1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include "rge.h"
/*
* This is the string displayed by modinfo, etc.
* Make sure you keep the version ID up to date!
*/
static char rge_ident[] = "Realtek 1Gb Ethernet";
/*
* Used for buffers allocated by ddi_dma_mem_alloc()
*/
static ddi_dma_attr_t dma_attr_buf = {
DMA_ATTR_V0, /* dma_attr version */
(uint32_t)0, /* dma_attr_addr_lo */
(uint32_t)0xFFFFFFFF, /* dma_attr_addr_hi */
(uint32_t)0xFFFFFFFF, /* dma_attr_count_max */
(uint32_t)16, /* dma_attr_align */
0xFFFFFFFF, /* dma_attr_burstsizes */
1, /* dma_attr_minxfer */
(uint32_t)0xFFFFFFFF, /* dma_attr_maxxfer */
(uint32_t)0xFFFFFFFF, /* dma_attr_seg */
1, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0, /* dma_attr_flags */
};
/*
* Used for BDs allocated by ddi_dma_mem_alloc()
*/
static ddi_dma_attr_t dma_attr_desc = {
DMA_ATTR_V0, /* dma_attr version */
(uint32_t)0, /* dma_attr_addr_lo */
(uint32_t)0xFFFFFFFF, /* dma_attr_addr_hi */
(uint32_t)0xFFFFFFFF, /* dma_attr_count_max */
(uint32_t)256, /* dma_attr_align */
0xFFFFFFFF, /* dma_attr_burstsizes */
1, /* dma_attr_minxfer */
(uint32_t)0xFFFFFFFF, /* dma_attr_maxxfer */
(uint32_t)0xFFFFFFFF, /* dma_attr_seg */
1, /* dma_attr_sgllen */
1, /* dma_attr_granular */
0, /* dma_attr_flags */
};
/*
* PIO access attributes for registers
*/
static ddi_device_acc_attr_t rge_reg_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_STRUCTURE_LE_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* DMA access attributes for descriptors
*/
static ddi_device_acc_attr_t rge_desc_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* DMA access attributes for data
*/
static ddi_device_acc_attr_t rge_buf_accattr = {
DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC,
DDI_DEFAULT_ACC
};
/*
* Property names
*/
static char debug_propname[] = "rge_debug_flags";
static char mtu_propname[] = "default_mtu";
static char msi_propname[] = "msi_enable";
static int rge_m_start(void *);
static void rge_m_stop(void *);
static int rge_m_promisc(void *, boolean_t);
static int rge_m_multicst(void *, boolean_t, const uint8_t *);
static int rge_m_unicst(void *, const uint8_t *);
static void rge_m_ioctl(void *, queue_t *, mblk_t *);
static boolean_t rge_m_getcapab(void *, mac_capab_t, void *);
#define RGE_M_CALLBACK_FLAGS (MC_IOCTL | MC_GETCAPAB)
static mac_callbacks_t rge_m_callbacks = {
RGE_M_CALLBACK_FLAGS,
rge_m_stat,
rge_m_start,
rge_m_stop,
rge_m_promisc,
rge_m_multicst,
rge_m_unicst,
rge_m_tx,
NULL,
rge_m_ioctl,
rge_m_getcapab
};
/*
* Allocate an area of memory and a DMA handle for accessing it
*/
static int
rge_alloc_dma_mem(rge_t *rgep, size_t memsize, ddi_dma_attr_t *dma_attr_p,
ddi_device_acc_attr_t *acc_attr_p, uint_t dma_flags, dma_area_t *dma_p)
{
caddr_t vaddr;
int err;
/*
* Allocate handle
*/
err = ddi_dma_alloc_handle(rgep->devinfo, dma_attr_p,
DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
if (err != DDI_SUCCESS) {
dma_p->dma_hdl = NULL;
return (DDI_FAILURE);
}
/*
* Allocate memory
*/
err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, acc_attr_p,
dma_flags & (DDI_DMA_CONSISTENT | DDI_DMA_STREAMING),
DDI_DMA_SLEEP, NULL, &vaddr, &dma_p->alength, &dma_p->acc_hdl);
if (err != DDI_SUCCESS) {
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->dma_hdl = NULL;
dma_p->acc_hdl = NULL;
return (DDI_FAILURE);
}
/*
* Bind the two together
*/
dma_p->mem_va = vaddr;
err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
vaddr, dma_p->alength, dma_flags, DDI_DMA_SLEEP, NULL,
&dma_p->cookie, &dma_p->ncookies);
if (err != DDI_DMA_MAPPED || dma_p->ncookies != 1) {
ddi_dma_mem_free(&dma_p->acc_hdl);
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->acc_hdl = NULL;
dma_p->dma_hdl = NULL;
return (DDI_FAILURE);
}
dma_p->nslots = ~0U;
dma_p->size = ~0U;
dma_p->token = ~0U;
dma_p->offset = 0;
return (DDI_SUCCESS);
}
/*
* Free one allocated area of DMAable memory
*/
static void
rge_free_dma_mem(dma_area_t *dma_p)
{
if (dma_p->dma_hdl != NULL) {
if (dma_p->ncookies) {
(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
dma_p->ncookies = 0;
}
ddi_dma_free_handle(&dma_p->dma_hdl);
dma_p->dma_hdl = NULL;
}
if (dma_p->acc_hdl != NULL) {
ddi_dma_mem_free(&dma_p->acc_hdl);
dma_p->acc_hdl = NULL;
}
}
/*
* Utility routine to carve a slice off a chunk of allocated memory,
* updating the chunk descriptor accordingly. The size of the slice
* is given by the product of the <qty> and <size> parameters.
*/
static void
rge_slice_chunk(dma_area_t *slice, dma_area_t *chunk,
uint32_t qty, uint32_t size)
{
static uint32_t sequence = 0xbcd5704a;
size_t totsize;
totsize = qty*size;
ASSERT(totsize <= chunk->alength);
*slice = *chunk;
slice->nslots = qty;
slice->size = size;
slice->alength = totsize;
slice->token = ++sequence;
chunk->mem_va = (caddr_t)chunk->mem_va + totsize;
chunk->alength -= totsize;
chunk->offset += totsize;
chunk->cookie.dmac_laddress += totsize;
chunk->cookie.dmac_size -= totsize;
}
static int
rge_alloc_bufs(rge_t *rgep)
{
size_t txdescsize;
size_t rxdescsize;
int err;
/*
* Allocate memory & handle for packet statistics
*/
err = rge_alloc_dma_mem(rgep,
RGE_STATS_DUMP_SIZE,
&dma_attr_desc,
&rge_desc_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&rgep->dma_area_stats);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
rgep->hw_stats = DMA_VPTR(rgep->dma_area_stats);
/*
* Allocate memory & handle for Tx descriptor ring
*/
txdescsize = RGE_SEND_SLOTS * sizeof (rge_bd_t);
err = rge_alloc_dma_mem(rgep,
txdescsize,
&dma_attr_desc,
&rge_desc_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&rgep->dma_area_txdesc);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
/*
* Allocate memory & handle for Rx descriptor ring
*/
rxdescsize = RGE_RECV_SLOTS * sizeof (rge_bd_t);
err = rge_alloc_dma_mem(rgep,
rxdescsize,
&dma_attr_desc,
&rge_desc_accattr,
DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
&rgep->dma_area_rxdesc);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
return (DDI_SUCCESS);
}
/*
* rge_free_bufs() -- free descriptors/buffers allocated for this
* device instance.
