubly linked list
* to keep track of chunks that are currently in memory. The maximum
* size of the list is determined by the fssnap_max_mem_chunks variable.
* The cmap_rwlock is used to protect the linkage of the list.
*/
/*
* transtbl_add() - add a node to the translation table
*
* allocates a new node and points it at the buffer passed in. The node
* is added to the beginning of the doubly linked list and the head of
* the list is moved. The cmap_rwlock must be held as a writer through
* this operation.
*/
static cow_map_node_t *
transtbl_add(cow_map_t *cmap, chunknumber_t chunk, caddr_t buf)
{
cow_map_node_t *cmnode;
ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
cmnode = kmem_alloc(sizeof (cow_map_node_t), KM_SLEEP);
/*
* insert new translations at the beginning so cmn_table is always
* the first node.
*/
cmnode->cmn_chunk = chunk;
cmnode->cmn_buf = buf;
cmnode->cmn_prev = NULL;
cmnode->cmn_next = cmap->cmap_table;
if (cmnode->cmn_next)
cmnode->cmn_next->cmn_prev = cmnode;
cmap->cmap_table = cmnode;
return (cmnode);
}
/*
* transtbl_get() - look up a node in the translation table
*
* called by the snapshot driver to find data that has been translated.
* The lookup is done by the chunk number, and the node is returned.
* If the node was not found, NULL is returned.
*/
static cow_map_node_t *
transtbl_get(cow_map_t *cmap, chunknumber_t chunk)
{
cow_map_node_t *cmn;
ASSERT(RW_READ_HELD(&cmap->cmap_rwlock));
ASSERT(cmap);
/* search the translation table */
for (cmn = cmap->cmap_table; cmn != NULL; cmn = cmn->cmn_next) {
if (cmn->cmn_chunk == chunk)
return (cmn);
}
/* not found */
return (NULL);
}
/*
* transtbl_delete() - delete a node from the translation table
*
* called when a node's data has been written out to disk. The
* cmap_rwlock must be held as a writer for this operation. If the node
* being deleted is the head of the list, then the head is moved to the
* next node. Both the node's data and the node itself are freed.
*/
static void
transtbl_delete(cow_map_t *cmap, cow_map_node_t *cmn)
{
ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
ASSERT(cmn);
ASSERT(cmap->cmap_table);
/* if the head of the list is being deleted, then move the head up */
if (cmap->cmap_table == cmn) {
ASSERT(cmn->cmn_prev == NULL);
cmap->cmap_table = cmn->cmn_next;
}
/* make previous node's next pointer skip over current node */
if (cmn->cmn_prev != NULL) {
ASSERT(cmn->cmn_prev->cmn_next == cmn);
cmn->cmn_prev->cmn_next = cmn->cmn_next;
}
/* make next node's previous pointer skip over current node */
if (cmn->cmn_next != NULL) {
ASSERT(cmn->cmn_next->cmn_prev == cmn);
cmn->cmn_next->cmn_prev = cmn->cmn_prev;
}
/* free the data and the node */
ASSERT(cmn->cmn_buf);
kmem_free(cmn->cmn_buf, cmap->cmap_chunksz);
kmem_free(cmn, sizeof (cow_map_node_t));
}
/*
* transtbl_free() - free the entire translation table
*
* called when the snapshot is deleted. This frees all of the nodes in
* the translation table (but not the bitmaps).
*/
static void
transtbl_free(cow_map_t *cmap)
{
cow_map_node_t *curnode;
cow_map_node_t *tempnode;
for (curnode = cmap->cmap_table; curnode != NULL; curnode = tempnode) {
tempnode = curnode->cmn_next;
kmem_free(curnode->cmn_buf, cmap->cmap_chunksz);
kmem_free(curnode, sizeof (cow_map_node_t));
}
}
/* ************************************************************************ */
/*
* Interface Implementation Routines
*
* The following functions implement snapshot interface routines that are
* called by the file system to create, delete, and use a snapshot. The
* interfaces are defined in fssnap_if.c and are filled in by this driver
* when it is loaded. This technique allows the file system to depend on
* the interface module without having to load the full implementation and
* snapshot device drivers.
*/
/*
* fssnap_strategy_impl() - strategy routine called by the file system
*
* called by the file system to handle copy-on-write when necessary. All
* reads and writes that the file system performs should go through this
* function. If the file system calls the underlying device's strategy
* routine without going through fssnap_strategy() (eg. by calling
* bdev_strategy()), the snapshot may not be consistent.
*
* This function starts by doing significant sanity checking to insure
* the snapshot was not deleted out from under it or deleted and then
* recreated. To do this, it checks the actual pointer passed into it
* (ie. the handle held by the file system). NOTE that the parameter is
* a POINTER TO A POINTER to the snapshot id. Once the snapshot id is
* locked, it knows things are ok and that this snapshot is really for
* this file system.
*
* If the request is a write, fssnap_translate() is called to determine
* whether a copy-on-write is required. If it is a read, the read is
* simply passed on to the underlying device.
