1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
/*
* This file and its contents are supplied under the terms of the
* Common Development and Distribution License ("CDDL"), version 1.0.
* You may only use this file in accordance with the terms of version
* 1.0 of the CDDL.
*
* A full copy of the text of the CDDL should have accompanied this
* source. A copy of the CDDL is also available via the Internet at
* http://www.illumos.org/license/CDDL.
*/
/*
* Copyright 2019, Joyent, Inc.
*/
/*
* xHCI DMA Management Routines
*
* Please see the big theory statement in xhci.c for more information.
*/
#include <sys/usb/hcd/xhci/xhci.h>
int
xhci_check_dma_handle(xhci_t *xhcip, xhci_dma_buffer_t *xdb)
{
ddi_fm_error_t de;
if (!DDI_FM_DMA_ERR_CAP(xhcip->xhci_fm_caps))
return (0);
ddi_fm_dma_err_get(xdb->xdb_dma_handle, &de, DDI_FME_VERSION);
return (de.fme_status);
}
void
xhci_dma_acc_attr(xhci_t *xhcip, ddi_device_acc_attr_t *accp)
{
accp->devacc_attr_version = DDI_DEVICE_ATTR_V0;
accp->devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
accp->devacc_attr_dataorder = DDI_STRICTORDER_ACC;
if (DDI_FM_DMA_ERR_CAP(xhcip->xhci_fm_caps)) {
accp->devacc_attr_access = DDI_FLAGERR_ACC;
} else {
accp->devacc_attr_access = DDI_DEFAULT_ACC;
}
}
/*
* These are DMA attributes that we assign when making a transfer. The SGL is
* variable and based on the caller, which varies based on the type of transfer
* we're doing.
*/
void
xhci_dma_transfer_attr(xhci_t *xhcip, ddi_dma_attr_t *attrp, uint_t sgl)
{
VERIFY3U(sgl, >, 0);
VERIFY3U(sgl, <=, XHCI_TRANSFER_DMA_SGL);
attrp->dma_attr_version = DMA_ATTR_V0;
/*
* The range of data that we can use is based on what hardware supports.
*/
attrp->dma_attr_addr_lo = 0x0;
if (xhcip->xhci_caps.xcap_flags & XCAP_AC64) {
attrp->dma_attr_addr_hi = UINT64_MAX;
} else {
attrp->dma_attr_addr_hi = UINT32_MAX;
}
/*
* The count max indicates the total amount that will fit into one
* cookie, which is one TRB in our world. In other words 64k.
*/
attrp->dma_attr_count_max = XHCI_TRB_MAX_TRANSFER;
/*
* The alignment and segment are related. The alignment describes the
* alignment of the PA. The segment describes a boundary that the DMA
* allocation cannot cross. In other words, for a given chunk of
* allocated DMA memory, the allocated buffer cannot cross a 64k aligned
* boundary. However, the physical address only needs to be aligned to
* 64 bytes.
*/
attrp->dma_attr_align = XHCI_DMA_ALIGN;
attrp->dma_attr_seg = XHCI_TRB_MAX_TRANSFER - 1;
attrp->dma_attr_burstsizes = 0xfff;
/*
* This is the maximum we can send. Technically this is limited by the
* descriptors and not by hardware, hence why we use a large value for
* the max that'll be less than any memory allocation we ever throw at
* it.
*/
attrp->dma_attr_minxfer = 0x1;
attrp->dma_attr_maxxfer = UINT32_MAX;
/*
* This is determined by the caller.
*/
attrp->dma_attr_sgllen = sgl;
/*
* The granularity describes the addressing granularity. e.g. can things
* ask for chunks in units of this number of bytes. For PCI this should
* always be one.
*/
attrp->dma_attr_granular = 1;
if (DDI_FM_DMA_ERR_CAP(xhcip->xhci_fm_caps)) {
attrp->dma_attr_flags = DDI_DMA_FLAGERR;
} else {
attrp->dma_attr_flags = 0;
}
}
/*
* This routine tries to create DMA attributes for normal allocations for data
* structures and the like. By default we use the same values as the transfer
* attributes, but have explicit comments about how they're different.
*/
void
xhci_dma_dma_attr(xhci_t *xhcip, ddi_dma_attr_t *attrp)
{
/*
* Note, we always use a single SGL for these DMA allocations as these
* are used for small data structures.