*/
static void
rge_free_bufs(rge_t *rgep)
{
rge_free_dma_mem(&rgep->dma_area_stats);
rge_free_dma_mem(&rgep->dma_area_txdesc);
rge_free_dma_mem(&rgep->dma_area_rxdesc);
}
/*
* ========== Transmit and receive ring reinitialisation ==========
*/
/*
* These <reinit> routines each reset the rx/tx rings to an initial
* state, assuming that the corresponding <init> routine has already
* been called exactly once.
*/
static void
rge_reinit_send_ring(rge_t *rgep)
{
sw_sbd_t *ssbdp;
rge_bd_t *bdp;
uint32_t slot;
/*
* re-init send ring
*/
DMA_ZERO(rgep->tx_desc);
ssbdp = rgep->sw_sbds;
bdp = rgep->tx_ring;
for (slot = 0; slot < RGE_SEND_SLOTS; slot++) {
bdp->host_buf_addr =
RGE_BSWAP_32(ssbdp->pbuf.cookie.dmac_laddress);
bdp->host_buf_addr_hi =
RGE_BSWAP_32(ssbdp->pbuf.cookie.dmac_laddress >> 32);
/* last BD in Tx ring */
if (slot == (RGE_SEND_SLOTS - 1))
bdp->flags_len = RGE_BSWAP_32(BD_FLAG_EOR);
ssbdp++;
bdp++;
}
DMA_SYNC(rgep->tx_desc, DDI_DMA_SYNC_FORDEV);
rgep->tx_next = 0;
rgep->tc_next = 0;
rgep->tc_tail = 0;
rgep->tx_flow = 0;
rgep->tx_free = RGE_SEND_SLOTS;
}
static void
rge_reinit_recv_ring(rge_t *rgep)
{
rge_bd_t *bdp;
sw_rbd_t *srbdp;
dma_area_t *pbuf;
uint32_t slot;
/*
* re-init receive ring
*/
DMA_ZERO(rgep->rx_desc);
srbdp = rgep->sw_rbds;
bdp = rgep->rx_ring;
for (slot = 0; slot < RGE_RECV_SLOTS; slot++) {
pbuf = &srbdp->rx_buf->pbuf;
bdp->host_buf_addr =
RGE_BSWAP_32(pbuf->cookie.dmac_laddress + rgep->head_room);
bdp->host_buf_addr_hi =
RGE_BSWAP_32(pbuf->cookie.dmac_laddress >> 32);
bdp->flags_len = RGE_BSWAP_32(BD_FLAG_HW_OWN |
(rgep->rxbuf_size - rgep->head_room));
/* last BD in Tx ring */
if (slot == (RGE_RECV_SLOTS - 1))
bdp->flags_len |= RGE_BSWAP_32(BD_FLAG_EOR);
srbdp++;
bdp++;
}
DMA_SYNC(rgep->rx_desc, DDI_DMA_SYNC_FORDEV);
rgep->watchdog = 0;
rgep->rx_next = 0;
}
static void
rge_reinit_buf_ring(rge_t *rgep)
{
if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
return;
/*
* If all the up-sending buffers haven't been returned to driver,
* use bcopy() only in rx process.
*/
if (rgep->rx_free != RGE_BUF_SLOTS)
rgep->rx_bcopy = B_TRUE;
}
static void
rge_reinit_rings(rge_t *rgep)
{
rge_reinit_send_ring(rgep);
rge_reinit_recv_ring(rgep);
rge_reinit_buf_ring(rgep);
}
static void
rge_fini_send_ring(rge_t *rgep)
{
sw_sbd_t *ssbdp;
uint32_t slot;
ssbdp = rgep->sw_sbds;
for (slot = 0; slot < RGE_SEND_SLOTS; ++slot) {
rge_free_dma_mem(&ssbdp->pbuf);
ssbdp++;
}
kmem_free(rgep->sw_sbds, RGE_SEND_SLOTS * sizeof (sw_sbd_t));
rgep->sw_sbds = NULL;
}
static void
rge_fini_recv_ring(rge_t *rgep)
{
sw_rbd_t *srbdp;
uint32_t slot;
srbdp = rgep->sw_rbds;
for (slot = 0; slot < RGE_RECV_SLOTS; ++srbdp, ++slot) {
if (srbdp->rx_buf) {
if (srbdp->rx_buf->mp != NULL) {
freemsg(srbdp->rx_buf->mp);
srbdp->rx_buf->mp = NULL;
}
rge_free_dma_mem(&srbdp->rx_buf->pbuf);
kmem_free(srbdp->rx_buf, sizeof (dma_buf_t));
srbdp->rx_buf = NULL;
}
}
kmem_free(rgep->sw_rbds, RGE_RECV_SLOTS * sizeof (sw_rbd_t));
rgep->sw_rbds = NULL;
}
static void
rge_fini_buf_ring(rge_t *rgep)
{
sw_rbd_t *srbdp;
uint32_t slot;
if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)
return;
ASSERT(rgep->rx_free == RGE_BUF_SLOTS);
srbdp = rgep->free_srbds;
for (slot = 0; slot < RGE_BUF_SLOTS; ++srbdp, ++slot) {
if (srbdp->rx_buf != NULL) {
if (srbdp->rx_buf->mp != NULL) {
freemsg(srbdp->rx_buf->mp);
srbdp->rx_buf->mp = NULL;
}
rge_free_dma_mem(&srbdp->rx_buf->pbuf);
kmem_free(srbdp->rx_buf, sizeof (dma_buf_t));
srbdp->rx_buf = NULL;
}
}
kmem_free(rgep->free_srbds, RGE_BUF_SLOTS * sizeof (sw_rbd_t));
rgep->free_srbds = NULL;
}
static void
rge_fini_rings(rge_t *rgep)
{
rge_fini_send_ring(rgep);
rge_fini_recv_ring(rgep);
rge_fini_buf_ring(rgep);
}
static int
rge_init_send_ring(rge_t *rgep)
{
uint32_t slot;
sw_sbd_t *ssbdp;
dma_area_t *pbuf;
dma_area_t desc;
int err;
/*
* Allocate the array of s/w Tx Buffer Descriptors
*/
ssbdp = kmem_zalloc(RGE_SEND_SLOTS*sizeof (*ssbdp), KM_SLEEP);
rgep->sw_sbds = ssbdp;
/*
* Init send ring
*/
rgep->tx_desc = rgep->dma_area_txdesc;
DMA_ZERO(rgep->tx_desc);
rgep->tx_ring = rgep->tx_desc.mem_va;
desc = rgep->tx_desc;
for (slot = 0; slot < RGE_SEND_SLOTS; slot++) {
rge_slice_chunk(&ssbdp->desc, &desc, 1, sizeof (rge_bd_t));
/*
* Allocate memory & handle for Tx buffers
*/
pbuf = &ssbdp->pbuf;
err = rge_alloc_dma_mem(rgep, rgep->txbuf_size,
&dma_attr_buf, &rge_buf_accattr,
DDI_DMA_WRITE | DDI_DMA_STREAMING, pbuf);
if (err != DDI_SUCCESS) {
rge_error(rgep,
"rge_init_send_ring: alloc tx buffer failed");
rge_fini_send_ring(rgep);
return (DDI_FAILURE);
}
ssbdp++;
}
ASSERT(desc.alength == 0);
DMA_SYNC(rgep->tx_desc, DDI_DMA_SYNC_FORDEV);
return (DDI_SUCCESS);
}
static int
rge_init_recv_ring(rge_t *rgep)
{
uint32_t slot;
sw_rbd_t *srbdp;
dma_buf_t *rx_buf;
dma_area_t *pbuf;
int err;
/*
* Allocate the array of s/w Rx Buffer Descriptors
*/
srbdp = kmem_zalloc(RGE_RECV_SLOTS*sizeof (*srbdp), KM_SLEEP);
