summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/devcache.c
blob: 1e32e5c950a5b926760f15aad527818b94e1927b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#include <sys/note.h>
#include <sys/t_lock.h>
#include <sys/cmn_err.h>
#include <sys/instance.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/hwconf.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/ddi_impldefs.h>
#include <sys/ndi_impldefs.h>
#include <sys/modctl.h>
#include <sys/dacf.h>
#include <sys/promif.h>
#include <sys/cpuvar.h>
#include <sys/pathname.h>
#include <sys/kobj.h>
#include <sys/devcache.h>
#include <sys/devcache_impl.h>
#include <sys/sysmacros.h>
#include <sys/varargs.h>
#include <sys/callb.h>

/*
 * This facility provides interfaces to clients to register,
 * read and update cache data in persisted backing store files,
 * usually in /etc/devices.  The data persisted through this
 * mechanism should be stateless data, functioning in the sense
 * of a cache.  Writes are performed by a background daemon
 * thread, permitting a client to schedule an update without
 * blocking, then continue updating the data state in
 * parallel.  The data is only locked by the daemon thread
 * to pack the data in preparation for the write.
 *
 * Data persisted through this mechanism should be capable
 * of being regenerated through normal system operation,
 * for example attaching all disk devices would cause all
 * devids to be registered for those devices.  By caching
 * a devid-device tuple, the system can operate in a
 * more optimal way, directly attaching the device mapped
 * to a devid, rather than burdensomely driving attach of
 * the entire device tree to discover a single device.
 *
 * Note that a client should only need to include
 * <sys/devcache.h> for the supported interfaces.
 *
 * The data per client is entirely within the control of
 * the client.  When reading, data unpacked from the backing
 * store should be inserted in the list.  The pointer to
 * the list can be retrieved via nvf_list().  When writing,
 * the data on the list is to be packed and returned to the
 * nvpdaemon as an nvlist.
 *
 * Obvious restrictions are imposed by the limits of the
 * nvlist format.  The data cannot be read or written
 * piecemeal, and large amounts of data aren't recommended.
 * However, nvlists do allow that data be named and typed
 * and can be size-of-int invariant, and the cached data
 * can be versioned conveniently.
 *
 * The registration involves two steps: a handle is
 * allocated by calling the registration function.
 * This sets up the data referenced by the handle and
 * initializes the lock.  Following registration, the
 * client must initialize the data list.  The list
 * interfaces require that the list element with offset
 * to the node link be provided.  The format of the
 * list element is under the control of the client.
 *
 * Locking: the address of the data list r/w lock provided
 * can be accessed with nvf_lock().  The lock must be held
 * as reader when traversing the list or checking state,
 * such as nvf_is_dirty().  The lock must be held as
 * writer when updating the list or marking it dirty.
 * The lock must not be held when waking the daemon.
 *
 * The data r/w lock is held as writer when the pack,
 * unpack and free list handlers are called.  The
 * lock should not be dropped and must be still held
 * upon return.  The client should also hold the lock
 * as reader when checking if the list is dirty, and
 * as writer when marking the list dirty or initiating
 * a read.
 *
 * The asynchronous nature of updates allows for the
 * possibility that the data may continue to be updated
 * once the daemon has been notified that an update is
 * desired.  The data only needs to be locked against
 * updates when packing the data into the form to be
 * written.  When the write of the packed data has
 * completed, the daemon will automatically reschedule
 * an update if the data was marked dirty after the
 * point at which it was packed.  Before beginning an
 * update, the daemon attempts to lock the data as
 * writer; if the writer lock is already held, it
 * backs off and retries later.  The model is to give
 * priority to the kernel processes generating the
 * data, and that the nature of the data is that
 * it does not change often, can be re-generated when
 * needed, so updates should not happen often and
 * can be delayed until the data stops changing.
 * The client may update the list or mark it dirty
 * any time it is able to acquire the lock as
 * writer first.
 *
 * A failed write will be retried after some delay,
 * in the hope that the cause of the error will be
 * transient, for example a filesystem with no space
 * available.  An update on a read-only filesystem
 * is failed silently and not retried; this would be
 * the case when booted off install media.
 *
 * There is no unregister mechanism as of yet, as it
 * hasn't been needed so far.
 */