*/
xhci_dma_transfer_attr(xhcip, attrp, XHCI_DEF_DMA_SGL);
/*
* The maximum size of any of these structures is 4k as opposed to the
* 64K max described above. Similarly the boundary requirement is
* reduced to 4k.
*/
attrp->dma_attr_count_max = xhcip->xhci_caps.xcap_pagesize;
attrp->dma_attr_maxxfer = xhcip->xhci_caps.xcap_pagesize;
attrp->dma_attr_seg = xhcip->xhci_caps.xcap_pagesize - 1;
}
/*
* Fill in attributes for a scratchpad entry. The scratchpad entries are
* somewhat different in so far as they are closest to a normal DMA attribute,
* except they have stricter alignments, needing to be page sized.
*
* In addition, because we never access this memory ourselves, we can just mark
* it all as relaxed ordering.
*/
void
xhci_dma_scratchpad_attr(xhci_t *xhcip, ddi_dma_attr_t *attrp)
{
xhci_dma_dma_attr(xhcip, attrp);
attrp->dma_attr_align = xhcip->xhci_caps.xcap_pagesize;
attrp->dma_attr_flags |= DDI_DMA_RELAXED_ORDERING;
}
/*
* This should be used for the simple case of a single SGL entry, which is the
* vast majority of the non-transfer allocations.
*/
uint64_t
xhci_dma_pa(xhci_dma_buffer_t *xdb)
{
ASSERT(xdb->xdb_ncookies == 1);
return (xdb->xdb_cookies[0].dmac_laddress);
}
void
xhci_dma_free(xhci_dma_buffer_t *xdb)
{
if (xdb->xdb_ncookies != 0) {
VERIFY(xdb->xdb_dma_handle != NULL);
(void) ddi_dma_unbind_handle(xdb->xdb_dma_handle);
xdb->xdb_ncookies = 0;
bzero(xdb->xdb_cookies, sizeof (ddi_dma_cookie_t) *
XHCI_TRANSFER_DMA_SGL);
xdb->xdb_len = 0;
}
if (xdb->xdb_acc_handle != NULL) {
ddi_dma_mem_free(&xdb->xdb_acc_handle);
xdb->xdb_acc_handle = NULL;
xdb->xdb_va = NULL;
}
if (xdb->xdb_dma_handle != NULL) {
ddi_dma_free_handle(&xdb->xdb_dma_handle);
xdb->xdb_dma_handle = NULL;
}
ASSERT(xdb->xdb_va == NULL);
ASSERT(xdb->xdb_ncookies == 0);
ASSERT(xdb->xdb_cookies[0].dmac_laddress == 0);
ASSERT(xdb->xdb_len == 0);
}
boolean_t
xhci_dma_alloc(xhci_t *xhcip, xhci_dma_buffer_t *xdb,
ddi_dma_attr_t *attrp, ddi_device_acc_attr_t *accp, boolean_t zero,
size_t size, boolean_t wait)
{
int ret, i;
uint_t flags = DDI_DMA_CONSISTENT;
size_t len;
ddi_dma_cookie_t cookie;
uint_t ncookies;
int (*memcb)(caddr_t);
if (wait == B_TRUE) {
memcb = DDI_DMA_SLEEP;
} else {
memcb = DDI_DMA_DONTWAIT;
}
ret = ddi_dma_alloc_handle(xhcip->xhci_dip, attrp, memcb, NULL,
&xdb->xdb_dma_handle);
if (ret != 0) {
xhci_log(xhcip, "!failed to allocate DMA handle: %d", ret);
xdb->xdb_dma_handle = NULL;
return (B_FALSE);
}
ret = ddi_dma_mem_alloc(xdb->xdb_dma_handle, size, accp, flags, memcb,
NULL, &xdb->xdb_va, &len, &xdb->xdb_acc_handle);
if (ret != DDI_SUCCESS) {
xhci_log(xhcip, "!failed to allocate DMA memory: %d", ret);
xdb->xdb_va = NULL;
xdb->xdb_acc_handle = NULL;
xhci_dma_free(xdb);
return (B_FALSE);
}
if (zero == B_TRUE)
bzero(xdb->xdb_va, len);
ret = ddi_dma_addr_bind_handle(xdb->xdb_dma_handle, NULL,
xdb->xdb_va, len, DDI_DMA_RDWR | flags, memcb, NULL, &cookie,
&ncookies);
if (ret != 0) {
xhci_log(xhcip, "!failed to bind DMA memory: %d", ret);
xhci_dma_free(xdb);
return (B_FALSE);
}
/*
* Note we explicitly store the logical length of this allocation. The
* physical length is available via the cookies.