*/
static void
fssnap_strategy_impl(void *snapshot_id, buf_t *bp)
{
struct snapshot_id **sidpp;
struct snapshot_id *sidp;
int error;
/* read requests are always passed through */
if (bp->b_flags & B_READ) {
(void) bdev_strategy(bp);
return;
}
/*
* Because we were not able to take the snapshot read lock BEFORE
* checking for a snapshot back in the file system, things may have
* drastically changed out from under us. For instance, the snapshot
* may have been deleted, deleted and recreated, or worse yet, deleted
* for this file system but now the snapshot number is in use by another
* file system.
*
* Having a pointer to the file system's snapshot id pointer allows us
* to sanity check most of this, though it assumes the file system is
* keeping track of a pointer to the snapshot_id somewhere.
*/
sidpp = (struct snapshot_id **)snapshot_id;
sidp = *sidpp;
/*
* if this file system's snapshot was disabled, just pass the
* request through.
*/
if (sidp == NULL) {
(void) bdev_strategy(bp);
return;
}
/*
* Once we have the reader lock the snapshot will not magically go
* away. But things may have changed on us before this so double check.
*/
rw_enter(&sidp->sid_rwlock, RW_READER);
/*
* if an error was founds somewhere the DELETE flag will be
* set to indicate the snapshot should be deleted and no new
* translations should occur.
*/
if (sidp->sid_flags & SID_DELETE) {
rw_exit(&sidp->sid_rwlock);
(void) fssnap_delete_impl(sidpp);
(void) bdev_strategy(bp);
return;
}
/*
* If the file system is no longer pointing to the snapshot we were
* called with, then it should not attempt to translate this buffer as
* it may be going to a snapshot for a different file system.
* Even if the file system snapshot pointer is still the same, the
* snapshot may have been disabled before we got the reader lock.
*/
if (sidp != *sidpp || SID_INACTIVE(sidp)) {
rw_exit(&sidp->sid_rwlock);
(void) bdev_strategy(bp);
return;
}
/*
* At this point we're sure the snapshot will not go away while the
* reader lock is held, and we are reasonably certain that we are
* writing to the correct snapshot.
*/
if ((error = fssnap_translate(sidpp, bp)) != 0) {
/*
* fssnap_translate can release the reader lock if it
* has to wait for a semaphore. In this case it is possible
* for the snapshot to be deleted in this time frame. If this
* happens just sent the buf thru to the filesystems device.
*/
if (sidp != *sidpp || SID_INACTIVE(sidp)) {
rw_exit(&sidp->sid_rwlock);
(void) bdev_strategy(bp);
return;
}
bioerror(bp, error);
biodone(bp);
}
rw_exit(&sidp->sid_rwlock);
}
/*
* fssnap_translate() - helper function for fssnap_strategy()
*
* performs the actual copy-on-write for write requests, if required.
* This function does the real work of the file system side of things.
*
* It first checks the candidate bitmap to quickly determine whether any
* action is necessary. If the candidate bitmap indicates the chunk was
* allocated when the snapshot was created, then it checks to see whether
* a translation already exists. If a translation already exists then no
* action is required. If the chunk is a candidate for copy-on-write,
* and a translation does not already exist, then the chunk is read in
* and a node is added to the translation table.
*
* Once all of the chunks in the request range have been copied (if they
* needed to be), then the original request can be satisfied and the old
* data can be overwritten.
*/
static int
fssnap_translate(struct snapshot_id **sidpp, struct buf *wbp)
{
snapshot_id_t *sidp = *sidpp;
struct buf *oldbp; /* buffer to store old data in */
struct cow_info *cowp = sidp->sid_cowinfo;
cow_map_t *cmap = &cowp->cow_map;
cow_map_node_t *cmn;
chunknumber_t cowchunk, startchunk, endchunk;
int error;
int throttle_write = 0;
/* make sure the snapshot is active */
ASSERT(RW_READ_HELD(&sidp->sid_rwlock));
startchunk = dbtocowchunk(cmap, wbp->b_lblkno);
endchunk = dbtocowchunk(cmap, wbp->b_lblkno +
((wbp->b_bcount-1) >> DEV_BSHIFT));
/*
* Do not throttle the writes of the fssnap taskq thread and
* the log roll (trans_roll) thread. Furthermore the writes to
* the on-disk log are also not subject to throttling.
* The fssnap_write_taskq thread's write can block on the throttling
* semaphore which leads to self-deadlock as this same thread
* releases the throttling semaphore after completing the IO.
* If the trans_roll thread's write is throttled then we can deadlock
* because the fssnap_taskq_thread which releases the throttling
* semaphore can block waiting for log space which can only be
* released by the trans_roll thread.
*/
throttle_write = !(taskq_member(cowp->cow_taskq, curthread) ||
tsd_get(bypass_snapshot_throttle_key));
/*
* Iterate through all chunks covered by this write and perform the
* copy-aside if necessary. Once all chunks have been safely
* stowed away, the new data may be written in a single sweep.
