summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/io/mlxcx/mlxcx_dma.c
blob: 79b9bb374610c793374ed43da981d4c817b3259c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * This file and its contents are supplied under the terms of the
 * Common Development and Distribution License ("CDDL"), version 1.0.
 * You may only use this file in accordance with the terms of version
 * 1.0 of the CDDL.
 *
 * A full copy of the text of the CDDL should have accompanied this
 * source.  A copy of the CDDL is also available via the Internet at
 * http://www.illumos.org/license/CDDL.
 */

/*
 * Copyright 2020, The University of Queensland
 * Copyright (c) 2018, Joyent, Inc.
 */

/*
 * DMA allocation and tear down routines.
 */

#include <mlxcx.h>

void
mlxcx_dma_acc_attr(mlxcx_t *mlxp, ddi_device_acc_attr_t *accp)
{
	bzero(accp, sizeof (*accp));
	accp->devacc_attr_version = DDI_DEVICE_ATTR_V0;
	accp->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
	accp->devacc_attr_dataorder = DDI_STRICTORDER_ACC;

	if (DDI_FM_DMA_ERR_CAP(mlxp->mlx_fm_caps)) {
		accp->devacc_attr_access = DDI_FLAGERR_ACC;
	} else {
		accp->devacc_attr_access = DDI_DEFAULT_ACC;
	}
}

void
mlxcx_dma_page_attr(mlxcx_t *mlxp, ddi_dma_attr_t *attrp)
{
	bzero(attrp, sizeof (*attrp));
	attrp->dma_attr_version = DMA_ATTR_V0;

	/*
	 * This is a 64-bit PCIe device. We can use the entire address space.
	 */
	attrp->dma_attr_addr_lo = 0x0;
	attrp->dma_attr_addr_hi = UINT64_MAX;

	/*
	 * The count max indicates the total amount that can fit into one
	 * cookie. Because we're creating a single page for tracking purposes,
	 * this can be a page in size. The alignment and segment are related to
	 * this same requirement. The alignment needs to be page aligned and the
	 * segment is the boundary that this can't cross, aka a 4k page.
	 */
	attrp->dma_attr_count_max = MLXCX_CMD_DMA_PAGE_SIZE - 1;
	attrp->dma_attr_align = MLXCX_CMD_DMA_PAGE_SIZE;
	attrp->dma_attr_seg = MLXCX_CMD_DMA_PAGE_SIZE - 1;

	attrp->dma_attr_burstsizes = 0xfff;

	/*
	 * The minimum and and maximum sizes that we can send. We cap this based
	 * on the use of this, which is a page size.
	 */
	attrp->dma_attr_minxfer = 0x1;
	attrp->dma_attr_maxxfer = MLXCX_CMD_DMA_PAGE_SIZE;

	/*
	 * This is supposed to be used for static data structures, therefore we
	 * keep this just to a page.
	 */
	attrp->dma_attr_sgllen = 1;

	/*
	 * The granularity describe the addressing graularity. That is, the
	 * hardware can ask for chunks in this units of bytes.
	 */
	attrp->dma_attr_granular = MLXCX_CMD_DMA_PAGE_SIZE;

	if (DDI_FM_DMA_ERR_CAP(mlxp->mlx_fm_caps)) {
		attrp->dma_attr_flags = DDI_DMA_FLAGERR;
	} else {
		attrp->dma_attr_flags = 0;
	}
}

/*
 * DMA attributes for queue memory (EQ, CQ, WQ etc)
 *
 * These have to allocate in units of whole pages, but can be multiple
 * pages and don't have to be physically contiguous.
 */
void
mlxcx_dma_queue_attr(mlxcx_t *mlxp, ddi_dma_attr_t *attrp)
{
	bzero(attrp, sizeof (*attrp));
	attrp->dma_attr_version = DMA_ATTR_V0;