*/
xdb->xdb_len = size;
xdb->xdb_ncookies = ncookies;
xdb->xdb_cookies[0] = cookie;
for (i = 1; i < ncookies; i++) {
ddi_dma_nextcookie(xdb->xdb_dma_handle, &xdb->xdb_cookies[i]);
}
return (B_TRUE);
}
void
xhci_transfer_free(xhci_t *xhcip, xhci_transfer_t *xt)
{
if (xt == NULL)
return;
VERIFY(xhcip != NULL);
xhci_dma_free(&xt->xt_buffer);
if (xt->xt_isoc != NULL) {
ASSERT3U(xt->xt_ntrbs, >, 0);
kmem_free(xt->xt_isoc, sizeof (usb_isoc_pkt_descr_t) *
xt->xt_ntrbs);
xt->xt_isoc = NULL;
}
if (xt->xt_trbs != NULL) {
ASSERT3U(xt->xt_ntrbs, >, 0);
kmem_free(xt->xt_trbs, sizeof (xhci_trb_t) * xt->xt_ntrbs);
xt->xt_trbs = NULL;
}
if (xt->xt_trbs_pa != NULL) {
ASSERT3U(xt->xt_ntrbs, >, 0);
kmem_free(xt->xt_trbs_pa, sizeof (uint64_t) * xt->xt_ntrbs);
xt->xt_trbs_pa = NULL;
}
kmem_free(xt, sizeof (xhci_transfer_t));
}
xhci_transfer_t *
xhci_transfer_alloc(xhci_t *xhcip, xhci_endpoint_t *xep, size_t size,
uint_t trbs, int usb_flags)
{
int kmflags;
boolean_t dmawait;
xhci_transfer_t *xt;
ddi_device_acc_attr_t acc;
ddi_dma_attr_t attr;
if (usb_flags & USB_FLAGS_SLEEP) {
kmflags = KM_SLEEP;
dmawait = B_TRUE;
} else {
kmflags = KM_NOSLEEP;
dmawait = B_FALSE;
}
xt = kmem_zalloc(sizeof (xhci_transfer_t), kmflags);
if (xt == NULL)
return (NULL);
if (size != 0) {
int sgl = XHCI_DEF_DMA_SGL;
/*
* For BULK transfers, we always increase the number of SGL
* entries that we support to make things easier for the kernel.
* However, for control transfers, we currently opt to keep
* things a bit simpler and use our default of one SGL. There's
* no good technical reason for this, rather it just keeps
* things a bit easier.
*
* To simplify things, we don't use additional SGL entries for
* ISOC transfers. While this isn't the best, it isn't too far
* off from what ehci and co. have done before. If this becomes
* a technical issue, it's certainly possible to increase the
* SGL entry count.
*
* When we use the larger SGL count, we change our strategy for
* being notified. In such a case we will opt to use an event
* data packet. This helps deal with cases where some
* controllers don't properly generate events for the last entry
* in a TD with IOC when IOSP is set.
*/
if (xep->xep_type == USB_EP_ATTR_BULK) {
sgl = XHCI_TRANSFER_DMA_SGL;
trbs++;
}
xhci_dma_acc_attr(xhcip, &acc);
xhci_dma_transfer_attr(xhcip, &attr, sgl);
if (xhci_dma_alloc(xhcip, &xt->xt_buffer, &attr, &acc, B_FALSE,
size, dmawait) == B_FALSE) {
kmem_free(xt, sizeof (xhci_transfer_t));
return (NULL);
}
/*
* ISOC transfers are a bit special and don't need additional
* TRBs for data.
*/
if (xep->xep_type != USB_EP_ATTR_ISOCH)
trbs += xt->xt_buffer.xdb_ncookies;
}
xt->xt_trbs = kmem_zalloc(sizeof (xhci_trb_t) * trbs, kmflags);
if (xt->xt_trbs == NULL) {
xhci_dma_free(&xt->xt_buffer);
kmem_free(xt, sizeof (xhci_transfer_t));
return (NULL);
}
xt->xt_trbs_pa = kmem_zalloc(sizeof (uint64_t) * trbs, kmflags);
if (xt->xt_trbs_pa == NULL) {
kmem_free(xt->xt_trbs, sizeof (xhci_trb_t) * trbs);
xhci_dma_free(&xt->xt_buffer);
kmem_free(xt, sizeof (xhci_transfer_t));
return (NULL);
}
/*
* For ISOCH transfers, we need to also allocate the results data.