*
* For each chunk in the range, the following sequence is performed:
* - Is the chunk a candidate for translation?
* o If not, then no translation is necessary, continue
* - If it is a candidate, then does it already have a translation?
* o If so, then no translation is necessary, continue
* - If it is a candidate, but does not yet have a translation,
* then read the old data and schedule an asynchronous taskq
* to write the old data to the backing file.
*
* Once this has been performed over the entire range of chunks, then
* it is safe to overwrite the data that is there.
*
* Note that no lock is required to check the candidate bitmap because
* it never changes once the snapshot is created. The reader lock is
* taken to check the hastrans bitmap since it may change. If it
* turns out a copy is required, then the lock is upgraded to a
* writer, and the bitmap is re-checked as it may have changed while
* the lock was released. Finally, the write lock is held while
* reading the old data to make sure it is not translated out from
* under us.
*
* This locking mechanism should be sufficient to handle multiple
* threads writing to overlapping chunks simultaneously.
*/
for (cowchunk = startchunk; cowchunk <= endchunk; cowchunk++) {
/*
* If the cowchunk is outside of the range of our
* candidate maps, then simply break out of the
* loop and pass the I/O through to bdev_strategy.
* This would occur if the file system has grown
* larger since the snapshot was taken.
*/
if (cowchunk >= (cmap->cmap_bmsize * NBBY))
break;
/*
* If no disk blocks were allocated in this chunk when the
* snapshot was created then no copy-on-write will be
* required. Since this bitmap is read-only no locks are
* necessary.
*/
if (isclr(cmap->cmap_candidate, cowchunk)) {
continue;
}
/*
* If a translation already exists, the data can be written
* through since the old data has already been saved off.
*/
if (isset(cmap->cmap_hastrans, cowchunk)) {
continue;
}
/*
* Throttle translations if there are too many outstanding
* chunks in memory. The semaphore is sema_v'd by the taskq.
*
* You can't keep the sid_rwlock if you would go to sleep.
* This will result in deadlock when someone tries to delete
* the snapshot (wants the sid_rwlock as a writer, but can't
* get it).
*/
if (throttle_write) {
if (sema_tryp(&cmap->cmap_throttle_sem) == 0) {
rw_exit(&sidp->sid_rwlock);
atomic_inc_32(&cmap->cmap_waiters);
sema_p(&cmap->cmap_throttle_sem);
atomic_dec_32(&cmap->cmap_waiters);
rw_enter(&sidp->sid_rwlock, RW_READER);
/*
* Now since we released the sid_rwlock the state may
* have transitioned underneath us. so check that again.
*/
if (sidp != *sidpp || SID_INACTIVE(sidp)) {
sema_v(&cmap->cmap_throttle_sem);
return (ENXIO);
}
}
}
/*
* Acquire the lock as a writer and check to see if a
* translation has been added in the meantime.
*/
rw_enter(&cmap->cmap_rwlock, RW_WRITER);
if (isset(cmap->cmap_hastrans, cowchunk)) {
if (throttle_write)
sema_v(&cmap->cmap_throttle_sem);
rw_exit(&cmap->cmap_rwlock);
continue; /* go to the next chunk */
}
/*
* read a full chunk of data from the requested offset rounded
* down to the nearest chunk size.
*/
oldbp = getrbuf(KM_SLEEP);
oldbp->b_lblkno = cowchunktodb(cmap, cowchunk);
oldbp->b_edev = wbp->b_edev;
oldbp->b_bcount = cmap->cmap_chunksz;
oldbp->b_bufsize = cmap->cmap_chunksz;
oldbp->b_iodone = NULL;
oldbp->b_proc = NULL;
oldbp->b_flags = B_READ;
oldbp->b_un.b_addr = kmem_alloc(cmap->cmap_chunksz, KM_SLEEP);
(void) bdev_strategy(oldbp);
(void) biowait(oldbp);
/*
* It's ok to bail in the middle of translating the range
* because the extra copy-asides will not hurt anything
* (except by using extra space in the backing store).
*/
if ((error = geterror(oldbp)) != 0) {
cmn_err(CE_WARN, "fssnap_translate: error reading "
"old data for snapshot %d, chunk %llu, disk block "
"%lld, size %lu, error %d.", sidp->sid_snapnumber,
cowchunk, oldbp->b_lblkno, oldbp->b_bcount, error);
kmem_free(oldbp->b_un.b_addr, cmap->cmap_chunksz);
freerbuf(oldbp);
rw_exit(&cmap->cmap_rwlock);
if (throttle_write)
sema_v(&cmap->cmap_throttle_sem);
return (error);
}
/*
* add the node to the translation table and save a reference
* to pass to the taskq for writing out to the backing file
*/
cmn = transtbl_add(cmap, cowchunk, oldbp->b_un.b_addr);
freerbuf(oldbp);
/*
* Add a reference to the snapshot id so the lower level
* processing (ie. the taskq) can get back to the state
* information.