rgep->sw_rbds = srbdp;
/*
* Init receive ring
*/
rgep->rx_next = 0;
rgep->rx_desc = rgep->dma_area_rxdesc;
DMA_ZERO(rgep->rx_desc);
rgep->rx_ring = rgep->rx_desc.mem_va;
for (slot = 0; slot < RGE_RECV_SLOTS; slot++) {
srbdp->rx_buf = rx_buf =
kmem_zalloc(sizeof (dma_buf_t), KM_SLEEP);
/*
* Allocate memory & handle for Rx buffers
*/
pbuf = &rx_buf->pbuf;
err = rge_alloc_dma_mem(rgep, rgep->rxbuf_size,
&dma_attr_buf, &rge_buf_accattr,
DDI_DMA_READ | DDI_DMA_STREAMING, pbuf);
if (err != DDI_SUCCESS) {
rge_fini_recv_ring(rgep);
rge_error(rgep,
"rge_init_recv_ring: alloc rx buffer failed");
return (DDI_FAILURE);
}
pbuf->alength -= rgep->head_room;
pbuf->offset += rgep->head_room;
if (!(rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY)) {
rx_buf->rx_recycle.free_func = rge_rx_recycle;
rx_buf->rx_recycle.free_arg = (caddr_t)rx_buf;
rx_buf->private = (caddr_t)rgep;
rx_buf->mp = desballoc(DMA_VPTR(rx_buf->pbuf),
rgep->rxbuf_size, 0, &rx_buf->rx_recycle);
if (rx_buf->mp == NULL) {
rge_fini_recv_ring(rgep);
rge_problem(rgep,
"rge_init_recv_ring: desballoc() failed");
return (DDI_FAILURE);
}
}
srbdp++;
}
DMA_SYNC(rgep->rx_desc, DDI_DMA_SYNC_FORDEV);
return (DDI_SUCCESS);
}
static int
rge_init_buf_ring(rge_t *rgep)
{
uint32_t slot;
sw_rbd_t *free_srbdp;
dma_buf_t *rx_buf;
dma_area_t *pbuf;
int err;
if (rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY) {
rgep->rx_bcopy = B_TRUE;
return (DDI_SUCCESS);
}
/*
* Allocate the array of s/w free Buffer Descriptors
*/
free_srbdp = kmem_zalloc(RGE_BUF_SLOTS*sizeof (*free_srbdp), KM_SLEEP);
rgep->free_srbds = free_srbdp;
/*
* Init free buffer ring
*/
rgep->rc_next = 0;
rgep->rf_next = 0;
rgep->rx_bcopy = B_FALSE;
rgep->rx_free = RGE_BUF_SLOTS;
for (slot = 0; slot < RGE_BUF_SLOTS; slot++) {
free_srbdp->rx_buf = rx_buf =
kmem_zalloc(sizeof (dma_buf_t), KM_SLEEP);
/*
* Allocate memory & handle for free Rx buffers
*/
pbuf = &rx_buf->pbuf;
err = rge_alloc_dma_mem(rgep, rgep->rxbuf_size,
&dma_attr_buf, &rge_buf_accattr,
DDI_DMA_READ | DDI_DMA_STREAMING, pbuf);
if (err != DDI_SUCCESS) {
rge_fini_buf_ring(rgep);
rge_error(rgep,
"rge_init_buf_ring: alloc rx free buffer failed");
return (DDI_FAILURE);
}
pbuf->alength -= rgep->head_room;
pbuf->offset += rgep->head_room;
rx_buf->rx_recycle.free_func = rge_rx_recycle;
rx_buf->rx_recycle.free_arg = (caddr_t)rx_buf;
rx_buf->private = (caddr_t)rgep;
rx_buf->mp = desballoc(DMA_VPTR(rx_buf->pbuf),
rgep->rxbuf_size, 0, &rx_buf->rx_recycle);
if (rx_buf->mp == NULL) {
rge_fini_buf_ring(rgep);
rge_problem(rgep,
"rge_init_buf_ring: desballoc() failed");
return (DDI_FAILURE);
}
free_srbdp++;
}
return (DDI_SUCCESS);
}
static int
rge_init_rings(rge_t *rgep)
{
int err;
err = rge_init_send_ring(rgep);
if (err != DDI_SUCCESS)
return (DDI_FAILURE);
err = rge_init_recv_ring(rgep);
if (err != DDI_SUCCESS) {
rge_fini_send_ring(rgep);
return (DDI_FAILURE);
}
err = rge_init_buf_ring(rgep);
if (err != DDI_SUCCESS) {
rge_fini_send_ring(rgep);
rge_fini_recv_ring(rgep);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* ========== Internal state management entry points ==========
*/
#undef RGE_DBG
#define RGE_DBG RGE_DBG_NEMO /* debug flag for this code */
/*
* These routines provide all the functionality required by the
* corresponding MAC layer entry points, but don't update the
* MAC state so they can be called internally without disturbing
* our record of what NEMO thinks we should be doing ...
*/
/*
* rge_reset() -- reset h/w & rings to initial state
*/
static void
rge_reset(rge_t *rgep)
{
ASSERT(mutex_owned(rgep->genlock));
/*
* Grab all the other mutexes in the world (this should
* ensure no other threads are manipulating driver state)
*/
mutex_enter(rgep->rx_lock);
mutex_enter(rgep->rc_lock);
rw_enter(rgep->errlock, RW_WRITER);
(void) rge_chip_reset(rgep);
rge_reinit_rings(rgep);
rge_chip_init(rgep);
/*
* Free the world ...
*/
rw_exit(rgep->errlock);
mutex_exit(rgep->rc_lock);
mutex_exit(rgep->rx_lock);
rgep->stats.rpackets = 0;
rgep->stats.rbytes = 0;
rgep->stats.opackets = 0;
rgep->stats.obytes = 0;
rgep->stats.tx_pre_ismax = B_FALSE;
rgep->stats.tx_cur_ismax = B_FALSE;
RGE_DEBUG(("rge_reset($%p) done", (void *)rgep));
}
/*
* rge_stop() -- stop processing, don't reset h/w or rings
*/
static void
rge_stop(rge_t *rgep)
{
ASSERT(mutex_owned(rgep->genlock));
rge_chip_stop(rgep, B_FALSE);
RGE_DEBUG(("rge_stop($%p) done", (void *)rgep));
}
/*
* rge_start() -- start transmitting/receiving
*/
static void
rge_start(rge_t *rgep)
{
ASSERT(mutex_owned(rgep->genlock));
/*
* Start chip processing, including enabling interrupts
*/
rge_chip_start(rgep);
rgep->watchdog = 0;
}
/*
* rge_restart - restart transmitting/receiving after error or suspend
*/
void
rge_restart(rge_t *rgep)
{
uint32_t i;
ASSERT(mutex_owned(rgep->genlock));
/*
* Wait for posted buffer to be freed...