*/
if (xep->xep_type == USB_EP_ATTR_ISOCH) {
xt->xt_isoc = kmem_zalloc(sizeof (usb_isoc_pkt_descr_t) * trbs,
kmflags);
if (xt->xt_isoc == NULL) {
kmem_free(xt->xt_trbs_pa, sizeof (uint64_t) * trbs);
kmem_free(xt->xt_trbs, sizeof (xhci_trb_t) * trbs);
xhci_dma_free(&xt->xt_buffer);
kmem_free(xt, sizeof (xhci_transfer_t));
return (NULL);
}
}
xt->xt_ntrbs = trbs;
xt->xt_cr = USB_CR_OK;
return (xt);
}
/*
* Abstract the notion of copying out to handle the case of multiple DMA
* cookies. If tobuf is true, we are copying to the kernel provided buffer,
* otherwise we're copying into the DMA memory.
*/
void
xhci_transfer_copy(xhci_transfer_t *xt, void *buf, size_t len,
boolean_t tobuf)
{
void *dmabuf = xt->xt_buffer.xdb_va;
if (tobuf == B_TRUE)
bcopy(dmabuf, buf, len);
else
bcopy(buf, dmabuf, len);
}
int
xhci_transfer_sync(xhci_t *xhcip, xhci_transfer_t *xt, uint_t type)
{
XHCI_DMA_SYNC(xt->xt_buffer, type);
return (xhci_check_dma_handle(xhcip, &xt->xt_buffer));
}
/*
* We're required to try and inform the xHCI controller about the number of data
* packets that are required. The algorithm to use is described in xHCI 1.1 /
* 4.11.2.4. While it might be tempting to just try and calculate the number of
* packets based on simple rounding of the remaining number of bytes, that
* misses a critical problem -- DMA boundaries may cause us to need additional
* packets that are missed initially. Consider a transfer made up of four
* different DMA buffers sized in bytes: 4096, 4096, 256, 256, with a 512 byte
* packet size.
*
* Remain 4608 512 256 0
* Bytes 4096 4096 256 256
* Naive TD 9 1 1 0
* Act TD 10 2 1 0
*
* This means that the only safe way forward here is to work backwards and see
* how many we need to work up to this point.
*/
static uint_t
xhci_transfer_get_tdsize(xhci_transfer_t *xt, uint_t off, uint_t mps)
{
int i;
uint_t npkt = 0;
/*
* There are always zero packets for the last TRB.
*/
ASSERT(xt->xt_buffer.xdb_ncookies > 0);
for (i = xt->xt_buffer.xdb_ncookies - 1; i > off; i--) {
size_t len = roundup(xt->xt_buffer.xdb_cookies[i].dmac_size,
mps);
npkt += len / mps;
}
/*
* Make sure to clamp this value otherwise we risk truncation.
*/
if (npkt >= XHCI_MAX_TDSIZE)
return (XHCI_MAX_TDSIZE);
return (npkt);
}
void
xhci_transfer_trb_fill_data(xhci_endpoint_t *xep, xhci_transfer_t *xt, int off,
boolean_t in)
{
uint_t mps, tdsize, flags;
int i;
VERIFY(xt->xt_buffer.xdb_ncookies > 0);
VERIFY(xep->xep_pipe != NULL);
VERIFY(off + xt->xt_buffer.xdb_ncookies <= xt->xt_ntrbs);
mps = xep->xep_pipe->p_ep.wMaxPacketSize;
if (in == B_TRUE) {
xt->xt_data_tohost = B_TRUE;
}
/*
* We assume that if we have a non-bulk endpoint, then we should only
* have a single cookie. This falls out from the default SGL length that
* we use for these other device types.