/*
 * Global list of files registered and updated by the nvpflush
 * daemon, protected by the nvf_cache_mutex.  While an
 * update is taking place, a file is temporarily moved to
 * the dirty list to avoid locking the primary list for
 * the duration of the update.
 */
list_t		nvf_cache_files;
list_t		nvf_dirty_files;
kmutex_t	nvf_cache_mutex;


/*
 * Allow some delay from an update of the data before flushing
 * to permit simultaneous updates of multiple changes.
 * Changes in the data are expected to be bursty, ie
 * reconfig or hot-plug of a new adapter.
 *
 * kfio_report_error (default 0)
 *	Set to 1 to enable some error messages related to low-level
 *	kernel file i/o operations.
 *
 * nvpflush_delay (default 10)
 *	The number of seconds after data is marked dirty before the
 *	flush daemon is triggered to flush the data.  A longer period
 *	of time permits more data updates per write.  Note that
 *	every update resets the timer so no repository write will
 *	occur while data is being updated continuously.
 *
 * nvpdaemon_idle_time (default 60)
 *	The number of seconds the daemon will sleep idle before exiting.
 *
 */
#define	NVPFLUSH_DELAY		10
#define	NVPDAEMON_IDLE_TIME	60

#define	TICKS_PER_SECOND	(drv_usectohz(1000000))

/*
 * Tunables
 */
int kfio_report_error = 0;		/* kernel file i/o operations */
int kfio_disable_read = 0;		/* disable all reads */
int kfio_disable_write = 0;		/* disable all writes */

int nvpflush_delay	= NVPFLUSH_DELAY;
int nvpdaemon_idle_time	= NVPDAEMON_IDLE_TIME;

static timeout_id_t	nvpflush_id = 0;
static int		nvpflush_timer_busy = 0;
static int		nvpflush_daemon_active = 0;
static kthread_t	*nvpflush_thr_id = 0;

static int		do_nvpflush = 0;
static int		nvpbusy = 0;
static kmutex_t		nvpflush_lock;
static kcondvar_t	nvpflush_cv;
static kthread_id_t	nvpflush_thread;
static clock_t		nvpticks;

static void nvpflush_daemon(void);

#ifdef	DEBUG
int nvpdaemon_debug = 0;
int kfio_debug = 0;
#endif	/* DEBUG */

extern int modrootloaded;
extern void mdi_read_devices_files(void);
extern void mdi_clean_vhcache(void);
extern int sys_shutdown;

/*
 * Initialize the overall cache file management
 */
void
i_ddi_devices_init(void)
{
	list_create(&nvf_cache_files, sizeof (nvfd_t),
	    offsetof(nvfd_t, nvf_link));
	list_create(&nvf_dirty_files, sizeof (nvfd_t),
	    offsetof(nvfd_t, nvf_link));
	mutex_init(&nvf_cache_mutex, NULL, MUTEX_DEFAULT, NULL);
	retire_store_init();
	devid_cache_init();
}

/*
 * Read cache files
 * The files read here should be restricted to those
 * that may be required to mount root.
 */
void
i_ddi_read_devices_files(void)
{
	/*
	 * The retire store should be the first file read as it
	 * may need to offline devices. kfio_disable_read is not
	 * used for retire. For the rationale see the tunable
	 * ddi_retire_store_bypass and comments in:
	 *	uts/common/os/retire_store.c
	 */

	retire_store_read();

	if (!kfio_disable_read) {
		mdi_read_devices_files();
		devid_cache_read();
	}
}

void
i_ddi_start_flush_daemon(void)
{
	nvfd_t	*nvfdp;

