1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
*/
#include <sys/cpuvar.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/modctl.h>
#include <sys/socket.h>
#include <sys/strsubr.h>
#include <sys/sysmacros.h>
#include <sys/socketvar.h>
#include <netinet/in.h>
#include <sys/idm/idm.h>
#include <sys/idm/idm_so.h>
#define IDM_NAME_VERSION "iSCSI Data Mover"
extern struct mod_ops mod_miscops;
extern struct mod_ops mod_miscops;
static struct modlmisc modlmisc = {
&mod_miscops, /* Type of module */
IDM_NAME_VERSION
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&modlmisc, NULL
};
extern void idm_wd_thread(void *arg);
static int _idm_init(void);
static int _idm_fini(void);
static void idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf);
static void idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf);
static void idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf);
static void idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf);
static void idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt,
idm_abort_type_t abort_type);
static void idm_task_aborted(idm_task_t *idt, idm_status_t status);
static idm_pdu_t *idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen,
int sleepflag);
boolean_t idm_conn_logging = 0;
boolean_t idm_svc_logging = 0;
#ifdef DEBUG
boolean_t idm_pattern_checking = 1;
#else
boolean_t idm_pattern_checking = 0;
#endif
/*
* Potential tuneable for the maximum number of tasks. Default to
* IDM_TASKIDS_MAX
*/
uint32_t idm_max_taskids = IDM_TASKIDS_MAX;
/*
* Global list of transport handles
* These are listed in preferential order, so we can simply take the
* first "it_conn_is_capable" hit. Note also that the order maps to
* the order of the idm_transport_type_t list.
*/
idm_transport_t idm_transport_list[] = {
/* iSER on InfiniBand transport handle */
{IDM_TRANSPORT_TYPE_ISER, /* type */
"/devices/ib/iser@0:iser", /* device path */
NULL, /* LDI handle */
NULL, /* transport ops */
NULL}, /* transport caps */
/* IDM native sockets transport handle */
{IDM_TRANSPORT_TYPE_SOCKETS, /* type */
NULL, /* device path */
NULL, /* LDI handle */
NULL, /* transport ops */
NULL} /* transport caps */
};
int
_init(void)
{
int rc;
if ((rc = _idm_init()) != 0) {
return (rc);
}
return (mod_install(&modlinkage));
}
int
_fini(void)
{
int rc;
if ((rc = _idm_fini()) != 0) {
return (rc);
}
if ((rc = mod_remove(&modlinkage)) != 0) {
return (rc);
}
return (rc);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* idm_transport_register()
*
* Provides a mechanism for an IDM transport driver to register its
* transport ops and caps with the IDM kernel module. Invoked during
* a transport driver's attach routine.
*/
idm_status_t
idm_transport_register(idm_transport_attr_t *attr)
{
ASSERT(attr->it_ops != NULL);
ASSERT(attr->it_caps != NULL);
switch (attr->type) {
/* All known non-native transports here; for now, iSER */
case IDM_TRANSPORT_TYPE_ISER:
idm_transport_list[attr->type].it_ops = attr->it_ops;
idm_transport_list[attr->type].it_caps = attr->it_caps;
return (IDM_STATUS_SUCCESS);
default:
cmn_err(CE_NOTE, "idm: unknown transport type (0x%x) in "
"idm_transport_register", attr->type);
return (IDM_STATUS_SUCCESS);
}
}
/*
* idm_ini_conn_create
*
* This function is invoked by the iSCSI layer to create a connection context.
* This does not actually establish the socket connection.
*
* cr - Connection request parameters
* new_con - Output parameter that contains the new request if successful
*
*/
idm_status_t
idm_ini_conn_create(idm_conn_req_t *cr, idm_conn_t **new_con)
{
idm_transport_t *it;
idm_conn_t *ic;
int rc;
it = idm_transport_lookup(cr);
retry:
ic = idm_conn_create_common(CONN_TYPE_INI, it->it_type,
&cr->icr_conn_ops);
bcopy(&cr->cr_ini_dst_addr, &ic->ic_ini_dst_addr,
sizeof (cr->cr_ini_dst_addr));
/* create the transport-specific connection components */
rc = it->it_ops->it_ini_conn_create(cr, ic);
if (rc != IDM_STATUS_SUCCESS) {
/* cleanup the failed connection */
idm_conn_destroy_common(ic);
/*
* It is possible for an IB client to connect to
* an ethernet-only client via an IB-eth gateway.
* Therefore, if we are attempting to use iSER and
* fail, retry with sockets before ultimately
* failing the connection.
*/
if (it->it_type == IDM_TRANSPORT_TYPE_ISER) {
it = &idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS];
goto retry;
}
return (IDM_STATUS_FAIL);
}
*new_con = ic;
mutex_enter(&idm.idm_global_mutex);
list_insert_tail(&idm.idm_ini_conn_list, ic);
mutex_exit(&idm.idm_global_mutex);
return (IDM_STATUS_SUCCESS);
}
/*
* idm_ini_conn_destroy
*
* Releases any resources associated with the connection. This is the
* complement to idm_ini_conn_create.
* ic - idm_conn_t structure representing the relevant connection
*
*/
void
idm_ini_conn_destroy_task(void *ic_void)
{
idm_conn_t *ic = ic_void;
ic->ic_transport_ops->it_ini_conn_destroy(ic);
idm_conn_destroy_common(ic);
}
void
idm_ini_conn_destroy(idm_conn_t *ic)
{
/*
* It's reasonable for the initiator to call idm_ini_conn_destroy
* from within the context of the CN_CONNECT_DESTROY notification.
* That's a problem since we want to destroy the taskq for the
* state machine associated with the connection. Remove the
* connection from the list right away then handle the remaining
* work via the idm_global_taskq.
*/
mutex_enter(&idm.idm_global_mutex);
list_remove(&idm.idm_ini_conn_list, ic);
mutex_exit(&idm.idm_global_mutex);
if (taskq_dispatch(idm.idm_global_taskq,
&idm_ini_conn_destroy_task, ic, TQ_SLEEP) == NULL) {
cmn_err(CE_WARN,
"idm_ini_conn_destroy: Couldn't dispatch task");
}
}
/*
* idm_ini_conn_connect
*
* Establish connection to the remote system identified in idm_conn_t.
* The connection parameters including the remote IP address were established
* in the call to idm_ini_conn_create. The IDM state machine will
* perform client notifications as necessary to prompt the initiator through
* the login process. IDM also keeps a timer running so that if the login
* process doesn't complete in a timely manner it will fail.
*
* ic - idm_conn_t structure representing the relevant connection
*
* Returns success if the connection was established, otherwise some kind
* of meaningful error code.
*
* Upon return the login has either failed or is loggin in (ffp)
*/
idm_status_t
idm_ini_conn_connect(idm_conn_t *ic)
{
idm_status_t rc;
rc = idm_conn_sm_init(ic);
if (rc != IDM_STATUS_SUCCESS) {
return (ic->ic_conn_sm_status);
}
/* Hold connection until we return */
idm_conn_hold(ic);
/* Kick state machine */
idm_conn_event(ic, CE_CONNECT_REQ, NULL);
/* Wait for login flag */
mutex_enter(&ic->ic_state_mutex);
while (!(ic->ic_state_flags & CF_LOGIN_READY) &&
!(ic->ic_state_flags & CF_ERROR)) {
cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex);
}
/*
* The CN_READY_TO_LOGIN and/or the CN_CONNECT_FAIL call to
* idm_notify_client has already been generated by the idm conn
* state machine. If connection fails any time after this
* check, we will detect it in iscsi_login.
*/
if (ic->ic_state_flags & CF_ERROR) {
rc = ic->ic_conn_sm_status;
}
mutex_exit(&ic->ic_state_mutex);
idm_conn_rele(ic);
return (rc);
}
/*
* idm_ini_conn_disconnect
*
* Forces a connection (previously established using idm_ini_conn_connect)
* to perform a controlled shutdown, cleaning up any outstanding requests.
*
* ic - idm_conn_t structure representing the relevant connection
*
* This is asynchronous and will return before the connection is properly
* shutdown
*/
/* ARGSUSED */
void
idm_ini_conn_disconnect(idm_conn_t *ic)
{
idm_conn_event(ic, CE_TRANSPORT_FAIL, NULL);
}
/*
* idm_ini_conn_disconnect_wait
*
* Forces a connection (previously established using idm_ini_conn_connect)
* to perform a controlled shutdown. Blocks until the connection is
* disconnected.
*
* ic - idm_conn_t structure representing the relevant connection
*/
/* ARGSUSED */
void
idm_ini_conn_disconnect_sync(idm_conn_t *ic)
{
mutex_enter(&ic->ic_state_mutex);
if ((ic->ic_state != CS_S9_INIT_ERROR) &&
(ic->ic_state != CS_S11_COMPLETE)) {
idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, NULL, CT_NONE);
while ((ic->ic_state != CS_S9_INIT_ERROR) &&
(ic->ic_state != CS_S11_COMPLETE))
cv_wait(&ic->ic_state_cv, &ic->ic_state_mutex);
}
mutex_exit(&ic->ic_state_mutex);
}
/*
* idm_tgt_svc_create
*
* The target calls this service to obtain a service context for each available
* transport, starting a service of each type related to the IP address and port
* passed. The idm_svc_req_t contains the service parameters.