*/
cmn->cmn_sid = sidp;
cmn->release_sem = throttle_write;
setbit(cmap->cmap_hastrans, cowchunk);
rw_exit(&cmap->cmap_rwlock);
/*
* schedule the asynchronous write to the backing file
*/
if (cowp->cow_backfile_array != NULL)
(void) taskq_dispatch(cowp->cow_taskq,
fssnap_write_taskq, cmn, TQ_SLEEP);
}
/*
* Write new data in place of the old data. At this point all of the
* chunks touched by this write have been copied aside and so the new
* data can be written out all at once.
*/
(void) bdev_strategy(wbp);
return (0);
}
/*
* fssnap_write_taskq() - write in-memory translations to the backing file
*
* writes in-memory translations to the backing file asynchronously. A
* task is dispatched each time a new translation is created. The task
* writes the data to the backing file and removes it from the memory
* list. The throttling semaphore is released only if the particular
* translation was throttled in fssnap_translate.
*/
static void
fssnap_write_taskq(void *arg)
{
cow_map_node_t *cmn = (cow_map_node_t *)arg;
snapshot_id_t *sidp = cmn->cmn_sid;
cow_info_t *cowp = sidp->sid_cowinfo;
cow_map_t *cmap = &cowp->cow_map;
int error;
int bf_index;
int release_sem = cmn->release_sem;
/*
* The sid_rwlock does not need to be held here because the taskqs
* are destroyed explicitly by fssnap_delete (with the sid_rwlock
* held as a writer). taskq_destroy() will flush all of the tasks
* out before fssnap_delete frees up all of the structures.
*/
/* if the snapshot was disabled from under us, drop the request. */
rw_enter(&sidp->sid_rwlock, RW_READER);
if (SID_INACTIVE(sidp)) {
rw_exit(&sidp->sid_rwlock);
if (release_sem)
sema_v(&cmap->cmap_throttle_sem);
return;
}
rw_exit(&sidp->sid_rwlock);
atomic_inc_64((uint64_t *)&cmap->cmap_nchunks);
if ((cmap->cmap_maxsize != 0) &&
((cmap->cmap_nchunks * cmap->cmap_chunksz) > cmap->cmap_maxsize)) {
cmn_err(CE_WARN, "fssnap_write_taskq: snapshot %d (%s) has "
"reached the maximum backing file size specified (%llu "
"bytes) and will be deleted.", sidp->sid_snapnumber,
(char *)cowp->cow_kstat_mntpt->ks_data,
cmap->cmap_maxsize);
if (release_sem)
sema_v(&cmap->cmap_throttle_sem);
atomic_or_uint(&sidp->sid_flags, SID_DELETE);
return;
}
/* perform the write */
bf_index = cmn->cmn_chunk / cmap->cmap_chunksperbf;
if (error = vn_rdwr(UIO_WRITE, (cowp->cow_backfile_array)[bf_index],
cmn->cmn_buf, cmap->cmap_chunksz,
(cmn->cmn_chunk % cmap->cmap_chunksperbf) * cmap->cmap_chunksz,
UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, (ssize_t *)NULL)) {
cmn_err(CE_WARN, "fssnap_write_taskq: error writing to "
"backing file. DELETING SNAPSHOT %d, backing file path "
"%s, offset %llu bytes, error %d.", sidp->sid_snapnumber,
(char *)cowp->cow_kstat_bfname->ks_data,
cmn->cmn_chunk * cmap->cmap_chunksz, error);
if (release_sem)
sema_v(&cmap->cmap_throttle_sem);
atomic_or_uint(&sidp->sid_flags, SID_DELETE);
return;
}
/*
* now remove the node and buffer from memory
*/
rw_enter(&cmap->cmap_rwlock, RW_WRITER);
transtbl_delete(cmap, cmn);
rw_exit(&cmap->cmap_rwlock);
/* Allow more translations */
if (release_sem)
sema_v(&cmap->cmap_throttle_sem);
}
/*
* fssnap_create_impl() - called from the file system to create a new snapshot
*
* allocates and initializes the structures needed for a new snapshot.
* This is called by the file system when it receives an ioctl request to
* create a new snapshot. An unused snapshot identifier is either found
* or created, and eventually returned as the opaque handle the file
* system will use to identify this snapshot. The snapshot number
* associated with the snapshot identifier is the same as the minor
* number for the snapshot device that is used to access that snapshot.
*
* The snapshot can not be used until the candidate bitmap is populated
* by the file system (see fssnap_set_candidate_impl()), and the file
* system finishes the setup process by calling fssnap_create_done().
* Nearly all of the snapshot locks are held for the duration of the
* create, and are not released until fssnap_create_done is called().
*/
static void *
fssnap_create_impl(chunknumber_t nchunks, uint_t chunksz, u_offset_t maxsize,
struct vnode *fsvp, int backfilecount, struct vnode **bfvpp, char *backpath,
u_offset_t max_backfile_size)
{
refstr_t *mountpoint;
char taskqname[50];
struct cow_info *cowp;
struct cow_map *cmap;
struct snapshot_id *sidp;
int lastsnap;
/*
* Sanity check the parameters we care about
* (we don't care about the informational parameters)
*/
if ((nchunks == 0) ||
((chunksz % DEV_BSIZE) != 0) ||
(bfvpp == NULL)) {
return (NULL);
}
/*
* Look for unused snapshot identifiers. Snapshot ids are never
* freed, but deleted snapshot ids will be recycled as needed.