	ASSERT(i_ddi_io_initialized());

	mutex_init(&nvpflush_lock, NULL, MUTEX_DRIVER, NULL);
	cv_init(&nvpflush_cv, NULL, CV_DRIVER, NULL);

	mutex_enter(&nvf_cache_mutex);
	for (nvfdp = list_head(&nvf_cache_files); nvfdp;
	    nvfdp = list_next(&nvf_cache_files, nvfdp)) {
		if (NVF_IS_DIRTY(nvfdp)) {
			nvf_wake_daemon();
			break;
		}
	}
	mutex_exit(&nvf_cache_mutex);
}

void
i_ddi_clean_devices_files(void)
{
	devid_cache_cleanup();
	mdi_clean_vhcache();
}

/*
 * Register a cache file to be managed and updated by the nvpflush daemon.
 * All operations are performed through the returned handle.
 * There is no unregister mechanism for now.
 */
nvf_handle_t
nvf_register_file(nvf_ops_t *ops)
{
	nvfd_t *nvfdp;

	nvfdp = kmem_zalloc(sizeof (*nvfdp), KM_SLEEP);

	nvfdp->nvf_ops = ops;
	nvfdp->nvf_flags = 0;
	rw_init(&nvfdp->nvf_lock, NULL, RW_DRIVER, NULL);

	mutex_enter(&nvf_cache_mutex);
	list_insert_tail(&nvf_cache_files, nvfdp);
	mutex_exit(&nvf_cache_mutex);

	return ((nvf_handle_t)nvfdp);
}

/*PRINTFLIKE1*/
void
nvf_error(const char *fmt, ...)
{
	va_list ap;

	if (kfio_report_error) {
		va_start(ap, fmt);
		vcmn_err(CE_NOTE, fmt, ap);
		va_end(ap);
	}
}

/*
 * Some operations clients may use to manage the data
 * to be persisted in a cache file.
 */
char *
nvf_cache_name(nvf_handle_t handle)
{
	return (((nvfd_t *)handle)->nvf_cache_path);
}

krwlock_t *
nvf_lock(nvf_handle_t handle)
{
	return (&(((nvfd_t *)handle)->nvf_lock));
}

list_t *
nvf_list(nvf_handle_t handle)
{
	return (&(((nvfd_t *)handle)->nvf_data_list));
}

void
nvf_mark_dirty(nvf_handle_t handle)
{
	ASSERT(RW_WRITE_HELD(&(((nvfd_t *)handle)->nvf_lock)));
	NVF_MARK_DIRTY((nvfd_t *)handle);
}

int
nvf_is_dirty(nvf_handle_t handle)
{
	ASSERT(RW_LOCK_HELD(&(((nvfd_t *)handle)->nvf_lock)));
	return (NVF_IS_DIRTY((nvfd_t *)handle));
}

static uint16_t
nvp_cksum(uchar_t *buf, int64_t buflen)
{
	uint16_t cksum = 0;
	uint16_t *p = (uint16_t *)buf;
	int64_t n;

	if ((buflen & 0x01) != 0) {
		buflen--;
		cksum = buf[buflen];
	}
	n = buflen / 2;
	while (n-- > 0)
		cksum ^= *p++;
	return (cksum);
}

int
fread_nvlist(char *filename, nvlist_t **ret_nvlist)
{
	struct _buf	*file;
	nvpf_hdr_t	hdr;
	char		*buf;
	nvlist_t	*nvl;
	int		rval;
	uint_t		offset;
	int		n;
	char		c;
	uint16_t	cksum, hdrsum;