*/
idm_status_t
idm_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t **new_svc)
{
idm_transport_type_t type;
idm_transport_t *it;
idm_svc_t *is;
int rc;
*new_svc = NULL;
is = kmem_zalloc(sizeof (idm_svc_t), KM_SLEEP);
/* Initialize transport-agnostic components of the service handle */
is->is_svc_req = *sr;
mutex_init(&is->is_mutex, NULL, MUTEX_DEFAULT, NULL);
cv_init(&is->is_cv, NULL, CV_DEFAULT, NULL);
mutex_init(&is->is_count_mutex, NULL, MUTEX_DEFAULT, NULL);
cv_init(&is->is_count_cv, NULL, CV_DEFAULT, NULL);
idm_refcnt_init(&is->is_refcnt, is);
/*
* Make sure all available transports are setup. We call this now
* instead of at initialization time in case IB has become available
* since we started (hotplug, etc).
*/
idm_transport_setup(sr->sr_li, B_FALSE);
/*
* Loop through the transports, configuring the transport-specific
* components of each one.
*/
for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
it = &idm_transport_list[type];
/*
* If it_ops is NULL then the transport is unconfigured
* and we shouldn't try to start the service.
*/
if (it->it_ops == NULL) {
continue;
}
rc = it->it_ops->it_tgt_svc_create(sr, is);
if (rc != IDM_STATUS_SUCCESS) {
/* Teardown any configured services */
while (type--) {
it = &idm_transport_list[type];
if (it->it_ops == NULL) {
continue;
}
it->it_ops->it_tgt_svc_destroy(is);
}
/* Free the svc context and return */
kmem_free(is, sizeof (idm_svc_t));
return (rc);
}
}
*new_svc = is;
mutex_enter(&idm.idm_global_mutex);
list_insert_tail(&idm.idm_tgt_svc_list, is);
mutex_exit(&idm.idm_global_mutex);
return (IDM_STATUS_SUCCESS);
}
/*
* idm_tgt_svc_destroy
*
* is - idm_svc_t returned by the call to idm_tgt_svc_create
*
* Cleanup any resources associated with the idm_svc_t.
*/
void
idm_tgt_svc_destroy(idm_svc_t *is)
{
idm_transport_type_t type;
idm_transport_t *it;
mutex_enter(&idm.idm_global_mutex);
/* remove this service from the global list */
list_remove(&idm.idm_tgt_svc_list, is);
/* wakeup any waiters for service change */
cv_broadcast(&idm.idm_tgt_svc_cv);
mutex_exit(&idm.idm_global_mutex);
/* teardown each transport-specific service */
for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
it = &idm_transport_list[type];
if (it->it_ops == NULL) {
continue;
}
it->it_ops->it_tgt_svc_destroy(is);
}
/* tear down the svc resources */
idm_refcnt_destroy(&is->is_refcnt);
cv_destroy(&is->is_count_cv);
mutex_destroy(&is->is_count_mutex);
cv_destroy(&is->is_cv);
mutex_destroy(&is->is_mutex);
/* free the svc handle */
kmem_free(is, sizeof (idm_svc_t));
}
void
idm_tgt_svc_hold(idm_svc_t *is)
{
idm_refcnt_hold(&is->is_refcnt);
}
void
idm_tgt_svc_rele_and_destroy(idm_svc_t *is)
{
idm_refcnt_rele_and_destroy(&is->is_refcnt,
(idm_refcnt_cb_t *)&idm_tgt_svc_destroy);
}
/*
* idm_tgt_svc_online
*
* is - idm_svc_t returned by the call to idm_tgt_svc_create
*
* Online each transport service, as we want this target to be accessible
* via any configured transport.
*
* When the initiator establishes a new connection to the target, IDM will
* call the "new connect" callback defined in the idm_svc_req_t structure
* and it will pass an idm_conn_t structure representing that new connection.
*/
idm_status_t
idm_tgt_svc_online(idm_svc_t *is)
{
idm_transport_type_t type, last_type;
idm_transport_t *it;
int rc = IDM_STATUS_SUCCESS;
mutex_enter(&is->is_mutex);
if (is->is_online == 0) {
/* Walk through each of the transports and online them */
for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
it = &idm_transport_list[type];
if (it->it_ops == NULL) {
/* transport is not registered */
continue;
}
mutex_exit(&is->is_mutex);
rc = it->it_ops->it_tgt_svc_online(is);
mutex_enter(&is->is_mutex);
if (rc != IDM_STATUS_SUCCESS) {
last_type = type;
break;
}
}
if (rc != IDM_STATUS_SUCCESS) {
/*
* The last transport failed to online.
* Offline any transport onlined above and
* do not online the target.
*/
for (type = 0; type < last_type; type++) {
it = &idm_transport_list[type];
if (it->it_ops == NULL) {
/* transport is not registered */
continue;
}
mutex_exit(&is->is_mutex);
it->it_ops->it_tgt_svc_offline(is);
mutex_enter(&is->is_mutex);
}
} else {
/* Target service now online */
is->is_online = 1;
}
} else {
/* Target service already online, just bump the count */
is->is_online++;
}
mutex_exit(&is->is_mutex);
return (rc);
}
/*
* idm_tgt_svc_offline
*
* is - idm_svc_t returned by the call to idm_tgt_svc_create
*
* Shutdown any online target services.
*/
void
idm_tgt_svc_offline(idm_svc_t *is)
{
idm_transport_type_t type;
idm_transport_t *it;
mutex_enter(&is->is_mutex);
is->is_online--;
if (is->is_online == 0) {
/* Walk through each of the transports and offline them */
for (type = 0; type < IDM_TRANSPORT_NUM_TYPES; type++) {
it = &idm_transport_list[type];
if (it->it_ops == NULL) {
/* transport is not registered */
continue;
}
mutex_exit(&is->is_mutex);
it->it_ops->it_tgt_svc_offline(is);
mutex_enter(&is->is_mutex);
}
}
mutex_exit(&is->is_mutex);
}
/*
* idm_tgt_svc_lookup
*
* Lookup a service instance listening on the specified port
*/
idm_svc_t *
idm_tgt_svc_lookup(uint16_t port)
{
idm_svc_t *result;
retry:
mutex_enter(&idm.idm_global_mutex);
for (result = list_head(&idm.idm_tgt_svc_list);
result != NULL;
result = list_next(&idm.idm_tgt_svc_list, result)) {
if (result->is_svc_req.sr_port == port) {
if (result->is_online == 0) {
/*
* A service exists on this port, but it
* is going away, wait for it to cleanup.
*/
cv_wait(&idm.idm_tgt_svc_cv,
&idm.idm_global_mutex);
mutex_exit(&idm.idm_global_mutex);
goto retry;
}
idm_tgt_svc_hold(result);
mutex_exit(&idm.idm_global_mutex);
return (result);
}
}
mutex_exit(&idm.idm_global_mutex);
return (NULL);
}
/*
* idm_negotiate_key_values()
* Give IDM level a chance to negotiate any login parameters it should own.
* -- leave unhandled parameters alone on request_nvl
* -- move all handled parameters to response_nvl with an appropriate response
* -- also add an entry to negotiated_nvl for any accepted parameters
*/
kv_status_t
idm_negotiate_key_values(idm_conn_t *ic, nvlist_t *request_nvl,
nvlist_t *response_nvl, nvlist_t *negotiated_nvl)
{
ASSERT(ic->ic_transport_ops != NULL);
return (ic->ic_transport_ops->it_negotiate_key_values(ic,
request_nvl, response_nvl, negotiated_nvl));
}
/*
* idm_notice_key_values()
* Activate at the IDM level any parameters that have been negotiated.
* Passes the set of key value pairs to the transport for activation.
* This will be invoked as the connection is entering full-feature mode.
*/
void
idm_notice_key_values(idm_conn_t *ic, nvlist_t *negotiated_nvl)
{
ASSERT(ic->ic_transport_ops != NULL);
ic->ic_transport_ops->it_notice_key_values(ic, negotiated_nvl);
}
/*
* idm_declare_key_values()
* Activate an operational set of declarative parameters from the config_nvl,
* and return the selected values in the outgoing_nvl.
*/
kv_status_t
idm_declare_key_values(idm_conn_t *ic, nvlist_t *config_nvl,
nvlist_t *outgoing_nvl)
{
ASSERT(ic->ic_transport_ops != NULL);
return (ic->ic_transport_ops->it_declare_key_values(ic, config_nvl,
outgoing_nvl));
}
/*
* idm_buf_tx_to_ini
*
* This is IDM's implementation of the 'Put_Data' operational primitive.
*
* This function is invoked by a target iSCSI layer to request its local
* Datamover layer to transmit the Data-In PDU to the peer iSCSI layer
* on the remote iSCSI node. The I/O buffer represented by 'idb' is
* transferred to the initiator associated with task 'idt'. The connection
* info, contents of the Data-In PDU header, the DataDescriptorIn, BHS,
* and the callback (idb->idb_buf_cb) at transfer completion are
* provided as input.
*
* This data transfer takes place transparently to the remote iSCSI layer,
* i.e. without its participation.
*
* Using sockets, IDM implements the data transfer by segmenting the data
* buffer into appropriately sized iSCSI PDUs and transmitting them to the
* initiator. iSER performs the transfer using RDMA write.