*/
mutex_enter(&snapshot_mutex);
findagain:
lastsnap = 0;
for (sidp = snapshot; sidp != NULL; sidp = sidp->sid_next) {
if (sidp->sid_snapnumber > lastsnap)
lastsnap = sidp->sid_snapnumber;
/*
* The sid_rwlock is taken as a reader initially so that
* activity on each snapshot is not stalled while searching
* for a free snapshot id.
*/
rw_enter(&sidp->sid_rwlock, RW_READER);
/*
* If the snapshot has been deleted and nobody is using the
* snapshot device than we can reuse this snapshot_id. If
* the snapshot is marked to be deleted (SID_DELETE), then
* it hasn't been deleted yet so don't reuse it.
*/
if (SID_AVAILABLE(sidp))
break; /* This spot is unused, so take it */
rw_exit(&sidp->sid_rwlock);
}
/*
* add a new snapshot identifier if there are no deleted
* entries. Since it doesn't matter what order the entries
* are in we can just add it to the beginning of the list.
*/
if (sidp) {
if (rw_tryupgrade(&sidp->sid_rwlock) == 0) {
/* someone else grabbed it as a writer, try again */
rw_exit(&sidp->sid_rwlock);
goto findagain;
}
} else {
/* Create a new node if we didn't find an unused one */
sidp = kmem_alloc(sizeof (struct snapshot_id), KM_SLEEP);
rw_init(&sidp->sid_rwlock, NULL, RW_DEFAULT, NULL);
rw_enter(&sidp->sid_rwlock, RW_WRITER);
sidp->sid_snapnumber = (snapshot == NULL) ? 0 : lastsnap + 1;
sidp->sid_cowinfo = NULL;
sidp->sid_flags = 0;
sidp->sid_next = snapshot;
snapshot = sidp;
}
ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
ASSERT(sidp->sid_cowinfo == NULL);
ASSERT(sidp->sid_snapnumber <= (lastsnap + 1));
sidp->sid_flags |= SID_CREATING;
/* The root vnode is held until snap_delete_impl() is called */
VN_HOLD(fsvp);
sidp->sid_fvp = fsvp;
num_snapshots++;
/* allocate and initialize structures */
cowp = kmem_zalloc(sizeof (struct cow_info), KM_SLEEP);
cowp->cow_backfile_array = bfvpp;
cowp->cow_backcount = backfilecount;
cowp->cow_backfile_sz = max_backfile_size;
/*
* Initialize task queues for this snapshot. Only a small number
* of threads are required because they will be serialized on the
* backing file's reader/writer lock anyway.
*/
(void) snprintf(taskqname, sizeof (taskqname), "%s_taskq_%d", snapname,
sidp->sid_snapnumber);
cowp->cow_taskq = taskq_create(taskqname, fssnap_taskq_nthreads,
minclsyspri, 1, fssnap_taskq_maxtasks, 0);
/* don't allow tasks to start until after everything is ready */
taskq_suspend(cowp->cow_taskq);
/* initialize translation table */
cmap = &cowp->cow_map;
rw_init(&cmap->cmap_rwlock, NULL, RW_DEFAULT, NULL);
rw_enter(&cmap->cmap_rwlock, RW_WRITER);
sema_init(&cmap->cmap_throttle_sem, fssnap_max_mem_chunks, NULL,
SEMA_DEFAULT, NULL);
cmap->cmap_chunksz = chunksz;
cmap->cmap_maxsize = maxsize;
cmap->cmap_chunksperbf = max_backfile_size / chunksz;
/*
* allocate one bit per chunk for the bitmaps, round up
*/
cmap->cmap_bmsize = (nchunks + (NBBY - 1)) / NBBY;
cmap->cmap_hastrans = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP);
cmap->cmap_candidate = kmem_zalloc(cmap->cmap_bmsize, KM_SLEEP);
sidp->sid_cowinfo = cowp;
/* initialize kstats for this snapshot */
mountpoint = vfs_getmntpoint(fsvp->v_vfsp);
fssnap_create_kstats(sidp, sidp->sid_snapnumber,
refstr_value(mountpoint), backpath);
refstr_rele(mountpoint);
mutex_exit(&snapshot_mutex);
/*
* return with snapshot id rwlock held as a writer until
* fssnap_create_done is called
*/
return (sidp);
}
/*
* fssnap_set_candidate_impl() - mark a chunk as a candidate for copy-on-write
*
* sets a bit in the candidate bitmap that indicates that a chunk is a
* candidate for copy-on-write. Typically, chunks that are allocated on
* the file system at the time the snapshot is taken are candidates,
* while chunks that have no allocated data do not need to be copied.