*/
if (!rgep->rx_bcopy) {
for (i = 0; i < RXBUFF_FREE_LOOP; i++) {
if (rgep->rx_free == RGE_BUF_SLOTS)
break;
drv_usecwait(1000);
RGE_DEBUG(("rge_restart: waiting for rx buf free..."));
}
}
rge_reset(rgep);
rgep->stats.chip_reset++;
if (rgep->rge_mac_state == RGE_MAC_STARTED) {
rge_start(rgep);
rgep->resched_needed = B_TRUE;
(void) ddi_intr_trigger_softint(rgep->resched_hdl, NULL);
}
}
/*
* ========== Nemo-required management entry points ==========
*/
#undef RGE_DBG
#define RGE_DBG RGE_DBG_NEMO /* debug flag for this code */
/*
* rge_m_stop() -- stop transmitting/receiving
*/
static void
rge_m_stop(void *arg)
{
rge_t *rgep = arg; /* private device info */
uint32_t i;
/*
* Just stop processing, then record new MAC state
*/
mutex_enter(rgep->genlock);
if (rgep->suspended) {
ASSERT(rgep->rge_mac_state == RGE_MAC_STOPPED);
mutex_exit(rgep->genlock);
return;
}
rge_stop(rgep);
/*
* Wait for posted buffer to be freed...
*/
if (!rgep->rx_bcopy) {
for (i = 0; i < RXBUFF_FREE_LOOP; i++) {
if (rgep->rx_free == RGE_BUF_SLOTS)
break;
drv_usecwait(1000);
RGE_DEBUG(("rge_m_stop: waiting for rx buf free..."));
}
}
rgep->rge_mac_state = RGE_MAC_STOPPED;
RGE_DEBUG(("rge_m_stop($%p) done", arg));
mutex_exit(rgep->genlock);
}
/*
* rge_m_start() -- start transmitting/receiving
*/
static int
rge_m_start(void *arg)
{
rge_t *rgep = arg; /* private device info */
mutex_enter(rgep->genlock);
if (rgep->suspended) {
mutex_exit(rgep->genlock);
return (DDI_FAILURE);
}
/*
* Clear hw/sw statistics
*/
DMA_ZERO(rgep->dma_area_stats);
bzero(&rgep->stats, sizeof (rge_stats_t));
/*
* Start processing and record new MAC state
*/
rge_reset(rgep);
rge_start(rgep);
rgep->rge_mac_state = RGE_MAC_STARTED;
RGE_DEBUG(("rge_m_start($%p) done", arg));
mutex_exit(rgep->genlock);
return (0);
}
/*
* rge_m_unicst_set() -- set the physical network address
*/
static int
rge_m_unicst(void *arg, const uint8_t *macaddr)
{
rge_t *rgep = arg; /* private device info */
/*
* Remember the new current address in the driver state
* Sync the chip's idea of the address too ...
*/
mutex_enter(rgep->genlock);
bcopy(macaddr, rgep->netaddr, ETHERADDRL);
if (rgep->suspended) {
mutex_exit(rgep->genlock);
return (DDI_SUCCESS);
}
rge_chip_sync(rgep, RGE_SET_MAC);
mutex_exit(rgep->genlock);
return (0);
}
/*
* Compute the index of the required bit in the multicast hash map.
* This must mirror the way the hardware actually does it!
*/
static uint32_t
rge_hash_index(const uint8_t *mca)
{
uint32_t crc = (uint32_t)RGE_HASH_CRC;
uint32_t const POLY = RGE_HASH_POLY;
uint32_t msb;
int bytes;
uchar_t currentbyte;
uint32_t index;
int bit;
for (bytes = 0; bytes < ETHERADDRL; bytes++) {
currentbyte = mca[bytes];
for (bit = 0; bit < 8; bit++) {
msb = crc >> 31;
crc <<= 1;
if (msb ^ (currentbyte & 1))
crc ^= POLY;
currentbyte >>= 1;
}
}
index = crc >> 26;
/* the index value is between 0 and 63(0x3f) */
return (index);
}
/*
* rge_m_multicst_add() -- enable/disable a multicast address
*/
static int
rge_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
rge_t *rgep = arg; /* private device info */
struct ether_addr *addr;
uint32_t index;
uint32_t reg;
uint8_t *hashp;
mutex_enter(rgep->genlock);
hashp = rgep->mcast_hash;
addr = (struct ether_addr *)mca;
/*
* Calculate the Multicast address hash index value
* Normally, the position of MAR0-MAR7 is
* MAR0: offset 0x08, ..., MAR7: offset 0x0F.
*
* For pcie chipset, the position of MAR0-MAR7 is
* different from others:
* MAR0: offset 0x0F, ..., MAR7: offset 0x08.
*/
index = rge_hash_index(addr->ether_addr_octet);
if (rgep->chipid.is_pcie)
reg = (~(index / RGE_MCAST_NUM)) & 0x7;
else
reg = index / RGE_MCAST_NUM;
if (add) {
if (rgep->mcast_refs[index]++) {
mutex_exit(rgep->genlock);
return (0);
}
hashp[reg] |= 1 << (index % RGE_MCAST_NUM);
} else {
if (--rgep->mcast_refs[index]) {
mutex_exit(rgep->genlock);
return (0);
}
hashp[reg] &= ~ (1 << (index % RGE_MCAST_NUM));
}
if (rgep->suspended) {
mutex_exit(rgep->genlock);
return (DDI_SUCCESS);
}
/*
* Set multicast register
*/
rge_chip_sync(rgep, RGE_SET_MUL);
mutex_exit(rgep->genlock);
return (0);
}
/*
* rge_m_promisc() -- set or reset promiscuous mode on the board
*
* Program the hardware to enable/disable promiscuous and/or
* receive-all-multicast modes.
*/
static int
rge_m_promisc(void *arg, boolean_t on)
{
rge_t *rgep = arg;
/*
* Store MAC layer specified mode and pass to chip layer to update h/w
*/
mutex_enter(rgep->genlock);
if (rgep->promisc == on) {
mutex_exit(rgep->genlock);
return (0);
}
rgep->promisc = on;
if (rgep->suspended) {
mutex_exit(rgep->genlock);
return (DDI_SUCCESS);
}
rge_chip_sync(rgep, RGE_SET_PROMISC);
RGE_DEBUG(("rge_m_promisc_set($%p) done", arg));
mutex_exit(rgep->genlock);
return (0);
}
/*
* Loopback ioctl code
*/
static lb_property_t loopmodes[] = {
{ normal, "normal", RGE_LOOP_NONE },
{ internal, "PHY", RGE_LOOP_INTERNAL_PHY },
{ internal, "MAC", RGE_LOOP_INTERNAL_MAC }
};
static enum ioc_reply
rge_set_loop_mode(rge_t *rgep, uint32_t mode)
{
/*
* If the mode isn't being changed, there's nothing to do ...