*
*/
idm_status_t
idm_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb,
uint32_t offset, uint32_t xfer_len,
idm_buf_cb_t idb_buf_cb, void *cb_arg)
{
idm_status_t rc;
idb->idb_bufoffset = offset;
idb->idb_xfer_len = xfer_len;
idb->idb_buf_cb = idb_buf_cb;
idb->idb_cb_arg = cb_arg;
gethrestime(&idb->idb_xfer_start);
/*
* Buffer should not contain the pattern. If the pattern is
* present then we've been asked to transmit initialized data
*/
IDM_BUFPAT_CHECK(idb, xfer_len, BP_CHECK_ASSERT);
mutex_enter(&idt->idt_mutex);
switch (idt->idt_state) {
case TASK_ACTIVE:
idt->idt_tx_to_ini_start++;
idm_task_hold(idt);
idm_buf_bind_in_locked(idt, idb);
idb->idb_in_transport = B_TRUE;
rc = (*idt->idt_ic->ic_transport_ops->it_buf_tx_to_ini)
(idt, idb);
return (rc);
case TASK_SUSPENDING:
case TASK_SUSPENDED:
/*
* Bind buffer but don't start a transfer since the task
* is suspended
*/
idm_buf_bind_in_locked(idt, idb);
mutex_exit(&idt->idt_mutex);
return (IDM_STATUS_SUCCESS);
case TASK_ABORTING:
case TASK_ABORTED:
/*
* Once the task is aborted, any buffers added to the
* idt_inbufv will never get cleaned up, so just return
* SUCCESS. The buffer should get cleaned up by the
* client or framework once task_aborted has completed.
*/
mutex_exit(&idt->idt_mutex);
return (IDM_STATUS_SUCCESS);
default:
ASSERT(0);
break;
}
mutex_exit(&idt->idt_mutex);
return (IDM_STATUS_FAIL);
}
/*
* idm_buf_rx_from_ini
*
* This is IDM's implementation of the 'Get_Data' operational primitive.
*
* This function is invoked by a target iSCSI layer to request its local
* Datamover layer to retrieve certain data identified by the R2T PDU from the
* peer iSCSI layer on the remote node. The retrieved Data-Out PDU will be
* mapped to the respective buffer by the task tags (ITT & TTT).
* The connection information, contents of an R2T PDU, DataDescriptor, BHS, and
* the callback (idb->idb_buf_cb) notification for data transfer completion are
* are provided as input.
*
* When an iSCSI node sends an R2T PDU to its local Datamover layer, the local
* Datamover layer, the local and remote Datamover layers transparently bring
* about the data transfer requested by the R2T PDU, without the participation
* of the iSCSI layers.
*
* Using sockets, IDM transmits an R2T PDU for each buffer and the rx_data_out()
* assembles the Data-Out PDUs into the buffer. iSER uses RDMA read.
*
*/
idm_status_t
idm_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb,
uint32_t offset, uint32_t xfer_len,
idm_buf_cb_t idb_buf_cb, void *cb_arg)
{
idm_status_t rc;
idb->idb_bufoffset = offset;
idb->idb_xfer_len = xfer_len;
idb->idb_buf_cb = idb_buf_cb;
idb->idb_cb_arg = cb_arg;
gethrestime(&idb->idb_xfer_start);
/*
* "In" buf list is for "Data In" PDU's, "Out" buf list is for
* "Data Out" PDU's
*/
mutex_enter(&idt->idt_mutex);
switch (idt->idt_state) {
case TASK_ACTIVE:
idt->idt_rx_from_ini_start++;
idm_task_hold(idt);
idm_buf_bind_out_locked(idt, idb);
idb->idb_in_transport = B_TRUE;
rc = (*idt->idt_ic->ic_transport_ops->it_buf_rx_from_ini)
(idt, idb);
return (rc);
case TASK_SUSPENDING:
case TASK_SUSPENDED:
case TASK_ABORTING:
case TASK_ABORTED:
/*
* Bind buffer but don't start a transfer since the task
* is suspended
*/
idm_buf_bind_out_locked(idt, idb);
mutex_exit(&idt->idt_mutex);
return (IDM_STATUS_SUCCESS);
default:
ASSERT(0);
break;
}
mutex_exit(&idt->idt_mutex);
return (IDM_STATUS_FAIL);
}
/*
* idm_buf_tx_to_ini_done
*
* The transport calls this after it has completed a transfer requested by
* a call to transport_buf_tx_to_ini
*
* Caller holds idt->idt_mutex, idt->idt_mutex is released before returning.
* idt may be freed after the call to idb->idb_buf_cb.
*/
void
idm_buf_tx_to_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status)
{
ASSERT(mutex_owned(&idt->idt_mutex));
idb->idb_in_transport = B_FALSE;
idb->idb_tx_thread = B_FALSE;
idt->idt_tx_to_ini_done++;
gethrestime(&idb->idb_xfer_done);
/*
* idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or
* TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes
* to 0.
*/
idm_task_rele(idt);
idb->idb_status = status;
switch (idt->idt_state) {
case TASK_ACTIVE:
idt->idt_ic->ic_timestamp = ddi_get_lbolt();
idm_buf_unbind_in_locked(idt, idb);
mutex_exit(&idt->idt_mutex);
(*idb->idb_buf_cb)(idb, status);
return;
case TASK_SUSPENDING:
case TASK_SUSPENDED:
case TASK_ABORTING:
case TASK_ABORTED:
/*
* To keep things simple we will ignore the case where the
* transfer was successful and leave all buffers bound to the
* task. This allows us to also ignore the case where we've
* been asked to abort a task but the last transfer of the
* task has completed. IDM has no idea whether this was, in
* fact, the last transfer of the task so it would be difficult
* to handle this case. Everything should get sorted out again
* after task reassignment is complete.
*
* In the case of TASK_ABORTING we could conceivably call the
* buffer callback here but the timing of when the client's
* client_task_aborted callback is invoked vs. when the client's
* buffer callback gets invoked gets sticky. We don't want
* the client to here from us again after the call to
* client_task_aborted() but we don't want to give it a bunch
* of failed buffer transfers until we've called
* client_task_aborted(). Instead we'll just leave all the
* buffers bound and allow the client to cleanup.
*/
break;
default:
ASSERT(0);
}
mutex_exit(&idt->idt_mutex);
}
/*
* idm_buf_rx_from_ini_done
*
* The transport calls this after it has completed a transfer requested by
* a call totransport_buf_tx_to_ini
*
* Caller holds idt->idt_mutex, idt->idt_mutex is released before returning.
* idt may be freed after the call to idb->idb_buf_cb.
*/
void
idm_buf_rx_from_ini_done(idm_task_t *idt, idm_buf_t *idb, idm_status_t status)
{
ASSERT(mutex_owned(&idt->idt_mutex));
idb->idb_in_transport = B_FALSE;
idt->idt_rx_from_ini_done++;
gethrestime(&idb->idb_xfer_done);
/*
* idm_refcnt_rele may cause TASK_SUSPENDING --> TASK_SUSPENDED or
* TASK_ABORTING --> TASK_ABORTED transistion if the refcount goes
* to 0.
*/
idm_task_rele(idt);
idb->idb_status = status;
if (status == IDM_STATUS_SUCCESS) {
/*
* Buffer should not contain the pattern. If it does then
* we did not get the data from the remote host.
*/
IDM_BUFPAT_CHECK(idb, idb->idb_xfer_len, BP_CHECK_ASSERT);
}
switch (idt->idt_state) {
case TASK_ACTIVE:
idt->idt_ic->ic_timestamp = ddi_get_lbolt();
idm_buf_unbind_out_locked(idt, idb);
mutex_exit(&idt->idt_mutex);
(*idb->idb_buf_cb)(idb, status);
return;
case TASK_SUSPENDING:
case TASK_SUSPENDED:
case TASK_ABORTING:
case TASK_ABORTED:
/*
* To keep things simple we will ignore the case where the
* transfer was successful and leave all buffers bound to the
* task. This allows us to also ignore the case where we've
* been asked to abort a task but the last transfer of the
* task has completed. IDM has no idea whether this was, in
* fact, the last transfer of the task so it would be difficult
* to handle this case. Everything should get sorted out again
* after task reassignment is complete.
*
* In the case of TASK_ABORTING we could conceivably call the
* buffer callback here but the timing of when the client's
* client_task_aborted callback is invoked vs. when the client's
* buffer callback gets invoked gets sticky. We don't want
* the client to here from us again after the call to
* client_task_aborted() but we don't want to give it a bunch
* of failed buffer transfers until we've called
* client_task_aborted(). Instead we'll just leave all the
* buffers bound and allow the client to cleanup.
*/
break;
default:
ASSERT(0);
}
mutex_exit(&idt->idt_mutex);
}
/*
* idm_buf_alloc
*
* Allocates a buffer handle and registers it for use with the transport
* layer. If a buffer is not passed on bufptr, the buffer will be allocated
* as well as the handle.
*
* ic - connection on which the buffer will be transferred
* bufptr - allocate memory for buffer if NULL, else assign to buffer
* buflen - length of buffer
*
* Returns idm_buf_t handle if successful, otherwise NULL
*/
idm_buf_t *
idm_buf_alloc(idm_conn_t *ic, void *bufptr, uint64_t buflen)
{
idm_buf_t *buf = NULL;
int rc;
ASSERT(ic != NULL);
ASSERT(idm.idm_buf_cache != NULL);
ASSERT(buflen > 0);
/* Don't allocate new buffers if we are not in FFP */
mutex_enter(&ic->ic_state_mutex);
if (!ic->ic_ffp) {
mutex_exit(&ic->ic_state_mutex);
return (NULL);
}
idm_conn_hold(ic);
mutex_exit(&ic->ic_state_mutex);
buf = kmem_cache_alloc(idm.idm_buf_cache, KM_NOSLEEP);
if (buf == NULL) {
idm_conn_rele(ic);
return (NULL);
}
buf->idb_ic = ic;
buf->idb_buflen = buflen;
buf->idb_exp_offset = 0;
buf->idb_bufoffset = 0;
buf->idb_xfer_len = 0;
buf->idb_magic = IDM_BUF_MAGIC;
buf->idb_in_transport = B_FALSE;
buf->idb_bufbcopy = B_FALSE;
/*
* If bufptr is NULL, we have an implicit request to allocate
* memory for this IDM buffer handle and register it for use
* with the transport. To simplify this, and to give more freedom
* to the transport layer for it's own buffer management, both of
* these actions will take place in the transport layer.