* Chunks containing metadata must be marked as candidates as well.
*/
static void
fssnap_set_candidate_impl(void *snapshot_id, chunknumber_t chunknumber)
{
struct snapshot_id *sid = snapshot_id;
struct cow_info *cowp = sid->sid_cowinfo;
struct cow_map *cmap = &cowp->cow_map;
/* simple bitmap operation for now */
ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY));
setbit(cmap->cmap_candidate, chunknumber);
}
/*
* fssnap_is_candidate_impl() - check whether a chunk is a candidate
*
* returns 0 if the chunk is not a candidate and 1 if the chunk is a
* candidate. This can be used by the file system to change behavior for
* chunks that might induce a copy-on-write. The offset is specified in
* bytes since the chunk size may not be known by the file system.
*/
static int
fssnap_is_candidate_impl(void *snapshot_id, u_offset_t off)
{
struct snapshot_id *sid = snapshot_id;
struct cow_info *cowp = sid->sid_cowinfo;
struct cow_map *cmap = &cowp->cow_map;
ulong_t chunknumber = off / cmap->cmap_chunksz;
/* simple bitmap operation for now */
ASSERT(chunknumber < (cmap->cmap_bmsize * NBBY));
return (isset(cmap->cmap_candidate, chunknumber));
}
/*
* fssnap_create_done_impl() - complete the snapshot setup process
*
* called when the file system is done populating the candidate bitmap
* and it is ready to start using the snapshot. This routine releases
* the snapshot locks, allows taskq tasks to start processing, and
* creates the device minor nodes associated with the snapshot.
*/
static int
fssnap_create_done_impl(void *snapshot_id)
{
struct snapshot_id **sidpp, *sidp = snapshot_id;
struct cow_info *cowp;
struct cow_map *cmap;
int snapnumber = -1;
char name[20];
/* sid rwlock and cmap rwlock should be taken from fssnap_create */
ASSERT(sidp);
ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
ASSERT(sidp->sid_cowinfo);
cowp = sidp->sid_cowinfo;
cmap = &cowp->cow_map;
ASSERT(RW_WRITE_HELD(&cmap->cmap_rwlock));
sidp->sid_flags &= ~(SID_CREATING | SID_DISABLED);
snapnumber = sidp->sid_snapnumber;
/* allocate state structure and find new snapshot id */
if (ddi_soft_state_zalloc(statep, snapnumber) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"snap_ioctl: create: could not allocate "
"state for snapshot %d.", snapnumber);
snapnumber = -1;
goto out;
}
sidpp = ddi_get_soft_state(statep, snapnumber);
*sidpp = sidp;
/* create minor node based on snapshot number */
ASSERT(fssnap_dip != NULL);
(void) snprintf(name, sizeof (name), "%d", snapnumber);
if (ddi_create_minor_node(fssnap_dip, name, S_IFBLK,
snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "snap_ioctl: could not create "
"block minor node for snapshot %d.", snapnumber);
snapnumber = -1;
goto out;
}
(void) snprintf(name, sizeof (name), "%d,raw", snapnumber);
if (ddi_create_minor_node(fssnap_dip, name, S_IFCHR,
snapnumber, DDI_PSEUDO, 0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "snap_ioctl: could not create "
"character minor node for snapshot %d.", snapnumber);
snapnumber = -1;
}
out:
rw_exit(&sidp->sid_rwlock);
rw_exit(&cmap->cmap_rwlock);
/* let the taskq threads start processing */
taskq_resume(cowp->cow_taskq);
return (snapnumber);
}
/*
* fssnap_delete_impl() - delete a snapshot
*
* used when a snapshot is no longer needed. This is called by the file
* system when it receives an ioctl request to delete a snapshot. It is
* also called internally when error conditions such as disk full, errors
* writing to the backing file, or backing file maxsize exceeded occur.
* If the snapshot device is busy when the delete request is received,
* all state will be deleted except for the soft state and device files
* associated with the snapshot; they will be deleted when the snapshot
* device is closed.
*
* NOTE this function takes a POINTER TO A POINTER to the snapshot id,
* and expects to be able to set the handle held by the file system to
* NULL. This depends on the file system checking that variable for NULL
* before calling fssnap_strategy().
*/
static int
fssnap_delete_impl(void *snapshot_id)
{
struct snapshot_id **sidpp = (struct snapshot_id **)snapshot_id;
struct snapshot_id *sidp;
struct snapshot_id **statesidpp;
struct cow_info *cowp;
struct cow_map *cmap;
char name[20];
int snapnumber = -1;
vnode_t **vpp;
/*
* sidp is guaranteed to be valid if sidpp is valid because
* the snapshot list is append-only.