	*ret_nvlist = NULL;

	file = kobj_open_file(filename);
	if (file == (struct _buf *)-1) {
		KFDEBUG((CE_CONT, "cannot open file: %s\n", filename));
		return (ENOENT);
	}

	offset = 0;
	n = kobj_read_file(file, (char *)&hdr, sizeof (hdr), offset);
	if (n != sizeof (hdr)) {
		kobj_close_file(file);
		if (n < 0) {
			nvf_error("error reading header: %s\n", filename);
			return (EIO);
		} else if (n == 0) {
			KFDEBUG((CE_CONT, "file empty: %s\n", filename));
		} else {
			nvf_error("header size incorrect: %s\n", filename);
		}
		return (EINVAL);
	}
	offset += n;

	KFDEBUG2((CE_CONT, "nvpf_magic: 0x%x\n", hdr.nvpf_magic));
	KFDEBUG2((CE_CONT, "nvpf_version: %d\n", hdr.nvpf_version));
	KFDEBUG2((CE_CONT, "nvpf_size: %lld\n",
	    (longlong_t)hdr.nvpf_size));
	KFDEBUG2((CE_CONT, "nvpf_hdr_chksum: 0x%x\n",
	    hdr.nvpf_hdr_chksum));
	KFDEBUG2((CE_CONT, "nvpf_chksum: 0x%x\n", hdr.nvpf_chksum));

	cksum = hdr.nvpf_hdr_chksum;
	hdr.nvpf_hdr_chksum = 0;
	hdrsum = nvp_cksum((uchar_t *)&hdr, sizeof (hdr));

	if (hdr.nvpf_magic != NVPF_HDR_MAGIC ||
	    hdr.nvpf_version != NVPF_HDR_VERSION || hdrsum != cksum) {
		kobj_close_file(file);
		if (hdrsum != cksum) {
			nvf_error("%s: checksum error "
			    "(actual 0x%x, expected 0x%x)\n",
			    filename, hdrsum, cksum);
		}
		nvf_error("%s: header information incorrect", filename);
		return (EINVAL);
	}

	ASSERT(hdr.nvpf_size >= 0);

	buf = kmem_alloc(hdr.nvpf_size, KM_SLEEP);
	n = kobj_read_file(file, buf, hdr.nvpf_size, offset);
	if (n != hdr.nvpf_size) {
		kmem_free(buf, hdr.nvpf_size);
		kobj_close_file(file);
		if (n < 0) {
			nvf_error("%s: read error %d", filename, n);
		} else {
			nvf_error("%s: incomplete read %d/%lld",
			    filename, n, (longlong_t)hdr.nvpf_size);
		}
		return (EINVAL);
	}
	offset += n;

	rval = kobj_read_file(file, &c, 1, offset);
	kobj_close_file(file);
	if (rval > 0) {
		nvf_error("%s is larger than %lld\n",
		    filename, (longlong_t)hdr.nvpf_size);
		kmem_free(buf, hdr.nvpf_size);
		return (EINVAL);
	}

	cksum = nvp_cksum((uchar_t *)buf, hdr.nvpf_size);
	if (hdr.nvpf_chksum != cksum) {
		nvf_error("%s: checksum error (actual 0x%x, expected 0x%x)\n",
		    filename, hdr.nvpf_chksum, cksum);
		kmem_free(buf, hdr.nvpf_size);
		return (EINVAL);
	}

	nvl = NULL;
	rval = nvlist_unpack(buf, hdr.nvpf_size, &nvl, 0);
	if (rval != 0) {
		nvf_error("%s: error %d unpacking nvlist\n",
		    filename, rval);
		kmem_free(buf, hdr.nvpf_size);
		return (EINVAL);
	}

	kmem_free(buf, hdr.nvpf_size);
	*ret_nvlist = nvl;
	return (0);
}

static int
kfcreate(char *filename, kfile_t **kfilep)
{
	kfile_t	*fp;
	int	rval;

	ASSERT(modrootloaded);

	fp = kmem_alloc(sizeof (kfile_t), KM_SLEEP);

	fp->kf_vnflags = FCREAT | FWRITE | FTRUNC;
	fp->kf_fname = filename;
	fp->kf_fpos = 0;
	fp->kf_state = 0;