	/*
	 * This is a 64-bit PCIe device. We can use the entire address space.
	 */
	attrp->dma_attr_addr_lo = 0x0;
	attrp->dma_attr_addr_hi = UINT64_MAX;

	attrp->dma_attr_count_max = MLXCX_QUEUE_DMA_PAGE_SIZE - 1;

	attrp->dma_attr_align = MLXCX_QUEUE_DMA_PAGE_SIZE;

	attrp->dma_attr_burstsizes = 0xfff;

	/*
	 * The minimum and and maximum sizes that we can send. We cap this based
	 * on the use of this, which is a page size.
	 */
	attrp->dma_attr_minxfer = MLXCX_QUEUE_DMA_PAGE_SIZE;
	attrp->dma_attr_maxxfer = UINT32_MAX;

	attrp->dma_attr_seg = UINT64_MAX;

	attrp->dma_attr_granular = MLXCX_QUEUE_DMA_PAGE_SIZE;

	/* But we can have more than one. */
	attrp->dma_attr_sgllen = MLXCX_CREATE_QUEUE_MAX_PAGES;

	if (DDI_FM_DMA_ERR_CAP(mlxp->mlx_fm_caps)) {
		attrp->dma_attr_flags = DDI_DMA_FLAGERR;
	} else {
		attrp->dma_attr_flags = 0;
	}
}

/*
 * DMA attributes for packet buffers
 */
void
mlxcx_dma_buf_attr(mlxcx_t *mlxp, ddi_dma_attr_t *attrp)
{
	bzero(attrp, sizeof (*attrp));
	attrp->dma_attr_version = DMA_ATTR_V0;

	/*
	 * This is a 64-bit PCIe device. We can use the entire address space.
	 */
	attrp->dma_attr_addr_lo = 0x0;
	attrp->dma_attr_addr_hi = UINT64_MAX;

	/*
	 * Each scatter pointer has a 32-bit length field.
	 */
	attrp->dma_attr_count_max = UINT32_MAX;

	/*
	 * The PRM gives us no alignment requirements for scatter pointers,
	 * but it implies that units < 16bytes are a bad idea.
	 */
	attrp->dma_attr_align = 16;
	attrp->dma_attr_granular = 1;

	attrp->dma_attr_burstsizes = 0xfff;

	attrp->dma_attr_minxfer = 1;
	attrp->dma_attr_maxxfer = UINT64_MAX;

	attrp->dma_attr_seg = UINT64_MAX;

	/*
	 * We choose how many scatter pointers we're allowed per packet when
	 * we set the recv queue stride. This macro is from mlxcx_reg.h where
	 * we fix that for all of our receive queues.
	 */
	attrp->dma_attr_sgllen = MLXCX_RECVQ_MAX_PTRS;

	if (DDI_FM_DMA_ERR_CAP(mlxp->mlx_fm_caps)) {
		attrp->dma_attr_flags = DDI_DMA_FLAGERR;
	} else {
		attrp->dma_attr_flags = 0;
	}
}

/*
 * DMA attributes for queue doorbells
 */
void
mlxcx_dma_qdbell_attr(mlxcx_t *mlxp, ddi_dma_attr_t *attrp)
{
	bzero(attrp, sizeof (*attrp));
	attrp->dma_attr_version = DMA_ATTR_V0;

	/*
	 * This is a 64-bit PCIe device. We can use the entire address space.
	 */
	attrp->dma_attr_addr_lo = 0x0;
	attrp->dma_attr_addr_hi = UINT64_MAX;