*/
if (sidpp == NULL) {
return (-1);
}
sidp = *sidpp;
rw_enter(&sidp->sid_rwlock, RW_WRITER);
ASSERT(RW_WRITE_HELD(&sidp->sid_rwlock));
/*
* double check that the snapshot is still valid for THIS file system
*/
if (*sidpp == NULL) {
rw_exit(&sidp->sid_rwlock);
return (-1);
}
/*
* Now we know the snapshot is still valid and will not go away
* because we have the write lock. Once the state is transitioned
* to "disabling", the sid_rwlock can be released. Any pending I/O
* waiting for the lock as a reader will check for this state and
* abort without touching data that may be getting freed.
*/
sidp->sid_flags |= SID_DISABLING;
if (sidp->sid_flags & SID_DELETE) {
cmn_err(CE_WARN, "Snapshot %d automatically deleted.",
sidp->sid_snapnumber);
sidp->sid_flags &= ~(SID_DELETE);
}
/*
* This is pointing into file system specific data! The assumption is
* that fssnap_strategy() gets called from the file system based on
* whether this reference to the snapshot_id is NULL or not. So
* setting this to NULL should disable snapshots for the file system.
*/
*sidpp = NULL;
/* remove cowinfo */
cowp = sidp->sid_cowinfo;
if (cowp == NULL) {
rw_exit(&sidp->sid_rwlock);
return (-1);
}
rw_exit(&sidp->sid_rwlock);
/* destroy task queues first so they don't reference freed data. */
if (cowp->cow_taskq) {
taskq_destroy(cowp->cow_taskq);
cowp->cow_taskq = NULL;
}
if (cowp->cow_backfile_array != NULL) {
for (vpp = cowp->cow_backfile_array; *vpp; vpp++)
VN_RELE(*vpp);
kmem_free(cowp->cow_backfile_array,
(cowp->cow_backcount + 1) * sizeof (vnode_t *));
cowp->cow_backfile_array = NULL;
}
sidp->sid_cowinfo = NULL;
/* remove cmap */
cmap = &cowp->cow_map;
ASSERT(cmap);
if (cmap->cmap_candidate)
kmem_free(cmap->cmap_candidate, cmap->cmap_bmsize);
if (cmap->cmap_hastrans)
kmem_free(cmap->cmap_hastrans, cmap->cmap_bmsize);
if (cmap->cmap_table)
transtbl_free(&cowp->cow_map);
rw_destroy(&cmap->cmap_rwlock);
while (cmap->cmap_waiters) {
sema_p(&cmap->cmap_throttle_sem);
sema_v(&cmap->cmap_throttle_sem);
}
sema_destroy(&cmap->cmap_throttle_sem);
/* remove kstats */
fssnap_delete_kstats(cowp);
kmem_free(cowp, sizeof (struct cow_info));
statesidpp = ddi_get_soft_state(statep, sidp->sid_snapnumber);
if (statesidpp == NULL || *statesidpp == NULL) {
cmn_err(CE_WARN,
"fssnap_delete_impl: could not find state for snapshot %d.",
sidp->sid_snapnumber);
}
ASSERT(*statesidpp == sidp);
/*
* Leave the node in the list marked DISABLED so it can be reused
* and avoid many race conditions. Return the snapshot number
* that was deleted.
*/
mutex_enter(&snapshot_mutex);
rw_enter(&sidp->sid_rwlock, RW_WRITER);
sidp->sid_flags &= ~(SID_DISABLING);
sidp->sid_flags |= SID_DISABLED;
VN_RELE(sidp->sid_fvp);
sidp->sid_fvp = NULL;
snapnumber = sidp->sid_snapnumber;
/*
* If the snapshot is not busy, free the device info now. Otherwise
* the device nodes are freed in snap_close() when the device is
* closed. The sid will not be reused until the device is not busy.