* If bufptr is set, then the caller has allocated memory (or more
* likely it's been passed from an upper layer), and we need only
* register the buffer for use with the transport layer.
*/
if (bufptr == NULL) {
/*
* Allocate a buffer from the transport layer (which
* will also register the buffer for use).
*/
rc = ic->ic_transport_ops->it_buf_alloc(buf, buflen);
if (rc != 0) {
idm_conn_rele(ic);
kmem_cache_free(idm.idm_buf_cache, buf);
return (NULL);
}
/* Set the bufalloc'd flag */
buf->idb_bufalloc = B_TRUE;
} else {
/*
* For large transfers, Set the passed bufptr into
* the buf handle, and register the handle with the
* transport layer. As memory registration with the
* transport layer is a time/cpu intensive operation,
* for small transfers (up to a pre-defined bcopy
* threshold), use pre-registered memory buffers
* and bcopy data at the appropriate time.
*/
buf->idb_buf = bufptr;
rc = ic->ic_transport_ops->it_buf_setup(buf);
if (rc != 0) {
idm_conn_rele(ic);
kmem_cache_free(idm.idm_buf_cache, buf);
return (NULL);
}
/*
* The transport layer is now expected to set the idb_bufalloc
* correctly to indicate if resources have been allocated.
*/
}
IDM_BUFPAT_SET(buf);
return (buf);
}
/*
* idm_buf_free
*
* Release a buffer handle along with the associated buffer that was allocated
* or assigned with idm_buf_alloc
*/
void
idm_buf_free(idm_buf_t *buf)
{
idm_conn_t *ic = buf->idb_ic;
buf->idb_task_binding = NULL;
if (buf->idb_bufalloc) {
ic->ic_transport_ops->it_buf_free(buf);
} else {
ic->ic_transport_ops->it_buf_teardown(buf);
}
kmem_cache_free(idm.idm_buf_cache, buf);
idm_conn_rele(ic);
}
/*
* idm_buf_bind_in
*
* This function associates a buffer with a task. This is only for use by the
* iSCSI initiator that will have only one buffer per transfer direction
*
*/
void
idm_buf_bind_in(idm_task_t *idt, idm_buf_t *buf)
{
mutex_enter(&idt->idt_mutex);
idm_buf_bind_in_locked(idt, buf);
mutex_exit(&idt->idt_mutex);
}
static void
idm_buf_bind_in_locked(idm_task_t *idt, idm_buf_t *buf)
{
buf->idb_task_binding = idt;
buf->idb_ic = idt->idt_ic;
idm_listbuf_insert(&idt->idt_inbufv, buf);
}
void
idm_buf_bind_out(idm_task_t *idt, idm_buf_t *buf)
{
/*
* For small transfers, the iSER transport delegates the IDM
* layer to bcopy the SCSI Write data for faster IOPS.
*/
if (buf->idb_bufbcopy == B_TRUE) {
bcopy(buf->idb_bufptr, buf->idb_buf, buf->idb_buflen);
}
mutex_enter(&idt->idt_mutex);
idm_buf_bind_out_locked(idt, buf);
mutex_exit(&idt->idt_mutex);
}
static void
idm_buf_bind_out_locked(idm_task_t *idt, idm_buf_t *buf)
{
buf->idb_task_binding = idt;
buf->idb_ic = idt->idt_ic;
idm_listbuf_insert(&idt->idt_outbufv, buf);
}
void
idm_buf_unbind_in(idm_task_t *idt, idm_buf_t *buf)
{
/*
* For small transfers, the iSER transport delegates the IDM
* layer to bcopy the SCSI Read data into the read buufer
* for faster IOPS.
*/
if (buf->idb_bufbcopy == B_TRUE) {
bcopy(buf->idb_buf, buf->idb_bufptr, buf->idb_buflen);
}
mutex_enter(&idt->idt_mutex);
idm_buf_unbind_in_locked(idt, buf);
mutex_exit(&idt->idt_mutex);
}
static void
idm_buf_unbind_in_locked(idm_task_t *idt, idm_buf_t *buf)
{
list_remove(&idt->idt_inbufv, buf);
}
void
idm_buf_unbind_out(idm_task_t *idt, idm_buf_t *buf)
{
mutex_enter(&idt->idt_mutex);
idm_buf_unbind_out_locked(idt, buf);
mutex_exit(&idt->idt_mutex);
}
static void
idm_buf_unbind_out_locked(idm_task_t *idt, idm_buf_t *buf)
{
list_remove(&idt->idt_outbufv, buf);
}
/*
* idm_buf_find() will lookup the idm_buf_t based on the relative offset in the
* iSCSI PDU
*/
idm_buf_t *
idm_buf_find(void *lbuf, size_t data_offset)
{
idm_buf_t *idb;
list_t *lst = (list_t *)lbuf;
/* iterate through the list to find the buffer */
for (idb = list_head(lst); idb != NULL; idb = list_next(lst, idb)) {
ASSERT((idb->idb_ic->ic_conn_type == CONN_TYPE_TGT) ||
(idb->idb_bufoffset == 0));
if ((data_offset >= idb->idb_bufoffset) &&
(data_offset < (idb->idb_bufoffset + idb->idb_buflen))) {
return (idb);
}
}
return (NULL);
}
void
idm_bufpat_set(idm_buf_t *idb)
{
idm_bufpat_t *bufpat;
int len, i;
len = idb->idb_buflen;
len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t);
bufpat = idb->idb_buf;
for (i = 0; i < len; i += sizeof (idm_bufpat_t)) {
bufpat->bufpat_idb = idb;
bufpat->bufpat_bufmagic = IDM_BUF_MAGIC;
bufpat->bufpat_offset = i;
bufpat++;
}
}
boolean_t
idm_bufpat_check(idm_buf_t *idb, int check_len, idm_bufpat_check_type_t type)
{
idm_bufpat_t *bufpat;
int len, i;
len = (type == BP_CHECK_QUICK) ? sizeof (idm_bufpat_t) : check_len;
len = (len / sizeof (idm_bufpat_t)) * sizeof (idm_bufpat_t);
ASSERT(len <= idb->idb_buflen);
bufpat = idb->idb_buf;
/*
* Don't check the pattern in buffers that came from outside IDM
* (these will be buffers from the initiator that we opted not
* to double-buffer)
*/
if (!idb->idb_bufalloc)
return (B_FALSE);
/*
* Return true if we find the pattern anywhere in the buffer
*/
for (i = 0; i < len; i += sizeof (idm_bufpat_t)) {
if (BUFPAT_MATCH(bufpat, idb)) {
IDM_CONN_LOG(CE_WARN, "idm_bufpat_check found: "
"idb %p bufpat %p "
"bufpat_idb=%p bufmagic=%08x offset=%08x",
(void *)idb, (void *)bufpat, bufpat->bufpat_idb,
bufpat->bufpat_bufmagic, bufpat->bufpat_offset);
DTRACE_PROBE2(bufpat__pattern__found,
idm_buf_t *, idb, idm_bufpat_t *, bufpat);
if (type == BP_CHECK_ASSERT) {
ASSERT(0);
}
return (B_TRUE);
}
bufpat++;
}
return (B_FALSE);
}
/*
* idm_task_alloc
*
* This function will allocate a idm_task_t structure. A task tag is also
* generated and saved in idt_tt. The task is not active.
*/
idm_task_t *
idm_task_alloc(idm_conn_t *ic)
{
idm_task_t *idt;
ASSERT(ic != NULL);
/* Don't allocate new tasks if we are not in FFP */
if (!ic->ic_ffp) {
return (NULL);
}
idt = kmem_cache_alloc(idm.idm_task_cache, KM_NOSLEEP);
if (idt == NULL) {
return (NULL);
}
ASSERT(list_is_empty(&idt->idt_inbufv));
ASSERT(list_is_empty(&idt->idt_outbufv));
mutex_enter(&ic->ic_state_mutex);
if (!ic->ic_ffp) {
mutex_exit(&ic->ic_state_mutex);
kmem_cache_free(idm.idm_task_cache, idt);
return (NULL);
}
idm_conn_hold(ic);
mutex_exit(&ic->ic_state_mutex);
idt->idt_state = TASK_IDLE;
idt->idt_ic = ic;
idt->idt_private = NULL;
idt->idt_exp_datasn = 0;
idt->idt_exp_rttsn = 0;
idt->idt_flags = 0;
return (idt);
}
/*
* idm_task_start
*
* Mark the task active and initialize some stats. The caller
* sets up the idm_task_t structure with a prior call to idm_task_alloc().
* The task service does not function as a task/work engine, it is the
* responsibility of the initiator to start the data transfer and free the
* resources.