	KFDEBUG((CE_CONT, "create: %s flags 0x%x\n",
	    filename, fp->kf_vnflags));
	rval = vn_open(filename, UIO_SYSSPACE, fp->kf_vnflags,
	    0444, &fp->kf_vp, CRCREAT, 0);
	if (rval != 0) {
		kmem_free(fp, sizeof (kfile_t));
		KFDEBUG((CE_CONT, "%s: create error %d\n",
		    filename, rval));
		return (rval);
	}

	*kfilep = fp;
	return (0);
}

static int
kfremove(char *filename)
{
	int rval;

	KFDEBUG((CE_CONT, "remove: %s\n", filename));
	rval = vn_remove(filename, UIO_SYSSPACE, RMFILE);
	if (rval != 0) {
		KFDEBUG((CE_CONT, "%s: remove error %d\n",
		    filename, rval));
	}
	return (rval);
}

static int
kfread(kfile_t *fp, char *buf, ssize_t bufsiz, ssize_t *ret_n)
{
	ssize_t		resid;
	int		err;
	ssize_t		n;

	ASSERT(modrootloaded);

	if (fp->kf_state != 0)
		return (fp->kf_state);

	err = vn_rdwr(UIO_READ, fp->kf_vp, buf, bufsiz, fp->kf_fpos,
	    UIO_SYSSPACE, 0, (rlim64_t)0, kcred, &resid);
	if (err != 0) {
		KFDEBUG((CE_CONT, "%s: read error %d\n",
		    fp->kf_fname, err));
		fp->kf_state = err;
		return (err);
	}

	ASSERT(resid >= 0 && resid <= bufsiz);
	n = bufsiz - resid;

	KFDEBUG1((CE_CONT, "%s: read %ld bytes ok %ld bufsiz, %ld resid\n",
	    fp->kf_fname, n, bufsiz, resid));

	fp->kf_fpos += n;
	*ret_n = n;
	return (0);
}

static int
kfwrite(kfile_t *fp, char *buf, ssize_t bufsiz, ssize_t *ret_n)
{
	rlim64_t	rlimit;
	ssize_t		resid;
	int		err;
	ssize_t		len;
	ssize_t		n = 0;

	ASSERT(modrootloaded);

	if (fp->kf_state != 0)
		return (fp->kf_state);

	len = bufsiz;
	rlimit = bufsiz + 1;
	for (;;) {
		err = vn_rdwr(UIO_WRITE, fp->kf_vp, buf, len, fp->kf_fpos,
		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
		if (err) {
			KFDEBUG((CE_CONT, "%s: write error %d\n",
			    fp->kf_fname, err));
			fp->kf_state = err;
			return (err);
		}

		KFDEBUG1((CE_CONT, "%s: write %ld bytes ok %ld resid\n",
		    fp->kf_fname, len-resid, resid));

		ASSERT(resid >= 0 && resid <= len);

		n += (len - resid);
		if (resid == 0)
			break;

		if (resid == len) {
			KFDEBUG((CE_CONT, "%s: filesystem full?\n",
			    fp->kf_fname));
			fp->kf_state = ENOSPC;
			return (ENOSPC);
		}

		len -= resid;
		buf += len;
		fp->kf_fpos += len;
		len = resid;
	}

	ASSERT(n == bufsiz);
	KFDEBUG1((CE_CONT, "%s: wrote %ld bytes ok\n", fp->kf_fname, n));

	*ret_n = n;
	return (0);
}


static int
kfclose(kfile_t *fp)
{
	int		rval;