*/
if (SID_AVAILABLE(sidp)) {
/* remove the device nodes */
ASSERT(fssnap_dip != NULL);
(void) snprintf(name, sizeof (name), "%d",
sidp->sid_snapnumber);
ddi_remove_minor_node(fssnap_dip, name);
(void) snprintf(name, sizeof (name), "%d,raw",
sidp->sid_snapnumber);
ddi_remove_minor_node(fssnap_dip, name);
/* delete the state structure */
ddi_soft_state_free(statep, sidp->sid_snapnumber);
num_snapshots--;
}
mutex_exit(&snapshot_mutex);
rw_exit(&sidp->sid_rwlock);
return (snapnumber);
}
/*
* fssnap_create_kstats() - allocate and initialize snapshot kstats
*
*/
static void
fssnap_create_kstats(snapshot_id_t *sidp, int snapnum,
const char *mountpoint, const char *backfilename)
{
kstat_t *num, *mntpoint, *bfname;
kstat_named_t *hw;
struct cow_info *cowp = sidp->sid_cowinfo;
struct cow_kstat_num *stats;
/* update the high water mark */
if (fssnap_highwater_kstat == NULL) {
cmn_err(CE_WARN, "fssnap_create_kstats: failed to lookup "
"high water mark kstat.");
return;
}
hw = (kstat_named_t *)fssnap_highwater_kstat->ks_data;
if (hw->value.ui32 < snapnum)
hw->value.ui32 = snapnum;
/* initialize the mount point kstat */
kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_MNTPT);
if (mountpoint != NULL) {
mntpoint = kstat_create(snapname, snapnum, FSSNAP_KSTAT_MNTPT,
"misc", KSTAT_TYPE_RAW, strlen(mountpoint) + 1, 0);
if (mntpoint == NULL) {
cowp->cow_kstat_mntpt = NULL;
cmn_err(CE_WARN, "fssnap_create_kstats: failed to "
"create mount point kstat");
} else {
(void) strncpy(mntpoint->ks_data, mountpoint,
strlen(mountpoint));
cowp->cow_kstat_mntpt = mntpoint;
kstat_install(mntpoint);
}
} else {
cowp->cow_kstat_mntpt = NULL;
cmn_err(CE_WARN, "fssnap_create_kstats: mount point not "
"specified.");
}
/* initialize the backing file kstat */
kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_BFNAME);
if (backfilename == NULL) {
cowp->cow_kstat_bfname = NULL;
} else {
bfname = kstat_create(snapname, snapnum, FSSNAP_KSTAT_BFNAME,
"misc", KSTAT_TYPE_RAW, strlen(backfilename) + 1, 0);
if (bfname != NULL) {
(void) strncpy(bfname->ks_data, backfilename,
strlen(backfilename));
cowp->cow_kstat_bfname = bfname;
kstat_install(bfname);
} else {
cowp->cow_kstat_bfname = NULL;
cmn_err(CE_WARN, "fssnap_create_kstats: failed to "
"create backing file name kstat");
}
}
/* initialize numeric kstats */
kstat_delete_byname(snapname, snapnum, FSSNAP_KSTAT_NUM);
num = kstat_create(snapname, snapnum, FSSNAP_KSTAT_NUM,
"misc", KSTAT_TYPE_NAMED,
sizeof (struct cow_kstat_num) / sizeof (kstat_named_t),
0);
if (num == NULL) {
cmn_err(CE_WARN, "fssnap_create_kstats: failed to create "
"numeric kstats");
cowp->cow_kstat_num = NULL;
return;
}
cowp->cow_kstat_num = num;
stats = num->ks_data;
num->ks_update = fssnap_update_kstat_num;
num->ks_private = sidp;
kstat_named_init(&stats->ckn_state, FSSNAP_KSTAT_NUM_STATE,
KSTAT_DATA_INT32);
kstat_named_init(&stats->ckn_bfsize, FSSNAP_KSTAT_NUM_BFSIZE,
KSTAT_DATA_UINT64);
kstat_named_init(&stats->ckn_maxsize, FSSNAP_KSTAT_NUM_MAXSIZE,
KSTAT_DATA_UINT64);
kstat_named_init(&stats->ckn_createtime, FSSNAP_KSTAT_NUM_CREATETIME,
KSTAT_DATA_LONG);
kstat_named_init(&stats->ckn_chunksize, FSSNAP_KSTAT_NUM_CHUNKSIZE,
KSTAT_DATA_UINT32);
/* initialize the static kstats */
stats->ckn_chunksize.value.ui32 = cowp->cow_map.cmap_chunksz;
stats->ckn_maxsize.value.ui64 = cowp->cow_map.cmap_maxsize;
stats->ckn_createtime.value.l = gethrestime_sec();
kstat_install(num);
}
/*
* fssnap_update_kstat_num() - update a numerical snapshot kstat value
*
*/
int
fssnap_update_kstat_num(kstat_t *ksp, int rw)
{
snapshot_id_t *sidp = (snapshot_id_t *)ksp->ks_private;
struct cow_info *cowp = sidp->sid_cowinfo;
struct cow_kstat_num *stats = ksp->ks_data;
if (rw == KSTAT_WRITE)
return (EACCES);
/* state */
if (sidp->sid_flags & SID_CREATING)
stats->ckn_state.value.i32 = COWSTATE_CREATING;
else if (SID_INACTIVE(sidp))
stats->ckn_state.value.i32 = COWSTATE_DISABLED;
else if (SID_BUSY(sidp))
stats->ckn_state.value.i32 = COWSTATE_ACTIVE;
else
stats->ckn_state.value.i32 = COWSTATE_IDLE;
/* bfsize */
stats->ckn_bfsize.value.ui64 = cowp->cow_map.cmap_nchunks *
cowp->cow_map.cmap_chunksz;
return (0);
}
/*
* fssnap_delete_kstats() - deallocate snapshot kstats
*
*/
void
fssnap_delete_kstats(struct cow_info *cowp)
{
if (cowp->cow_kstat_num != NULL) {
kstat_delete(cowp->cow_kstat_num);
cowp->cow_kstat_num = NULL;
}
if (cowp->cow_kstat_mntpt != NULL) {
kstat_delete(cowp->cow_kstat_mntpt);
cowp->cow_kstat_mntpt = NULL;
}
if (cowp->cow_kstat_bfname != NULL) {
kstat_delete(cowp->cow_kstat_bfname);
cowp->cow_kstat_bfname = NULL;
}
}
|