*/
void
idm_task_start(idm_task_t *idt, uintptr_t handle)
{
ASSERT(idt != NULL);
/* mark the task as ACTIVE */
idt->idt_state = TASK_ACTIVE;
idt->idt_client_handle = handle;
idt->idt_tx_to_ini_start = idt->idt_tx_to_ini_done =
idt->idt_rx_from_ini_start = idt->idt_rx_from_ini_done =
idt->idt_tx_bytes = idt->idt_rx_bytes = 0;
}
/*
* idm_task_done
*
* This function sets the state to indicate that the task is no longer active.
*/
void
idm_task_done(idm_task_t *idt)
{
ASSERT(idt != NULL);
mutex_enter(&idt->idt_mutex);
idt->idt_state = TASK_IDLE;
mutex_exit(&idt->idt_mutex);
/*
* Although unlikely it is possible for a reference to come in after
* the client has decided the task is over but before we've marked
* the task idle. One specific unavoidable scenario is the case where
* received PDU with the matching ITT/TTT results in a successful
* lookup of this task. We are at the mercy of the remote node in
* that case so we need to handle it. Now that the task state
* has changed no more references will occur so a simple call to
* idm_refcnt_wait_ref should deal with the situation.
*/
idm_refcnt_wait_ref(&idt->idt_refcnt);
idm_refcnt_reset(&idt->idt_refcnt);
}
/*
* idm_task_free
*
* This function will free the Task Tag and the memory allocated for the task
* idm_task_done should be called prior to this call
*/
void
idm_task_free(idm_task_t *idt)
{
idm_conn_t *ic;
ASSERT(idt != NULL);
ASSERT(idt->idt_refcnt.ir_refcnt == 0);
ASSERT(idt->idt_state == TASK_IDLE);
ic = idt->idt_ic;
/*
* It's possible for items to still be in the idt_inbufv list if
* they were added after idm_free_task_rsrc was called. We rely on
* STMF to free all buffers associated with the task however STMF
* doesn't know that we have this reference to the buffers.
* Use list_create so that we don't end up with stale references
* to these buffers.
*/
list_create(&idt->idt_inbufv, sizeof (idm_buf_t),
offsetof(idm_buf_t, idb_buflink));
list_create(&idt->idt_outbufv, sizeof (idm_buf_t),
offsetof(idm_buf_t, idb_buflink));
kmem_cache_free(idm.idm_task_cache, idt);
idm_conn_rele(ic);
}
/*
* idm_task_find_common
* common code for idm_task_find() and idm_task_find_and_complete()
*/
/*ARGSUSED*/
static idm_task_t *
idm_task_find_common(idm_conn_t *ic, uint32_t itt, uint32_t ttt,
boolean_t complete)
{
uint32_t tt, client_handle;
idm_task_t *idt;
/*
* Must match both itt and ttt. The table is indexed by itt
* for initiator connections and ttt for target connections.
*/
if (IDM_CONN_ISTGT(ic)) {
tt = ttt;
client_handle = itt;
} else {
tt = itt;
client_handle = ttt;
}
rw_enter(&idm.idm_taskid_table_lock, RW_READER);
if (tt >= idm.idm_taskid_max) {
rw_exit(&idm.idm_taskid_table_lock);
return (NULL);
}
idt = idm.idm_taskid_table[tt];
if (idt != NULL) {
mutex_enter(&idt->idt_mutex);
if ((idt->idt_state != TASK_ACTIVE) ||
(idt->idt_ic != ic) ||
(IDM_CONN_ISTGT(ic) &&
(idt->idt_client_handle != client_handle))) {
/*
* Task doesn't match or task is aborting and
* we don't want any more references.
*/
if ((idt->idt_ic != ic) &&
(idt->idt_state == TASK_ACTIVE) &&
(IDM_CONN_ISINI(ic) || idt->idt_client_handle ==
client_handle)) {
IDM_CONN_LOG(CE_WARN,
"idm_task_find: wrong connection %p != %p",
(void *)ic, (void *)idt->idt_ic);
}
mutex_exit(&idt->idt_mutex);
rw_exit(&idm.idm_taskid_table_lock);
return (NULL);
}
idm_task_hold(idt);
/*
* Set the task state to TASK_COMPLETE so it can no longer
* be found or aborted.
*/
if (B_TRUE == complete)
idt->idt_state = TASK_COMPLETE;
mutex_exit(&idt->idt_mutex);
}
rw_exit(&idm.idm_taskid_table_lock);
return (idt);
}
/*
* This function looks up a task by task tag.
*/
idm_task_t *
idm_task_find(idm_conn_t *ic, uint32_t itt, uint32_t ttt)
{
return (idm_task_find_common(ic, itt, ttt, B_FALSE));
}
/*
* This function looks up a task by task tag. If found, the task state
* is atomically set to TASK_COMPLETE so it can longer be found or aborted.
*/
idm_task_t *
idm_task_find_and_complete(idm_conn_t *ic, uint32_t itt, uint32_t ttt)
{
return (idm_task_find_common(ic, itt, ttt, B_TRUE));
}
/*
* idm_task_find_by_handle
*
* This function looks up a task by the client-private idt_client_handle.
*
* This function should NEVER be called in the performance path. It is
* intended strictly for error recovery/task management.
*/
/*ARGSUSED*/
void *
idm_task_find_by_handle(idm_conn_t *ic, uintptr_t handle)
{
idm_task_t *idt = NULL;
int idx = 0;
rw_enter(&idm.idm_taskid_table_lock, RW_READER);
for (idx = 0; idx < idm.idm_taskid_max; idx++) {
idt = idm.idm_taskid_table[idx];
if (idt == NULL)
continue;
mutex_enter(&idt->idt_mutex);
if (idt->idt_state != TASK_ACTIVE) {
/*
* Task is either in suspend, abort, or already
* complete.
*/
mutex_exit(&idt->idt_mutex);
continue;
}
if (idt->idt_client_handle == handle) {
idm_task_hold(idt);
mutex_exit(&idt->idt_mutex);
break;
}
mutex_exit(&idt->idt_mutex);
}
rw_exit(&idm.idm_taskid_table_lock);
if ((idt == NULL) || (idx == idm.idm_taskid_max))
return (NULL);
return (idt->idt_private);
}
void
idm_task_hold(idm_task_t *idt)
{
idm_refcnt_hold(&idt->idt_refcnt);
}
void
idm_task_rele(idm_task_t *idt)
{
idm_refcnt_rele(&idt->idt_refcnt);
}
void
idm_task_abort(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type)
{
idm_task_t *task;
int idx;
/*
* Passing NULL as the task indicates that all tasks
* for this connection should be aborted.
*/
if (idt == NULL) {
/*
* Only the connection state machine should ask for
* all tasks to abort and this should never happen in FFP.
*/
ASSERT(!ic->ic_ffp);
rw_enter(&idm.idm_taskid_table_lock, RW_READER);
for (idx = 0; idx < idm.idm_taskid_max; idx++) {
task = idm.idm_taskid_table[idx];
if (task == NULL)
continue;
mutex_enter(&task->idt_mutex);
if ((task->idt_state != TASK_IDLE) &&
(task->idt_state != TASK_COMPLETE) &&
(task->idt_ic == ic)) {
rw_exit(&idm.idm_taskid_table_lock);
idm_task_abort_one(ic, task, abort_type);
rw_enter(&idm.idm_taskid_table_lock, RW_READER);
} else
mutex_exit(&task->idt_mutex);
}
rw_exit(&idm.idm_taskid_table_lock);
} else {
mutex_enter(&idt->idt_mutex);
idm_task_abort_one(ic, idt, abort_type);
}
}
static void
idm_task_abort_unref_cb(void *ref)
{
idm_task_t *idt = ref;
mutex_enter(&idt->idt_mutex);
switch (idt->idt_state) {
case TASK_SUSPENDING:
idt->idt_state = TASK_SUSPENDED;
mutex_exit(&idt->idt_mutex);
idm_task_aborted(idt, IDM_STATUS_SUSPENDED);
return;
case TASK_ABORTING:
idt->idt_state = TASK_ABORTED;
mutex_exit(&idt->idt_mutex);
idm_task_aborted(idt, IDM_STATUS_ABORTED);
return;
default:
mutex_exit(&idt->idt_mutex);
ASSERT(0);
break;
}
}
/*
* Abort the idm task.
* Caller must hold the task mutex, which will be released before return
*/
static void
idm_task_abort_one(idm_conn_t *ic, idm_task_t *idt, idm_abort_type_t abort_type)
{
/* Caller must hold connection mutex */
ASSERT(mutex_owned(&idt->idt_mutex));
switch (idt->idt_state) {
case TASK_ACTIVE:
switch (abort_type) {
case AT_INTERNAL_SUSPEND:
/* Call transport to release any resources */
idt->idt_state = TASK_SUSPENDING;
mutex_exit(&idt->idt_mutex);
ic->ic_transport_ops->it_free_task_rsrc(idt);
/*
* Wait for outstanding references. When all
* references are released the callback will call
* idm_task_aborted().
*/
idm_refcnt_async_wait_ref(&idt->idt_refcnt,
&idm_task_abort_unref_cb);
return;
case AT_INTERNAL_ABORT:
case AT_TASK_MGMT_ABORT:
idt->idt_state = TASK_ABORTING;
mutex_exit(&idt->idt_mutex);
ic->ic_transport_ops->it_free_task_rsrc(idt);
/*
* Wait for outstanding references. When all
* references are released the callback will call
* idm_task_aborted().