	/*
	 * Queue doorbells are always exactly 16 bytes in length, but
	 * the ddi_dma functions don't like such small values of count_max.
	 *
	 * We tell some lies here.
	 */
	attrp->dma_attr_count_max = MLXCX_QUEUE_DMA_PAGE_SIZE - 1;
	attrp->dma_attr_align = 8;
	attrp->dma_attr_burstsizes = 0x8;
	attrp->dma_attr_minxfer = 1;
	attrp->dma_attr_maxxfer = UINT16_MAX;
	attrp->dma_attr_seg = MLXCX_QUEUE_DMA_PAGE_SIZE - 1;
	attrp->dma_attr_granular = 1;
	attrp->dma_attr_sgllen = 1;

	if (DDI_FM_DMA_ERR_CAP(mlxp->mlx_fm_caps)) {
		attrp->dma_attr_flags = DDI_DMA_FLAGERR;
	} else {
		attrp->dma_attr_flags = 0;
	}
}

void
mlxcx_dma_free(mlxcx_dma_buffer_t *mxdb)
{
	int ret;

	if (mxdb->mxdb_flags & MLXCX_DMABUF_BOUND) {
		VERIFY(mxdb->mxdb_dma_handle != NULL);
		ret = ddi_dma_unbind_handle(mxdb->mxdb_dma_handle);
		VERIFY3S(ret, ==, DDI_SUCCESS);
		mxdb->mxdb_flags &= ~MLXCX_DMABUF_BOUND;
		mxdb->mxdb_ncookies = 0;
	}

	if (mxdb->mxdb_flags & MLXCX_DMABUF_MEM_ALLOC) {
		ddi_dma_mem_free(&mxdb->mxdb_acc_handle);
		mxdb->mxdb_acc_handle = NULL;
		mxdb->mxdb_va = NULL;
		mxdb->mxdb_len = 0;
		mxdb->mxdb_flags &= ~MLXCX_DMABUF_MEM_ALLOC;
	}

	if (mxdb->mxdb_flags & MLXCX_DMABUF_FOREIGN) {
		/* The mblk will be freed separately */
		mxdb->mxdb_va = NULL;
		mxdb->mxdb_len = 0;
		mxdb->mxdb_flags &= ~MLXCX_DMABUF_FOREIGN;
	}

	if (mxdb->mxdb_flags & MLXCX_DMABUF_HDL_ALLOC) {
		ddi_dma_free_handle(&mxdb->mxdb_dma_handle);
		mxdb->mxdb_dma_handle = NULL;
		mxdb->mxdb_flags &= ~MLXCX_DMABUF_HDL_ALLOC;
	}

	ASSERT3U(mxdb->mxdb_flags, ==, 0);
	ASSERT3P(mxdb->mxdb_dma_handle, ==, NULL);
	ASSERT3P(mxdb->mxdb_va, ==, NULL);
	ASSERT3U(mxdb->mxdb_len, ==, 0);
	ASSERT3U(mxdb->mxdb_ncookies, ==, 0);
}

void
mlxcx_dma_unbind(mlxcx_t *mlxp, mlxcx_dma_buffer_t *mxdb)
{
	int ret;

	ASSERT(mxdb->mxdb_flags & MLXCX_DMABUF_HDL_ALLOC);
	ASSERT(mxdb->mxdb_flags & MLXCX_DMABUF_BOUND);

	if (mxdb->mxdb_flags & MLXCX_DMABUF_FOREIGN) {
		/* The mblk will be freed separately */
		mxdb->mxdb_va = NULL;
		mxdb->mxdb_len = 0;
		mxdb->mxdb_flags &= ~MLXCX_DMABUF_FOREIGN;
	}

	ret = ddi_dma_unbind_handle(mxdb->mxdb_dma_handle);
	VERIFY3S(ret, ==, DDI_SUCCESS);
	mxdb->mxdb_flags &= ~MLXCX_DMABUF_BOUND;
	mxdb->mxdb_ncookies = 0;
}

boolean_t
mlxcx_dma_init(mlxcx_t *mlxp, mlxcx_dma_buffer_t *mxdb,
    ddi_dma_attr_t *attrp, boolean_t wait)
{
	int ret;
	int (*memcb)(caddr_t);

	if (wait == B_TRUE) {
		memcb = DDI_DMA_SLEEP;
	} else {
		memcb = DDI_DMA_DONTWAIT;
	}