*/
if (xep->xep_type != USB_EP_ATTR_BULK) {
VERIFY3U(xt->xt_buffer.xdb_ncookies, ==, 1);
}
for (i = 0; i < xt->xt_buffer.xdb_ncookies; i++) {
uint64_t pa, dmasz;
pa = xt->xt_buffer.xdb_cookies[i].dmac_laddress;
dmasz = xt->xt_buffer.xdb_cookies[i].dmac_size;
tdsize = xhci_transfer_get_tdsize(xt, i, mps);
flags = XHCI_TRB_TYPE_NORMAL;
if (i == 0 && xep->xep_type == USB_EP_ATTR_CONTROL) {
flags = XHCI_TRB_TYPE_DATA;
if (in == B_TRUE)
flags |= XHCI_TRB_DIR_IN;
}
/*
* If we have more than one cookie, then we need to set chaining
* on every TRB and the last TRB will turn into an event data
* TRB. If we only have a single TRB, then we just set interrupt
* on completion (IOC). There's no need to specifically set
* interrupt on short packet (IOSP) in that case, as we'll
* always get the event notification. We still need the chain
* bit set on the last packet, so we can chain into the event
* data. Even if all the data on a bulk endpoint (the only
* endpoint type that uses chaining today) has only one cookie,
* then we'll still schedule an event data block.
*/
if (xep->xep_type == USB_EP_ATTR_BULK ||
xt->xt_buffer.xdb_ncookies > 1) {
flags |= XHCI_TRB_CHAIN;
}
/*
* What we set for the last TRB depends on the type of the
* endpoint. If it's a bulk endpoint, then we have to set
* evaluate next trb (ENT) so we successfully process the event
* data TRB we'll set up. Otherwise, we need to make sure that
* we set interrupt on completion, so we get the event. However,
* we don't set the event on control endpoints, as the status
* stage TD will be the one where we get the event. But, we do
* still need an interrupt on short packet, because technically
* the status stage is in its own TD.
*/
if (i + 1 == xt->xt_buffer.xdb_ncookies) {
switch (xep->xep_type) {
case USB_EP_ATTR_BULK:
flags |= XHCI_TRB_ENT;
break;
case USB_EP_ATTR_CONTROL:
flags |= XHCI_TRB_ISP;
break;
default:
flags |= XHCI_TRB_IOC;
break;
}
}
xt->xt_trbs[off + i].trb_addr = LE_64(pa);
xt->xt_trbs[off + i].trb_status = LE_32(XHCI_TRB_LEN(dmasz) |
XHCI_TRB_TDREM(tdsize) | XHCI_TRB_INTR(0));
xt->xt_trbs[off + i].trb_flags = LE_32(flags);
}
/*
* The last TRB in any bulk transfer is the Event Data TRB.
*/
if (xep->xep_type == USB_EP_ATTR_BULK) {
VERIFY(off + xt->xt_buffer.xdb_ncookies + 1 <= xt->xt_ntrbs);
xt->xt_trbs[off + i].trb_addr = LE_64((uintptr_t)xt);
xt->xt_trbs[off + i].trb_status = LE_32(XHCI_TRB_INTR(0));
xt->xt_trbs[off + i].trb_flags = LE_32(XHCI_TRB_TYPE_EVENT |
XHCI_TRB_IOC);
}
}
/*
* These are utility functions for isochronus transfers to help calculate the
* transfer burst count (TBC) and transfer last burst packet count (TLPBC)
* entries for an isochronus entry. See xHCI 1.1 / 4.11.2.3 for how to calculate
* them.
*/
void
xhci_transfer_calculate_isoc(xhci_device_t *xd, xhci_endpoint_t *xep,
uint_t trb_len, uint_t *tbc, uint_t *tlbpc)
{
uint_t mps, tdpc, burst;
/*
* Even if we're asked to send no data, that actually requires the
* equivalent of sending one byte of data.
*/
if (trb_len == 0)
trb_len = 1;
mps = XHCI_EPCTX_GET_MPS(xd->xd_endout[xep->xep_num]->xec_info2);
burst = XHCI_EPCTX_GET_MAXB(xd->xd_endout[xep->xep_num]->xec_info2);
/*
* This is supposed to correspond to the Transfer Descriptor Packet
* Count from xHCI 1.1 / 4.14.1.
*/
tdpc = howmany(trb_len, mps);
*tbc = howmany(tdpc, burst + 1) - 1;
if ((tdpc % (burst + 1)) == 0)
*tlbpc = burst;
else
*tlbpc = (tdpc % (burst + 1)) - 1;
}
|