*/
idm_refcnt_async_wait_ref(&idt->idt_refcnt,
&idm_task_abort_unref_cb);
return;
default:
ASSERT(0);
}
break;
case TASK_SUSPENDING:
/* Already called transport_free_task_rsrc(); */
switch (abort_type) {
case AT_INTERNAL_SUSPEND:
/* Already doing it */
break;
case AT_INTERNAL_ABORT:
case AT_TASK_MGMT_ABORT:
idt->idt_state = TASK_ABORTING;
break;
default:
ASSERT(0);
}
break;
case TASK_SUSPENDED:
/* Already called transport_free_task_rsrc(); */
switch (abort_type) {
case AT_INTERNAL_SUSPEND:
/* Already doing it */
break;
case AT_INTERNAL_ABORT:
case AT_TASK_MGMT_ABORT:
idt->idt_state = TASK_ABORTING;
mutex_exit(&idt->idt_mutex);
/*
* We could probably call idm_task_aborted directly
* here but we may be holding the conn lock. It's
* easier to just switch contexts. Even though
* we shouldn't really have any references we'll
* set the state to TASK_ABORTING instead of
* TASK_ABORTED so we can use the same code path.
*/
idm_refcnt_async_wait_ref(&idt->idt_refcnt,
&idm_task_abort_unref_cb);
return;
default:
ASSERT(0);
}
break;
case TASK_ABORTING:
case TASK_ABORTED:
switch (abort_type) {
case AT_INTERNAL_SUSPEND:
/* We're already past this point... */
case AT_INTERNAL_ABORT:
case AT_TASK_MGMT_ABORT:
/* Already doing it */
break;
default:
ASSERT(0);
}
break;
case TASK_COMPLETE:
/*
* In this case, let it go. The status has already been
* sent (which may or may not get successfully transmitted)
* and we don't want to end up in a race between completing
* the status PDU and marking the task suspended.
*/
break;
default:
ASSERT(0);
}
mutex_exit(&idt->idt_mutex);
}
static void
idm_task_aborted(idm_task_t *idt, idm_status_t status)
{
(*idt->idt_ic->ic_conn_ops.icb_task_aborted)(idt, status);
}
/*
* idm_pdu_tx
*
* This is IDM's implementation of the 'Send_Control' operational primitive.
* This function is invoked by an initiator iSCSI layer requesting the transfer
* of a iSCSI command PDU or a target iSCSI layer requesting the transfer of a
* iSCSI response PDU. The PDU will be transmitted as-is by the local Datamover
* layer to the peer iSCSI layer in the remote iSCSI node. The connection info
* and iSCSI PDU-specific qualifiers namely BHS, AHS, DataDescriptor and Size
* are provided as input.
*
*/
void
idm_pdu_tx(idm_pdu_t *pdu)
{
idm_conn_t *ic = pdu->isp_ic;
iscsi_async_evt_hdr_t *async_evt;
/*
* If we are in full-featured mode then route SCSI-related
* commands to the appropriate function vector without checking
* the connection state. We will only be in full-feature mode
* when we are in an acceptable state for SCSI PDU's.
*
* We also need to ensure that there are no PDU events outstanding
* on the state machine. Any non-SCSI PDU's received in full-feature
* mode will result in PDU events and until these have been handled
* we need to route all PDU's through the state machine as PDU
* events to maintain ordering.
*
* Note that IDM cannot enter FFP mode until it processes in
* its state machine the last xmit of the login process.
* Hence, checking the IDM_PDU_LOGIN_TX flag here would be
* superfluous.
*/
mutex_enter(&ic->ic_state_mutex);
if (ic->ic_ffp && (ic->ic_pdu_events == 0)) {
mutex_exit(&ic->ic_state_mutex);
switch (IDM_PDU_OPCODE(pdu)) {
case ISCSI_OP_SCSI_RSP:
/* Target only */
DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic,
iscsi_scsi_rsp_hdr_t *,
(iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr);
idm_pdu_tx_forward(ic, pdu);
return;
case ISCSI_OP_SCSI_TASK_MGT_RSP:
/* Target only */
DTRACE_ISCSI_2(task__response, idm_conn_t *, ic,
iscsi_text_rsp_hdr_t *,
(iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
idm_pdu_tx_forward(ic, pdu);
return;
case ISCSI_OP_SCSI_DATA_RSP:
/* Target only */
DTRACE_ISCSI_2(data__send, idm_conn_t *, ic,
iscsi_data_rsp_hdr_t *,
(iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
idm_pdu_tx_forward(ic, pdu);
return;
case ISCSI_OP_RTT_RSP:
/* Target only */
DTRACE_ISCSI_2(data__request, idm_conn_t *, ic,
iscsi_rtt_hdr_t *,
(iscsi_rtt_hdr_t *)pdu->isp_hdr);
idm_pdu_tx_forward(ic, pdu);
return;
case ISCSI_OP_NOOP_IN:
/* Target only */
DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic,
iscsi_nop_in_hdr_t *,
(iscsi_nop_in_hdr_t *)pdu->isp_hdr);
idm_pdu_tx_forward(ic, pdu);
return;
case ISCSI_OP_TEXT_RSP:
/* Target only */
DTRACE_ISCSI_2(text__response, idm_conn_t *, ic,
iscsi_text_rsp_hdr_t *,
(iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
idm_pdu_tx_forward(ic, pdu);
return;
case ISCSI_OP_TEXT_CMD:
case ISCSI_OP_NOOP_OUT:
case ISCSI_OP_SCSI_CMD:
case ISCSI_OP_SCSI_DATA:
case ISCSI_OP_SCSI_TASK_MGT_MSG:
/* Initiator only */
idm_pdu_tx_forward(ic, pdu);
return;
default:
break;
}
mutex_enter(&ic->ic_state_mutex);
}
/*
* Any PDU's processed outside of full-feature mode and non-SCSI
* PDU's in full-feature mode are handled by generating an
* event to the connection state machine. The state machine
* will validate the PDU against the current state and either
* transmit the PDU if the opcode is allowed or handle an
* error if the PDU is not allowed.
*
* This code-path will also generate any events that are implied
* by the PDU opcode. For example a "login response" with success
* status generates a CE_LOGOUT_SUCCESS_SND event.
*/
switch (IDM_PDU_OPCODE(pdu)) {
case ISCSI_OP_LOGIN_CMD:
idm_conn_tx_pdu_event(ic, CE_LOGIN_SND, (uintptr_t)pdu);
break;
case ISCSI_OP_LOGIN_RSP:
DTRACE_ISCSI_2(login__response, idm_conn_t *, ic,
iscsi_login_rsp_hdr_t *,
(iscsi_login_rsp_hdr_t *)pdu->isp_hdr);
idm_parse_login_rsp(ic, pdu, /* Is RX */ B_FALSE);
break;
case ISCSI_OP_LOGOUT_CMD:
idm_parse_logout_req(ic, pdu, /* Is RX */ B_FALSE);
break;
case ISCSI_OP_LOGOUT_RSP:
DTRACE_ISCSI_2(logout__response, idm_conn_t *, ic,
iscsi_logout_rsp_hdr_t *,
(iscsi_logout_rsp_hdr_t *)pdu->isp_hdr);
idm_parse_logout_rsp(ic, pdu, /* Is RX */ B_FALSE);
break;
case ISCSI_OP_ASYNC_EVENT:
DTRACE_ISCSI_2(async__send, idm_conn_t *, ic,
iscsi_async_evt_hdr_t *,
(iscsi_async_evt_hdr_t *)pdu->isp_hdr);
async_evt = (iscsi_async_evt_hdr_t *)pdu->isp_hdr;
switch (async_evt->async_event) {
case ISCSI_ASYNC_EVENT_REQUEST_LOGOUT:
idm_conn_tx_pdu_event(ic, CE_ASYNC_LOGOUT_SND,
(uintptr_t)pdu);
break;
case ISCSI_ASYNC_EVENT_DROPPING_CONNECTION:
idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_CONN_SND,
(uintptr_t)pdu);
break;
case ISCSI_ASYNC_EVENT_DROPPING_ALL_CONNECTIONS:
idm_conn_tx_pdu_event(ic, CE_ASYNC_DROP_ALL_CONN_SND,
(uintptr_t)pdu);
break;
case ISCSI_ASYNC_EVENT_SCSI_EVENT:
case ISCSI_ASYNC_EVENT_PARAM_NEGOTIATION:
default:
idm_conn_tx_pdu_event(ic, CE_MISC_TX,
(uintptr_t)pdu);
break;
}
break;
case ISCSI_OP_SCSI_RSP:
/* Target only */
DTRACE_ISCSI_2(scsi__response, idm_conn_t *, ic,
iscsi_scsi_rsp_hdr_t *,
(iscsi_scsi_rsp_hdr_t *)pdu->isp_hdr);
idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
break;
case ISCSI_OP_SCSI_TASK_MGT_RSP:
/* Target only */
DTRACE_ISCSI_2(task__response, idm_conn_t *, ic,
iscsi_scsi_task_mgt_rsp_hdr_t *,
(iscsi_scsi_task_mgt_rsp_hdr_t *)pdu->isp_hdr);
idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
break;
case ISCSI_OP_SCSI_DATA_RSP:
/* Target only */
DTRACE_ISCSI_2(data__send, idm_conn_t *, ic,
iscsi_data_rsp_hdr_t *,
(iscsi_data_rsp_hdr_t *)pdu->isp_hdr);
idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
break;
case ISCSI_OP_RTT_RSP:
/* Target only */
DTRACE_ISCSI_2(data__request, idm_conn_t *, ic,
iscsi_rtt_hdr_t *,
(iscsi_rtt_hdr_t *)pdu->isp_hdr);
idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
break;
case ISCSI_OP_NOOP_IN:
/* Target only */
DTRACE_ISCSI_2(nop__send, idm_conn_t *, ic,
iscsi_nop_in_hdr_t *,
(iscsi_nop_in_hdr_t *)pdu->isp_hdr);
idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
break;
case ISCSI_OP_TEXT_RSP:
/* Target only */
DTRACE_ISCSI_2(text__response, idm_conn_t *, ic,
iscsi_text_rsp_hdr_t *,
(iscsi_text_rsp_hdr_t *)pdu->isp_hdr);
idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
break;
/* Initiator only */
case ISCSI_OP_SCSI_CMD:
case ISCSI_OP_SCSI_TASK_MGT_MSG:
case ISCSI_OP_SCSI_DATA:
case ISCSI_OP_NOOP_OUT:
case ISCSI_OP_TEXT_CMD:
case ISCSI_OP_SNACK_CMD:
case ISCSI_OP_REJECT_MSG:
default:
/*
* Connection state machine will validate these PDU's against
* the current state. A PDU not allowed in the current
* state will cause a protocol error.