*/
if (mode == rgep->param_loop_mode)
return (IOC_ACK);
/*
* Validate the requested mode and prepare a suitable message
* to explain the link down/up cycle that the change will
* probably induce ...
*/
switch (mode) {
default:
return (IOC_INVAL);
case RGE_LOOP_NONE:
case RGE_LOOP_INTERNAL_PHY:
case RGE_LOOP_INTERNAL_MAC:
break;
}
/*
* All OK; tell the caller to reprogram
* the PHY and/or MAC for the new mode ...
*/
rgep->param_loop_mode = mode;
return (IOC_RESTART_ACK);
}
static enum ioc_reply
rge_loop_ioctl(rge_t *rgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
{
lb_info_sz_t *lbsp;
lb_property_t *lbpp;
uint32_t *lbmp;
int cmd;
_NOTE(ARGUNUSED(wq))
/*
* Validate format of ioctl
*/
if (mp->b_cont == NULL)
return (IOC_INVAL);
cmd = iocp->ioc_cmd;
switch (cmd) {
default:
/* NOTREACHED */
rge_error(rgep, "rge_loop_ioctl: invalid cmd 0x%x", cmd);
return (IOC_INVAL);
case LB_GET_INFO_SIZE:
if (iocp->ioc_count != sizeof (lb_info_sz_t))
return (IOC_INVAL);
lbsp = (lb_info_sz_t *)mp->b_cont->b_rptr;
*lbsp = sizeof (loopmodes);
return (IOC_REPLY);
case LB_GET_INFO:
if (iocp->ioc_count != sizeof (loopmodes))
return (IOC_INVAL);
lbpp = (lb_property_t *)mp->b_cont->b_rptr;
bcopy(loopmodes, lbpp, sizeof (loopmodes));
return (IOC_REPLY);
case LB_GET_MODE:
if (iocp->ioc_count != sizeof (uint32_t))
return (IOC_INVAL);
lbmp = (uint32_t *)mp->b_cont->b_rptr;
*lbmp = rgep->param_loop_mode;
return (IOC_REPLY);
case LB_SET_MODE:
if (iocp->ioc_count != sizeof (uint32_t))
return (IOC_INVAL);
lbmp = (uint32_t *)mp->b_cont->b_rptr;
return (rge_set_loop_mode(rgep, *lbmp));
}
}
/*
* Specific rge IOCTLs, the MAC layer handles the generic ones.
*/
static void
rge_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
{
rge_t *rgep = arg;
struct iocblk *iocp;
enum ioc_reply status;
boolean_t need_privilege;
int err;
int cmd;
/*
* If suspended, we might actually be able to do some of
* these ioctls, but it is harder to make sure they occur
* without actually putting the hardware in an undesireable
* state. So just NAK it.
*/
mutex_enter(rgep->genlock);
if (rgep->suspended) {
miocnak(wq, mp, 0, EINVAL);
mutex_exit(rgep->genlock);
return;
}
mutex_exit(rgep->genlock);
/*
* Validate the command before bothering with the mutex ...
*/
iocp = (struct iocblk *)mp->b_rptr;
iocp->ioc_error = 0;
need_privilege = B_TRUE;
cmd = iocp->ioc_cmd;
switch (cmd) {
default:
miocnak(wq, mp, 0, EINVAL);
return;
case RGE_MII_READ:
case RGE_MII_WRITE:
case RGE_DIAG:
case RGE_PEEK:
case RGE_POKE:
case RGE_PHY_RESET:
case RGE_SOFT_RESET:
case RGE_HARD_RESET:
break;
case LB_GET_INFO_SIZE:
case LB_GET_INFO:
case LB_GET_MODE:
need_privilege = B_FALSE;
/* FALLTHRU */
case LB_SET_MODE:
break;
case ND_GET:
need_privilege = B_FALSE;
/* FALLTHRU */
case ND_SET:
break;
}
if (need_privilege) {
/*
* Check for specific net_config privilege
*/
err = secpolicy_net_config(iocp->ioc_cr, B_FALSE);
if (err != 0) {
miocnak(wq, mp, 0, err);
return;
}
}
mutex_enter(rgep->genlock);
switch (cmd) {
default:
_NOTE(NOTREACHED)
status = IOC_INVAL;
break;
case RGE_MII_READ:
case RGE_MII_WRITE:
case RGE_DIAG:
case RGE_PEEK:
case RGE_POKE:
case RGE_PHY_RESET:
case RGE_SOFT_RESET:
case RGE_HARD_RESET:
status = rge_chip_ioctl(rgep, wq, mp, iocp);
break;
case LB_GET_INFO_SIZE:
case LB_GET_INFO:
case LB_GET_MODE:
case LB_SET_MODE:
status = rge_loop_ioctl(rgep, wq, mp, iocp);
break;
case ND_GET:
case ND_SET:
status = rge_nd_ioctl(rgep, wq, mp, iocp);
break;
}
/*
* Do we need to reprogram the PHY and/or the MAC?
* Do it now, while we still have the mutex.
*
* Note: update the PHY first, 'cos it controls the
* speed/duplex parameters that the MAC code uses.
*/
switch (status) {
case IOC_RESTART_REPLY:
case IOC_RESTART_ACK:
rge_phy_update(rgep);
break;
}
mutex_exit(rgep->genlock);
/*
* Finally, decide how to reply
*/
switch (status) {
default:
case IOC_INVAL:
/*
* Error, reply with a NAK and EINVAL or the specified error
*/
miocnak(wq, mp, 0, iocp->ioc_error == 0 ?
EINVAL : iocp->ioc_error);
break;
case IOC_DONE:
/*
* OK, reply already sent
*/
break;
case IOC_RESTART_ACK:
case IOC_ACK:
/*
* OK, reply with an ACK
*/
miocack(wq, mp, 0, 0);
break;
case IOC_RESTART_REPLY:
case IOC_REPLY:
/*
* OK, send prepared reply as ACK or NAK
*/
mp->b_datap->db_type = iocp->ioc_error == 0 ?
M_IOCACK : M_IOCNAK;
qreply(wq, mp);
break;
}
}
/* ARGSUSED */
static boolean_t
rge_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
{
rge_t *rgep = arg;
switch (cap) {
case MAC_CAPAB_HCKSUM: {
uint32_t *hcksum_txflags = cap_data;
switch (rgep->chipid.mac_ver) {
case MAC_VER_8169:
case MAC_VER_8169S_D:
case MAC_VER_8169S_E:
case MAC_VER_8169SB:
case MAC_VER_8169SC:
case MAC_VER_8168:
case MAC_VER_8168B_B:
case MAC_VER_8168B_C:
case MAC_VER_8101E:
*hcksum_txflags = HCKSUM_INET_FULL_V4 |
HCKSUM_IPHDRCKSUM;
break;
case MAC_VER_8168C:
case MAC_VER_8101E_B:
case MAC_VER_8101E_C:
default:
*hcksum_txflags = 0;
break;
}
break;
}
default:
return (B_FALSE);
}
return (B_TRUE);
}
/*
* ============ Init MSI/Fixed Interrupt routines ==============
*/
/*
* rge_add_intrs:
*
* Register FIXED or MSI interrupts.