	ASSERT3S(mxdb->mxdb_flags, ==, 0);

	ret = ddi_dma_alloc_handle(mlxp->mlx_dip, attrp, memcb, NULL,
	    &mxdb->mxdb_dma_handle);
	if (ret != 0) {
		mlxcx_warn(mlxp, "!failed to allocate DMA handle: %d", ret);
		mxdb->mxdb_dma_handle = NULL;
		return (B_FALSE);
	}
	mxdb->mxdb_flags |= MLXCX_DMABUF_HDL_ALLOC;

	return (B_TRUE);
}

boolean_t
mlxcx_dma_bind_mblk(mlxcx_t *mlxp, mlxcx_dma_buffer_t *mxdb,
    const mblk_t *mp, size_t off, boolean_t wait)
{
	int ret;
	uint_t flags = DDI_DMA_STREAMING;
	int (*memcb)(caddr_t);

	if (wait == B_TRUE) {
		memcb = DDI_DMA_SLEEP;
	} else {
		memcb = DDI_DMA_DONTWAIT;
	}

	ASSERT(mxdb->mxdb_flags & MLXCX_DMABUF_HDL_ALLOC);
	ASSERT0(mxdb->mxdb_flags &
	    (MLXCX_DMABUF_FOREIGN | MLXCX_DMABUF_MEM_ALLOC));
	ASSERT0(mxdb->mxdb_flags & MLXCX_DMABUF_BOUND);

	ASSERT3U(off, <=, MBLKL(mp));
	mxdb->mxdb_va = (caddr_t)(mp->b_rptr + off);
	mxdb->mxdb_len = MBLKL(mp) - off;
	mxdb->mxdb_flags |= MLXCX_DMABUF_FOREIGN;

	ret = ddi_dma_addr_bind_handle(mxdb->mxdb_dma_handle, NULL,
	    mxdb->mxdb_va, mxdb->mxdb_len, DDI_DMA_WRITE | flags, memcb, NULL,
	    NULL, NULL);
	if (ret != DDI_DMA_MAPPED) {
		mxdb->mxdb_va = NULL;
		mxdb->mxdb_len = 0;
		mxdb->mxdb_flags &= ~MLXCX_DMABUF_FOREIGN;
		return (B_FALSE);
	}
	mxdb->mxdb_flags |= MLXCX_DMABUF_BOUND;
	mxdb->mxdb_ncookies = ddi_dma_ncookies(mxdb->mxdb_dma_handle);

	return (B_TRUE);
}

boolean_t
mlxcx_dma_alloc(mlxcx_t *mlxp, mlxcx_dma_buffer_t *mxdb,
    ddi_dma_attr_t *attrp, ddi_device_acc_attr_t *accp, boolean_t zero,
    size_t size, boolean_t wait)
{
	int ret;
	uint_t flags = DDI_DMA_CONSISTENT;
	size_t len;
	int (*memcb)(caddr_t);

	if (wait == B_TRUE) {
		memcb = DDI_DMA_SLEEP;
	} else {
		memcb = DDI_DMA_DONTWAIT;
	}

	ASSERT3U(mxdb->mxdb_flags, ==, 0);

	ret = ddi_dma_alloc_handle(mlxp->mlx_dip, attrp, memcb, NULL,
	    &mxdb->mxdb_dma_handle);
	if (ret != 0) {
		mlxcx_warn(mlxp, "!failed to allocate DMA handle: %d", ret);
		mxdb->mxdb_dma_handle = NULL;
		return (B_FALSE);
	}
	mxdb->mxdb_flags |= MLXCX_DMABUF_HDL_ALLOC;