*/
idm_conn_tx_pdu_event(ic, CE_MISC_TX, (uintptr_t)pdu);
break;
}
mutex_exit(&ic->ic_state_mutex);
}
/*
* Common allocation of a PDU along with memory for header and data.
*/
static idm_pdu_t *
idm_pdu_alloc_common(uint_t hdrlen, uint_t datalen, int sleepflag)
{
idm_pdu_t *result;
/*
* IDM clients should cache these structures for performance
* critical paths. We can't cache effectively in IDM because we
* don't know the correct header and data size.
*
* Valid header length is assumed to be hdrlen and valid data
* length is assumed to be datalen. isp_hdrlen and isp_datalen
* can be adjusted after the PDU is returned if necessary.
*/
result = kmem_zalloc(sizeof (idm_pdu_t) + hdrlen + datalen, sleepflag);
if (result != NULL) {
/* For idm_pdu_free sanity check */
result->isp_flags |= IDM_PDU_ALLOC;
/* pointer arithmetic */
result->isp_hdr = (iscsi_hdr_t *)(result + 1);
result->isp_hdrlen = hdrlen;
result->isp_hdrbuflen = hdrlen;
result->isp_transport_hdrlen = 0;
if (datalen != 0)
result->isp_data = (uint8_t *)result->isp_hdr + hdrlen;
result->isp_datalen = datalen;
result->isp_databuflen = datalen;
result->isp_magic = IDM_PDU_MAGIC;
}
return (result);
}
/*
* Typical idm_pdu_alloc invocation, will block for resources.
*/
idm_pdu_t *
idm_pdu_alloc(uint_t hdrlen, uint_t datalen)
{
return (idm_pdu_alloc_common(hdrlen, datalen, KM_SLEEP));
}
/*
* Non-blocking idm_pdu_alloc implementation, returns NULL if resources
* are not available. Needed for transport-layer allocations which may
* be invoking in interrupt context.
*/
idm_pdu_t *
idm_pdu_alloc_nosleep(uint_t hdrlen, uint_t datalen)
{
return (idm_pdu_alloc_common(hdrlen, datalen, KM_NOSLEEP));
}
/*
* Free a PDU previously allocated with idm_pdu_alloc() including any
* header and data space allocated as part of the original request.
* Additional memory regions referenced by subsequent modification of
* the isp_hdr and/or isp_data fields will not be freed.
*/
void
idm_pdu_free(idm_pdu_t *pdu)
{
/* Make sure the structure was allocated using idm_pdu_alloc() */
ASSERT(pdu->isp_flags & IDM_PDU_ALLOC);
kmem_free(pdu,
sizeof (idm_pdu_t) + pdu->isp_hdrbuflen + pdu->isp_databuflen);
}
/*
* Initialize the connection, private and callback fields in a PDU.
*/
void
idm_pdu_init(idm_pdu_t *pdu, idm_conn_t *ic, void *private, idm_pdu_cb_t *cb)
{
/*
* idm_pdu_complete() will call idm_pdu_free if the callback is
* NULL. This will only work if the PDU was originally allocated
* with idm_pdu_alloc().
*/
ASSERT((pdu->isp_flags & IDM_PDU_ALLOC) ||
(cb != NULL));
pdu->isp_magic = IDM_PDU_MAGIC;
pdu->isp_ic = ic;
pdu->isp_private = private;
pdu->isp_callback = cb;
}
/*
* Initialize the header and header length field. This function should
* not be used to adjust the header length in a buffer allocated via
* pdu_pdu_alloc since it overwrites the existing header pointer.
*/
void
idm_pdu_init_hdr(idm_pdu_t *pdu, uint8_t *hdr, uint_t hdrlen)
{
pdu->isp_hdr = (iscsi_hdr_t *)((void *)hdr);
pdu->isp_hdrlen = hdrlen;
}
/*
* Initialize the data and data length fields. This function should
* not be used to adjust the data length of a buffer allocated via
* idm_pdu_alloc since it overwrites the existing data pointer.
*/
void
idm_pdu_init_data(idm_pdu_t *pdu, uint8_t *data, uint_t datalen)
{
pdu->isp_data = data;
pdu->isp_datalen = datalen;
}
void
idm_pdu_complete(idm_pdu_t *pdu, idm_status_t status)
{
if (pdu->isp_callback) {
pdu->isp_status = status;
(*pdu->isp_callback)(pdu, status);
} else {
idm_pdu_free(pdu);
}
}
/*
* State machine auditing
*/
void
idm_sm_audit_init(sm_audit_buf_t *audit_buf)
{
bzero(audit_buf, sizeof (sm_audit_buf_t));
audit_buf->sab_max_index = SM_AUDIT_BUF_MAX_REC - 1;
}
static
sm_audit_record_t *
idm_sm_audit_common(sm_audit_buf_t *audit_buf, sm_audit_record_type_t r_type,
sm_audit_sm_type_t sm_type,
int current_state)
{
sm_audit_record_t *sar;
sar = audit_buf->sab_records;
sar += audit_buf->sab_index;
audit_buf->sab_index++;
audit_buf->sab_index &= audit_buf->sab_max_index;
sar->sar_type = r_type;
gethrestime(&sar->sar_timestamp);
sar->sar_sm_type = sm_type;
sar->sar_state = current_state;
return (sar);
}
void
idm_sm_audit_event(sm_audit_buf_t *audit_buf,
sm_audit_sm_type_t sm_type, int current_state,
int event, uintptr_t event_info)
{
sm_audit_record_t *sar;
sar = idm_sm_audit_common(audit_buf, SAR_STATE_EVENT,
sm_type, current_state);
sar->sar_event = event;
sar->sar_event_info = event_info;
}
void
idm_sm_audit_state_change(sm_audit_buf_t *audit_buf,
sm_audit_sm_type_t sm_type, int current_state, int new_state)
{
sm_audit_record_t *sar;
sar = idm_sm_audit_common(audit_buf, SAR_STATE_CHANGE,
sm_type, current_state);
sar->sar_new_state = new_state;
}
/*
* Object reference tracking
*/
void
idm_refcnt_init(idm_refcnt_t *refcnt, void *referenced_obj)
{
bzero(refcnt, sizeof (*refcnt));
idm_refcnt_reset(refcnt);
refcnt->ir_referenced_obj = referenced_obj;
bzero(&refcnt->ir_audit_buf, sizeof (refcnt_audit_buf_t));
refcnt->ir_audit_buf.anb_max_index = REFCNT_AUDIT_BUF_MAX_REC - 1;
mutex_init(&refcnt->ir_mutex, NULL, MUTEX_DEFAULT, NULL);
cv_init(&refcnt->ir_cv, NULL, CV_DEFAULT, NULL);
}
void
idm_refcnt_destroy(idm_refcnt_t *refcnt)
{
/*
* Grab the mutex to there are no other lingering threads holding
* the mutex before we destroy it (e.g. idm_refcnt_rele just after
* the refcnt goes to zero if ir_waiting == REF_WAIT_ASYNC)
*/
mutex_enter(&refcnt->ir_mutex);
ASSERT(refcnt->ir_refcnt == 0);
cv_destroy(&refcnt->ir_cv);
mutex_destroy(&refcnt->ir_mutex);
}
void
idm_refcnt_reset(idm_refcnt_t *refcnt)
{
refcnt->ir_waiting = REF_NOWAIT;
refcnt->ir_refcnt = 0;
}
void
idm_refcnt_hold(idm_refcnt_t *refcnt)
{
/*
* Nothing should take a hold on an object after a call to
* idm_refcnt_wait_ref or idm_refcnd_async_wait_ref
*/
ASSERT(refcnt->ir_waiting == REF_NOWAIT);
mutex_enter(&refcnt->ir_mutex);
refcnt->ir_refcnt++;
REFCNT_AUDIT(refcnt);
mutex_exit(&refcnt->ir_mutex);
}
static void
idm_refcnt_unref_task(void *refcnt_void)
{
idm_refcnt_t *refcnt = refcnt_void;
REFCNT_AUDIT(refcnt);
(*refcnt->ir_cb)(refcnt->ir_referenced_obj);
}
void
idm_refcnt_rele(idm_refcnt_t *refcnt)
{
mutex_enter(&refcnt->ir_mutex);
ASSERT(refcnt->ir_refcnt > 0);
refcnt->ir_refcnt--;
REFCNT_AUDIT(refcnt);
if (refcnt->ir_waiting == REF_NOWAIT) {
/* No one is waiting on this object */
mutex_exit(&refcnt->ir_mutex);
return;
}
/*
* Someone is waiting for this object to go idle so check if
* refcnt is 0. Waiting on an object then later grabbing another
* reference is not allowed so we don't need to handle that case.