*/
static int
rge_add_intrs(rge_t *rgep, int intr_type)
{
dev_info_t *dip = rgep->devinfo;
int avail;
int actual;
int intr_size;
int count;
int i, j;
int ret;
/* Get number of interrupts */
ret = ddi_intr_get_nintrs(dip, intr_type, &count);
if ((ret != DDI_SUCCESS) || (count == 0)) {
rge_error(rgep, "ddi_intr_get_nintrs() failure, ret: %d, "
"count: %d", ret, count);
return (DDI_FAILURE);
}
/* Get number of available interrupts */
ret = ddi_intr_get_navail(dip, intr_type, &avail);
if ((ret != DDI_SUCCESS) || (avail == 0)) {
rge_error(rgep, "ddi_intr_get_navail() failure, "
"ret: %d, avail: %d\n", ret, avail);
return (DDI_FAILURE);
}
/* Allocate an array of interrupt handles */
intr_size = count * sizeof (ddi_intr_handle_t);
rgep->htable = kmem_alloc(intr_size, KM_SLEEP);
rgep->intr_rqst = count;
/* Call ddi_intr_alloc() */
ret = ddi_intr_alloc(dip, rgep->htable, intr_type, 0,
count, &actual, DDI_INTR_ALLOC_NORMAL);
if (ret != DDI_SUCCESS || actual == 0) {
rge_error(rgep, "ddi_intr_alloc() failed %d\n", ret);
kmem_free(rgep->htable, intr_size);
return (DDI_FAILURE);
}
if (actual < count) {
rge_log(rgep, "ddi_intr_alloc() Requested: %d, Received: %d\n",
count, actual);
}
rgep->intr_cnt = actual;
/*
* Get priority for first msi, assume remaining are all the same
*/
if ((ret = ddi_intr_get_pri(rgep->htable[0], &rgep->intr_pri)) !=
DDI_SUCCESS) {
rge_error(rgep, "ddi_intr_get_pri() failed %d\n", ret);
/* Free already allocated intr */
for (i = 0; i < actual; i++) {
(void) ddi_intr_free(rgep->htable[i]);
}
kmem_free(rgep->htable, intr_size);
return (DDI_FAILURE);
}
/* Test for high level mutex */
if (rgep->intr_pri >= ddi_intr_get_hilevel_pri()) {
rge_error(rgep, "rge_add_intrs:"
"Hi level interrupt not supported");
for (i = 0; i < actual; i++)
(void) ddi_intr_free(rgep->htable[i]);
kmem_free(rgep->htable, intr_size);
return (DDI_FAILURE);
}
/* Call ddi_intr_add_handler() */
for (i = 0; i < actual; i++) {
if ((ret = ddi_intr_add_handler(rgep->htable[i], rge_intr,
(caddr_t)rgep, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) {
rge_error(rgep, "ddi_intr_add_handler() "
"failed %d\n", ret);
/* Remove already added intr */
for (j = 0; j < i; j++)
(void) ddi_intr_remove_handler(rgep->htable[j]);
/* Free already allocated intr */
for (i = 0; i < actual; i++) {
(void) ddi_intr_free(rgep->htable[i]);
}
kmem_free(rgep->htable, intr_size);
return (DDI_FAILURE);
}
}
if ((ret = ddi_intr_get_cap(rgep->htable[0], &rgep->intr_cap))
!= DDI_SUCCESS) {
rge_error(rgep, "ddi_intr_get_cap() failed %d\n", ret);
for (i = 0; i < actual; i++) {
(void) ddi_intr_remove_handler(rgep->htable[i]);
(void) ddi_intr_free(rgep->htable[i]);
}
kmem_free(rgep->htable, intr_size);
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/*
* rge_rem_intrs:
*
* Unregister FIXED or MSI interrupts
*/
static void
rge_rem_intrs(rge_t *rgep)
{
int i;
/* Disable all interrupts */
if (rgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_disable() */
(void) ddi_intr_block_disable(rgep->htable, rgep->intr_cnt);
} else {
for (i = 0; i < rgep->intr_cnt; i++) {
(void) ddi_intr_disable(rgep->htable[i]);
}
}
/* Call ddi_intr_remove_handler() */
for (i = 0; i < rgep->intr_cnt; i++) {
(void) ddi_intr_remove_handler(rgep->htable[i]);
(void) ddi_intr_free(rgep->htable[i]);
}
kmem_free(rgep->htable, rgep->intr_rqst * sizeof (ddi_intr_handle_t));
}
/*
* ========== Per-instance setup/teardown code ==========
*/
#undef RGE_DBG
#define RGE_DBG RGE_DBG_INIT /* debug flag for this code */
static void
rge_unattach(rge_t *rgep)
{
/*
* Flag that no more activity may be initiated
*/
rgep->progress &= ~PROGRESS_READY;
rgep->rge_mac_state = RGE_MAC_UNATTACH;
/*
* Quiesce the PHY and MAC (leave it reset but still powered).
* Clean up and free all RGE data structures
*/
if (rgep->periodic_id != NULL) {
ddi_periodic_delete(rgep->periodic_id);
rgep->periodic_id = NULL;
}
if (rgep->progress & PROGRESS_KSTATS)
rge_fini_kstats(rgep);
if (rgep->progress & PROGRESS_PHY)
(void) rge_phy_reset(rgep);
if (rgep->progress & PROGRESS_INIT) {
mutex_enter(rgep->genlock);
(void) rge_chip_reset(rgep);
mutex_exit(rgep->genlock);
rge_fini_rings(rgep);
}
if (rgep->progress & PROGRESS_INTR) {
rge_rem_intrs(rgep);
mutex_destroy(rgep->rc_lock);
mutex_destroy(rgep->rx_lock);
mutex_destroy(rgep->tc_lock);
mutex_destroy(rgep->tx_lock);
rw_destroy(rgep->errlock);
mutex_destroy(rgep->genlock);
}
if (rgep->progress & PROGRESS_FACTOTUM)
(void) ddi_intr_remove_softint(rgep->factotum_hdl);
if (rgep->progress & PROGRESS_RESCHED)
(void) ddi_intr_remove_softint(rgep->resched_hdl);
if (rgep->progress & PROGRESS_NDD)
rge_nd_cleanup(rgep);
rge_free_bufs(rgep);
if (rgep->progress & PROGRESS_REGS)
ddi_regs_map_free(&rgep->io_handle);
if (rgep->progress & PROGRESS_CFG)
pci_config_teardown(&rgep->cfg_handle);
ddi_remove_minor_node(rgep->devinfo, NULL);
kmem_free(rgep, sizeof (*rgep));
}
static int
rge_resume(dev_info_t *devinfo)
{
rge_t *rgep; /* Our private data */
chip_id_t *cidp;
chip_id_t chipid;
rgep = ddi_get_driver_private(devinfo);
/*
* If there are state inconsistancies, this is bad. Returning
* DDI_FAILURE here will eventually cause the machine to panic,
* so it is best done here so that there is a possibility of
* debugging the problem.
*/
if (rgep == NULL)
cmn_err(CE_PANIC,
"rge: ngep returned from ddi_get_driver_private was NULL");
/*
* Refuse to resume if the data structures aren't consistent
*/
if (rgep->devinfo != devinfo)
cmn_err(CE_PANIC,
"rge: passed devinfo not the same as saved devinfo");
/*
* Read chip ID & set up config space command register(s)
* Refuse to resume if the chip has changed its identity!