	ret = ddi_dma_mem_alloc(mxdb->mxdb_dma_handle, size, accp, flags, memcb,
	    NULL, &mxdb->mxdb_va, &len, &mxdb->mxdb_acc_handle);
	if (ret != DDI_SUCCESS) {
		mlxcx_warn(mlxp, "!failed to allocate DMA memory: %d", ret);
		mxdb->mxdb_va = NULL;
		mxdb->mxdb_acc_handle = NULL;
		mlxcx_dma_free(mxdb);
		return (B_FALSE);
	}
	mxdb->mxdb_len = size;
	mxdb->mxdb_flags |= MLXCX_DMABUF_MEM_ALLOC;

	if (zero == B_TRUE)
		bzero(mxdb->mxdb_va, len);

	ret = ddi_dma_addr_bind_handle(mxdb->mxdb_dma_handle, NULL,
	    mxdb->mxdb_va, len, DDI_DMA_RDWR | flags, memcb, NULL, NULL,
	    NULL);
	if (ret != 0) {
		mlxcx_warn(mlxp, "!failed to bind DMA memory: %d", ret);
		mlxcx_dma_free(mxdb);
		return (B_FALSE);
	}
	mxdb->mxdb_flags |= MLXCX_DMABUF_BOUND;
	mxdb->mxdb_ncookies = ddi_dma_ncookies(mxdb->mxdb_dma_handle);

	return (B_TRUE);
}

boolean_t
mlxcx_dma_alloc_offset(mlxcx_t *mlxp, mlxcx_dma_buffer_t *mxdb,
    ddi_dma_attr_t *attrp, ddi_device_acc_attr_t *accp, boolean_t zero,
    size_t size, size_t offset, boolean_t wait)
{
	int ret;
	uint_t flags = DDI_DMA_STREAMING;
	size_t len;
	int (*memcb)(caddr_t);

	if (wait == B_TRUE) {
		memcb = DDI_DMA_SLEEP;
	} else {
		memcb = DDI_DMA_DONTWAIT;
	}

	ASSERT3U(mxdb->mxdb_flags, ==, 0);

	ret = ddi_dma_alloc_handle(mlxp->mlx_dip, attrp, memcb, NULL,
	    &mxdb->mxdb_dma_handle);
	if (ret != 0) {
		mlxcx_warn(mlxp, "!failed to allocate DMA handle: %d", ret);
		mxdb->mxdb_dma_handle = NULL;
		return (B_FALSE);
	}
	mxdb->mxdb_flags |= MLXCX_DMABUF_HDL_ALLOC;

	ret = ddi_dma_mem_alloc(mxdb->mxdb_dma_handle, size + offset, accp,
	    flags, memcb, NULL, &mxdb->mxdb_va, &len, &mxdb->mxdb_acc_handle);
	if (ret != DDI_SUCCESS) {
		mlxcx_warn(mlxp, "!failed to allocate DMA memory: %d", ret);
		mxdb->mxdb_va = NULL;
		mxdb->mxdb_acc_handle = NULL;
		mlxcx_dma_free(mxdb);
		return (B_FALSE);
	}

	if (zero == B_TRUE)
		bzero(mxdb->mxdb_va, len);

	mxdb->mxdb_va += offset;
	len -= offset;
	mxdb->mxdb_len = len;
	mxdb->mxdb_flags |= MLXCX_DMABUF_MEM_ALLOC;

	ret = ddi_dma_addr_bind_handle(mxdb->mxdb_dma_handle, NULL,
	    mxdb->mxdb_va, len, DDI_DMA_RDWR | flags, memcb, NULL, NULL,
	    NULL);
	if (ret != 0) {
		mlxcx_warn(mlxp, "!failed to bind DMA memory: %d", ret);
		mlxcx_dma_free(mxdb);
		return (B_FALSE);
	}
	mxdb->mxdb_flags |= MLXCX_DMABUF_BOUND;
	mxdb->mxdb_ncookies = ddi_dma_ncookies(mxdb->mxdb_dma_handle);

	return (B_TRUE);
}