*/
if (refcnt->ir_refcnt == 0) {
if (refcnt->ir_waiting == REF_WAIT_ASYNC) {
if (taskq_dispatch(idm.idm_global_taskq,
&idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) {
cmn_err(CE_WARN,
"idm_refcnt_rele: Couldn't dispatch task");
}
} else if (refcnt->ir_waiting == REF_WAIT_SYNC) {
cv_signal(&refcnt->ir_cv);
}
}
mutex_exit(&refcnt->ir_mutex);
}
void
idm_refcnt_rele_and_destroy(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func)
{
mutex_enter(&refcnt->ir_mutex);
ASSERT(refcnt->ir_refcnt > 0);
refcnt->ir_refcnt--;
REFCNT_AUDIT(refcnt);
/*
* Someone is waiting for this object to go idle so check if
* refcnt is 0. Waiting on an object then later grabbing another
* reference is not allowed so we don't need to handle that case.
*/
if (refcnt->ir_refcnt == 0) {
refcnt->ir_cb = cb_func;
refcnt->ir_waiting = REF_WAIT_ASYNC;
if (taskq_dispatch(idm.idm_global_taskq,
&idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) {
cmn_err(CE_WARN,
"idm_refcnt_rele: Couldn't dispatch task");
}
}
mutex_exit(&refcnt->ir_mutex);
}
void
idm_refcnt_wait_ref(idm_refcnt_t *refcnt)
{
mutex_enter(&refcnt->ir_mutex);
refcnt->ir_waiting = REF_WAIT_SYNC;
REFCNT_AUDIT(refcnt);
while (refcnt->ir_refcnt != 0)
cv_wait(&refcnt->ir_cv, &refcnt->ir_mutex);
mutex_exit(&refcnt->ir_mutex);
}
void
idm_refcnt_async_wait_ref(idm_refcnt_t *refcnt, idm_refcnt_cb_t *cb_func)
{
mutex_enter(&refcnt->ir_mutex);
refcnt->ir_waiting = REF_WAIT_ASYNC;
refcnt->ir_cb = cb_func;
REFCNT_AUDIT(refcnt);
/*
* It's possible we don't have any references. To make things easier
* on the caller use a taskq to call the callback instead of
* calling it synchronously
*/
if (refcnt->ir_refcnt == 0) {
if (taskq_dispatch(idm.idm_global_taskq,
&idm_refcnt_unref_task, refcnt, TQ_SLEEP) == NULL) {
cmn_err(CE_WARN,
"idm_refcnt_async_wait_ref: "
"Couldn't dispatch task");
}
}
mutex_exit(&refcnt->ir_mutex);
}
void
idm_refcnt_destroy_unref_obj(idm_refcnt_t *refcnt,
idm_refcnt_cb_t *cb_func)
{
mutex_enter(&refcnt->ir_mutex);
if (refcnt->ir_refcnt == 0) {
mutex_exit(&refcnt->ir_mutex);
(*cb_func)(refcnt->ir_referenced_obj);
return;
}
mutex_exit(&refcnt->ir_mutex);
}
void
idm_conn_hold(idm_conn_t *ic)
{
idm_refcnt_hold(&ic->ic_refcnt);
}
void
idm_conn_rele(idm_conn_t *ic)
{
idm_refcnt_rele(&ic->ic_refcnt);
}
void
idm_conn_set_target_name(idm_conn_t *ic, char *target_name)
{
(void) strlcpy(ic->ic_target_name, target_name, ISCSI_MAX_NAME_LEN + 1);
}
void
idm_conn_set_initiator_name(idm_conn_t *ic, char *initiator_name)
{
(void) strlcpy(ic->ic_initiator_name, initiator_name,
ISCSI_MAX_NAME_LEN + 1);
}
void
idm_conn_set_isid(idm_conn_t *ic, uint8_t isid[ISCSI_ISID_LEN])
{
(void) snprintf(ic->ic_isid, ISCSI_MAX_ISID_LEN + 1,
"%02x%02x%02x%02x%02x%02x",
isid[0], isid[1], isid[2], isid[3], isid[4], isid[5]);
}
static int
_idm_init(void)
{
/* Initialize the rwlock for the taskid table */
rw_init(&idm.idm_taskid_table_lock, NULL, RW_DRIVER, NULL);
/* Initialize the global mutex and taskq */
mutex_init(&idm.idm_global_mutex, NULL, MUTEX_DEFAULT, NULL);
cv_init(&idm.idm_tgt_svc_cv, NULL, CV_DEFAULT, NULL);
cv_init(&idm.idm_wd_cv, NULL, CV_DEFAULT, NULL);
/*
* The maximum allocation needs to be high here since there can be
* many concurrent tasks using the global taskq.
*/
idm.idm_global_taskq = taskq_create("idm_global_taskq", 1, minclsyspri,
128, 16384, TASKQ_PREPOPULATE);
if (idm.idm_global_taskq == NULL) {
cv_destroy(&idm.idm_wd_cv);
cv_destroy(&idm.idm_tgt_svc_cv);
mutex_destroy(&idm.idm_global_mutex);
rw_destroy(&idm.idm_taskid_table_lock);
return (ENOMEM);
}
/* Start watchdog thread */
idm.idm_wd_thread = thread_create(NULL, 0,
idm_wd_thread, NULL, 0, &p0, TS_RUN, minclsyspri);
if (idm.idm_wd_thread == NULL) {
/* Couldn't create the watchdog thread */
taskq_destroy(idm.idm_global_taskq);
cv_destroy(&idm.idm_wd_cv);
cv_destroy(&idm.idm_tgt_svc_cv);
mutex_destroy(&idm.idm_global_mutex);
rw_destroy(&idm.idm_taskid_table_lock);
return (ENOMEM);
}
/* Pause until the watchdog thread is running */
mutex_enter(&idm.idm_global_mutex);
while (!idm.idm_wd_thread_running)
cv_wait(&idm.idm_wd_cv, &idm.idm_global_mutex);
mutex_exit(&idm.idm_global_mutex);
/*
* Allocate the task ID table and set "next" to 0.
*/
idm.idm_taskid_max = idm_max_taskids;
idm.idm_taskid_table = (idm_task_t **)
kmem_zalloc(idm.idm_taskid_max * sizeof (idm_task_t *), KM_SLEEP);
idm.idm_taskid_next = 0;
/* Create the global buffer and task kmem caches */
idm.idm_buf_cache = kmem_cache_create("idm_buf_cache",
sizeof (idm_buf_t), 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP);
/*
* Note, we're explicitly allocating an additional iSER header-
* sized chunk for each of these elements. See idm_task_constructor().
*/
idm.idm_task_cache = kmem_cache_create("idm_task_cache",
sizeof (idm_task_t) + IDM_TRANSPORT_HEADER_LENGTH, 8,
&idm_task_constructor, &idm_task_destructor,
NULL, NULL, NULL, KM_SLEEP);
/* Create the service and connection context lists */
list_create(&idm.idm_tgt_svc_list, sizeof (idm_svc_t),
offsetof(idm_svc_t, is_list_node));
list_create(&idm.idm_tgt_conn_list, sizeof (idm_conn_t),
offsetof(idm_conn_t, ic_list_node));
list_create(&idm.idm_ini_conn_list, sizeof (idm_conn_t),
offsetof(idm_conn_t, ic_list_node));
/* Initialize the native sockets transport */
idm_so_init(&idm_transport_list[IDM_TRANSPORT_TYPE_SOCKETS]);
/* Create connection ID pool */
(void) idm_idpool_create(&idm.idm_conn_id_pool);
return (DDI_SUCCESS);
}
static int
_idm_fini(void)
{
if (!list_is_empty(&idm.idm_ini_conn_list) ||
!list_is_empty(&idm.idm_tgt_conn_list) ||
!list_is_empty(&idm.idm_tgt_svc_list)) {
return (EBUSY);
}
mutex_enter(&idm.idm_global_mutex);
idm.idm_wd_thread_running = B_FALSE;
cv_signal(&idm.idm_wd_cv);
mutex_exit(&idm.idm_global_mutex);
thread_join(idm.idm_wd_thread_did);
idm_idpool_destroy(&idm.idm_conn_id_pool);
/* Close any LDI handles we have open on transport drivers */
mutex_enter(&idm.idm_global_mutex);
idm_transport_teardown();
mutex_exit(&idm.idm_global_mutex);
/* Teardown the native sockets transport */
idm_so_fini();
list_destroy(&idm.idm_ini_conn_list);
list_destroy(&idm.idm_tgt_conn_list);
list_destroy(&idm.idm_tgt_svc_list);
kmem_cache_destroy(idm.idm_task_cache);
kmem_cache_destroy(idm.idm_buf_cache);
kmem_free(idm.idm_taskid_table,
idm.idm_taskid_max * sizeof (idm_task_t *));
mutex_destroy(&idm.idm_global_mutex);
cv_destroy(&idm.idm_wd_cv);
cv_destroy(&idm.idm_tgt_svc_cv);
rw_destroy(&idm.idm_taskid_table_lock);
return (0);
}
|