*/
cidp = &rgep->chipid;
rge_chip_cfg_init(rgep, &chipid);
if (chipid.vendor != cidp->vendor)
return (DDI_FAILURE);
if (chipid.device != cidp->device)
return (DDI_FAILURE);
if (chipid.revision != cidp->revision)
return (DDI_FAILURE);
mutex_enter(rgep->genlock);
/*
* Only in one case, this conditional branch can be executed: the port
* hasn't been plumbed.
*/
if (rgep->suspended == B_FALSE) {
mutex_exit(rgep->genlock);
return (DDI_SUCCESS);
}
rgep->rge_mac_state = RGE_MAC_STARTED;
/*
* All OK, reinitialise h/w & kick off NEMO scheduling
*/
rge_restart(rgep);
rgep->suspended = B_FALSE;
mutex_exit(rgep->genlock);
return (DDI_SUCCESS);
}
/*
* attach(9E) -- Attach a device to the system
*
* Called once for each board successfully probed.
*/
static int
rge_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
{
rge_t *rgep; /* Our private data */
mac_register_t *macp;
chip_id_t *cidp;
int intr_types;
caddr_t regs;
int instance;
int i;
int err;
/*
* we don't support high level interrupts in the driver
*/
if (ddi_intr_hilevel(devinfo, 0) != 0) {
cmn_err(CE_WARN,
"rge_attach -- unsupported high level interrupt");
return (DDI_FAILURE);
}
instance = ddi_get_instance(devinfo);
RGE_GTRACE(("rge_attach($%p, %d) instance %d",
(void *)devinfo, cmd, instance));
RGE_BRKPT(NULL, "rge_attach");
switch (cmd) {
default:
return (DDI_FAILURE);
case DDI_RESUME:
return (rge_resume(devinfo));
case DDI_ATTACH:
break;
}
rgep = kmem_zalloc(sizeof (*rgep), KM_SLEEP);
ddi_set_driver_private(devinfo, rgep);
rgep->devinfo = devinfo;
/*
* Initialize more fields in RGE private data
*/
rgep->rge_mac_state = RGE_MAC_ATTACH;
rgep->debug = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, debug_propname, rge_debug);
rgep->default_mtu = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, mtu_propname, ETHERMTU);
rgep->msi_enable = ddi_prop_get_int(DDI_DEV_T_ANY, devinfo,
DDI_PROP_DONTPASS, msi_propname, B_TRUE);
(void) snprintf(rgep->ifname, sizeof (rgep->ifname), "%s%d",
RGE_DRIVER_NAME, instance);
/*
* Map config space registers
* Read chip ID & set up config space command register(s)
*
* Note: this leaves the chip accessible by Memory Space
* accesses, but with interrupts and Bus Mastering off.
* This should ensure that nothing untoward will happen
* if it has been left active by the (net-)bootloader.
* We'll re-enable Bus Mastering once we've reset the chip,
* and allow interrupts only when everything else is set up.
*/
err = pci_config_setup(devinfo, &rgep->cfg_handle);
if (err != DDI_SUCCESS) {
rge_problem(rgep, "pci_config_setup() failed");
goto attach_fail;
}
rgep->progress |= PROGRESS_CFG;
cidp = &rgep->chipid;
bzero(cidp, sizeof (*cidp));
rge_chip_cfg_init(rgep, cidp);
/*
* Map operating registers
*/
err = ddi_regs_map_setup(devinfo, 2, ®s,
0, 0, &rge_reg_accattr, &rgep->io_handle);
/*
* MMIO map will fail if the assigned address is bigger than 4G
* then choose I/O map
*/
if (err != DDI_SUCCESS) {
err = ddi_regs_map_setup(devinfo, 1, ®s,
0, 0, &rge_reg_accattr, &rgep->io_handle);
}
if (err != DDI_SUCCESS) {
rge_problem(rgep, "ddi_regs_map_setup() failed");
goto attach_fail;
}
rgep->io_regs = regs;
rgep->progress |= PROGRESS_REGS;
/*
* Characterise the device, so we know its requirements.
* Then allocate the appropriate TX and RX descriptors & buffers.
*/
rge_chip_ident(rgep);
err = rge_alloc_bufs(rgep);
if (err != DDI_SUCCESS) {
rge_problem(rgep, "DMA buffer allocation failed");
goto attach_fail;
}
/*
* Register NDD-tweakable parameters
*/
if (rge_nd_init(rgep)) {
rge_problem(rgep, "rge_nd_init() failed");
goto attach_fail;
}
rgep->progress |= PROGRESS_NDD;
/*
* Add the softint handlers:
*
* Both of these handlers are used to avoid restrictions on the
* context and/or mutexes required for some operations. In
* particular, the hardware interrupt handler and its subfunctions
* can detect a number of conditions that we don't want to handle
* in that context or with that set of mutexes held. So, these
* softints are triggered instead:
*
* the <resched> softint is triggered if if we have previously
* had to refuse to send a packet because of resource shortage
* (we've run out of transmit buffers), but the send completion
* interrupt handler has now detected that more buffers have
* become available.
*
* the <factotum> is triggered if the h/w interrupt handler
* sees the <link state changed> or <error> bits in the status
* block. It's also triggered periodically to poll the link
* state, just in case we aren't getting link status change
* interrupts ...
*/
err = ddi_intr_add_softint(devinfo, &rgep->resched_hdl,
DDI_INTR_SOFTPRI_MIN, rge_reschedule, (caddr_t)rgep);
if (err != DDI_SUCCESS) {
rge_problem(rgep, "ddi_intr_add_softint() failed");
goto attach_fail;
}
rgep->progress |= PROGRESS_RESCHED;
err = ddi_intr_add_softint(devinfo, &rgep->factotum_hdl,
DDI_INTR_SOFTPRI_MIN, rge_chip_factotum, (caddr_t)rgep);
if (err != DDI_SUCCESS) {
rge_problem(rgep, "ddi_intr_add_softint() failed");
goto attach_fail;
}
rgep->progress |= PROGRESS_FACTOTUM;
/*
* Get supported interrupt types
*/
if (ddi_intr_get_supported_types(devinfo, &intr_types)
!= DDI_SUCCESS) {
rge_error(rgep, "ddi_intr_get_supported_types failed\n");
goto attach_fail;
}
/*
* Add the h/w interrupt handler and initialise mutexes
* RTL8101E is observed to have MSI invalidation issue after S/R.
* So the FIXED interrupt is used instead.
*/
if (rgep->chipid.mac_ver == MAC_VER_8101E)
rgep->msi_enable = B_FALSE;
if ((intr_types & DDI_INTR_TYPE_MSI) && rgep->msi_enable) {
if (rge_add_intrs(rgep, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) {
rge_error(rgep, "MSI registration failed, "
"trying FIXED interrupt type\n");
} else {
rge_log(rgep, "Using MSI interrupt type\n");
rgep->intr_type = DDI_INTR_TYPE_MSI;
rgep->progress |= PROGRESS_INTR;
}
}
if (!(rgep->progress & PROGRESS_INTR) &&
(intr_types & DDI_INTR_TYPE_FIXED)) {
if (rge_add_intrs(rgep, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) {
rge_error(rgep, "FIXED interrupt "
"registration failed\n");
goto attach_fail;
}
rge_log(rgep, "Using FIXED interrupt type\n");
rgep->intr_type = DDI_INTR_TYPE_FIXED;
rgep->progress |= PROGRESS_INTR;
}
if (!(rgep->progress & PROGRESS_INTR)) {
rge_error(rgep, "No interrupts registered\n");
goto attach_fail;
}
mutex_init(rgep->genlock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(rgep->intr_pri));
rw_init(rgep->errlock, NULL, RW_DRIVER,
DDI_INTR_PRI(rgep->intr_pri));
mutex_init(rgep->tx_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(rgep->intr_pri));
mutex_init(rgep->tc_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(rgep->intr_pri));
mutex_init(rgep->rx_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(rgep->intr_pri));
mutex_init(rgep->rc_lock, NULL, MUTEX_DRIVER,
DDI_INTR_PRI(rgep->intr_pri));
/*
* Initialize rings
*/
err = rge_init_rings(rgep);
if (err != DDI_SUCCESS) {
rge_problem(rgep, "rge_init_rings() failed");
goto attach_fail;
}
rgep->progress |= PROGRESS_INIT;
/*
* Now that mutex locks are initialized, enable interrupts.
*/
if (rgep->intr_cap & DDI_INTR_FLAG_BLOCK) {
/* Call ddi_intr_block_enable() for MSI interrupts */
(void) ddi_intr_block_enable(rgep->htable, rgep->intr_cnt);
} else {
/* Call ddi_intr_enable for MSI or FIXED interrupts */
for (i = 0; i < rgep->intr_cnt; i++) {
(void) ddi_intr_enable(rgep->htable[i]);
}
}
/*
* Initialise link state variables
* Stop, reset & reinitialise the chip.
* Initialise the (internal) PHY.
*/
rgep->param_link_up = LINK_STATE_UNKNOWN;
/*
* Reset chip & rings to initial state; also reset address
* filtering, promiscuity, loopback mode.
*/
mutex_enter(rgep->genlock);
(void) rge_chip_reset(rgep);
rge_chip_sync(rgep, RGE_GET_MAC);
bzero(rgep->mcast_hash, sizeof (rgep->mcast_hash));
bzero(rgep->mcast_refs, sizeof (rgep->mcast_refs));
rgep->promisc = B_FALSE;
rgep->param_loop_mode = RGE_LOOP_NONE;
mutex_exit(rgep->genlock);
rge_phy_init(rgep);
rgep->progress |= PROGRESS_PHY;
/*
* Create & initialise named kstats
*/
rge_init_kstats(rgep, instance);
rgep->progress |= PROGRESS_KSTATS;
if ((macp = mac_alloc(MAC_VERSION)) == NULL)
goto attach_fail;
macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
macp->m_driver = rgep;
macp->m_dip = devinfo;
macp->m_src_addr = rgep->netaddr;
macp->m_callbacks = &rge_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = rgep->default_mtu;
macp->m_margin = VLAN_TAGSZ;
/*
* Finally, we're ready to register ourselves with the MAC layer
* interface; if this succeeds, we're all ready to start()
*/
err = mac_register(macp, &rgep->mh);
mac_free(macp);
if (err != 0)
goto attach_fail;
/*
* Register a periodical handler.
* reg_chip_cyclic() is invoked in kernel context.
*/
rgep->periodic_id = ddi_periodic_add(rge_chip_cyclic, rgep,
RGE_CYCLIC_PERIOD, DDI_IPL_0);
rgep->progress |= PROGRESS_READY;
return (DDI_SUCCESS);
attach_fail:
rge_unattach(rgep);
return (DDI_FAILURE);
}
/*
* rge_suspend() -- suspend transmit/receive for powerdown
*/
static int
rge_suspend(rge_t *rgep)
{
/*
* Stop processing and idle (powerdown) the PHY ...
*/
mutex_enter(rgep->genlock);
rw_enter(rgep->errlock, RW_WRITER);
if (rgep->rge_mac_state != RGE_MAC_STARTED) {
rw_exit(rgep->errlock);
mutex_exit(rgep->genlock);
return (DDI_SUCCESS);
}
rgep->suspended = B_TRUE;
rge_stop(rgep);
rgep->rge_mac_state = RGE_MAC_STOPPED;
rw_exit(rgep->errlock);
mutex_exit(rgep->genlock);
return (DDI_SUCCESS);
}
/*
* quiesce(9E) entry point.
*
* This function is called when the system is single-threaded at high
* PIL with preemption disabled. Therefore, this function must not be
* blocked.
*
* This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
* DDI_FAILURE indicates an error condition and should almost never happen.
*/
static int
rge_quiesce(dev_info_t *devinfo)
{
rge_t *rgep = ddi_get_driver_private(devinfo);
if (rgep == NULL)
return (DDI_FAILURE);
/*
* Turn off debugging
*/
rge_debug = 0;
rgep->debug = 0;
/* Stop the chip */
rge_chip_stop(rgep, B_FALSE);
return (DDI_SUCCESS);
}
/*
* detach(9E) -- Detach a device from the system
*/
static int
rge_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
{
rge_t *rgep;
RGE_GTRACE(("rge_detach($%p, %d)", (void *)devinfo, cmd));
rgep = ddi_get_driver_private(devinfo);
switch (cmd) {
default:
return (DDI_FAILURE);
case DDI_SUSPEND:
return (rge_suspend(rgep));
case DDI_DETACH:
break;
}
/*
* If there is any posted buffer, the driver should reject to be
* detached. Need notice upper layer to release them.
*/
if (!(rgep->chip_flags & CHIP_FLAG_FORCE_BCOPY) &&
rgep->rx_free != RGE_BUF_SLOTS)
return (DDI_FAILURE);
/*
* Unregister from the MAC layer subsystem. This can fail, in
* particular if there are DLPI style-2 streams still open -
* in which case we just return failure without shutting
* down chip operations.
*/
if (mac_unregister(rgep->mh) != 0)
return (DDI_FAILURE);
/*
* All activity stopped, so we can clean up & exit
*/
rge_unattach(rgep);
return (DDI_SUCCESS);
}
/*
* ========== Module Loading Data & Entry Points ==========
*/
#undef RGE_DBG
#define RGE_DBG RGE_DBG_INIT /* debug flag for this code */
DDI_DEFINE_STREAM_OPS(rge_dev_ops, nulldev, nulldev, rge_attach, rge_detach,
nodev, NULL, D_MP, NULL, rge_quiesce);
static struct modldrv rge_modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
rge_ident, /* short description */
&rge_dev_ops /* driver specific ops */
};
static struct modlinkage modlinkage = {
MODREV_1, (void *)&rge_modldrv, NULL
};
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int
_init(void)
{
int status;
mac_init_ops(&rge_dev_ops, "rge");
status = mod_install(&modlinkage);
if (status == DDI_SUCCESS)
mutex_init(rge_log_mutex, NULL, MUTEX_DRIVER, NULL);
else
mac_fini_ops(&rge_dev_ops);
return (status);
}
int
_fini(void)
{
int status;
status = mod_remove(&modlinkage);
if (status == DDI_SUCCESS) {
mac_fini_ops(&rge_dev_ops);
mutex_destroy(rge_log_mutex);
}
return (status);
}
|