	KFDEBUG((CE_CONT, "close: %s\n", fp->kf_fname));

	if ((fp->kf_vnflags & FWRITE) && fp->kf_state == 0) {
		rval = VOP_FSYNC(fp->kf_vp, FSYNC, kcred, NULL);
		if (rval != 0) {
			nvf_error("%s: sync error %d\n",
			    fp->kf_fname, rval);
		}
		KFDEBUG((CE_CONT, "%s: sync ok\n", fp->kf_fname));
	}

	rval = VOP_CLOSE(fp->kf_vp, fp->kf_vnflags, 1,
	    (offset_t)0, kcred, NULL);
	if (rval != 0) {
		if (fp->kf_state == 0) {
			nvf_error("%s: close error %d\n",
			    fp->kf_fname, rval);
		}
	} else {
		if (fp->kf_state == 0)
			KFDEBUG((CE_CONT, "%s: close ok\n", fp->kf_fname));
	}

	VN_RELE(fp->kf_vp);
	kmem_free(fp, sizeof (kfile_t));
	return (rval);
}

static int
kfrename(char *oldname, char *newname)
{
	int rval;

	ASSERT(modrootloaded);

	KFDEBUG((CE_CONT, "renaming %s to %s\n", oldname, newname));

	if ((rval = vn_rename(oldname, newname, UIO_SYSSPACE)) != 0) {
		KFDEBUG((CE_CONT, "rename %s to %s: %d\n",
		    oldname, newname, rval));
	}

	return (rval);
}

int
fwrite_nvlist(char *filename, nvlist_t *nvl)
{
	char	*buf;
	char	*nvbuf;
	kfile_t	*fp;
	char	*newname;
	int	len, err, err1;
	size_t	buflen;
	ssize_t	n;

	ASSERT(modrootloaded);

	nvbuf = NULL;
	err = nvlist_pack(nvl, &nvbuf, &buflen, NV_ENCODE_NATIVE, 0);
	if (err != 0) {
		nvf_error("%s: error %d packing nvlist\n",
		    filename, err);
		return (err);
	}

	buf = kmem_alloc(sizeof (nvpf_hdr_t) + buflen, KM_SLEEP);
	bzero(buf, sizeof (nvpf_hdr_t));

	((nvpf_hdr_t *)buf)->nvpf_magic = NVPF_HDR_MAGIC;
	((nvpf_hdr_t *)buf)->nvpf_version = NVPF_HDR_VERSION;
	((nvpf_hdr_t *)buf)->nvpf_size = buflen;
	((nvpf_hdr_t *)buf)->nvpf_chksum = nvp_cksum((uchar_t *)nvbuf, buflen);
	((nvpf_hdr_t *)buf)->nvpf_hdr_chksum =
	    nvp_cksum((uchar_t *)buf, sizeof (nvpf_hdr_t));

	bcopy(nvbuf, buf + sizeof (nvpf_hdr_t), buflen);
	kmem_free(nvbuf, buflen);
	buflen += sizeof (nvpf_hdr_t);

	len = strlen(filename) + MAX_SUFFIX_LEN + 2;
	newname = kmem_alloc(len, KM_SLEEP);


	(void) sprintf(newname, "%s.%s", filename, NEW_FILENAME_SUFFIX);

	/*
	 * To make it unlikely we suffer data loss, write
	 * data to the new temporary file.  Once successful
	 * complete the transaction by renaming the new file
	 * to replace the previous.
	 */

	if ((err = kfcreate(newname, &fp)) == 0) {
		err = kfwrite(fp, buf, buflen, &n);
		if (err) {
			nvf_error("%s: write error - %d\n",
			    newname, err);
		} else {
			if (n != buflen) {
				nvf_error(
				    "%s: partial write %ld of %ld bytes\n",
				    newname, n, buflen);
				nvf_error("%s: filesystem may be full?\n",
				    newname);
				err = EIO;
			}
		}
		if ((err1 = kfclose(fp)) != 0) {
			nvf_error("%s: close error\n", newname);
			if (err == 0)
				err = err1;
		}
		if (err != 0) {
			if (kfremove(newname) != 0) {
				nvf_error("%s: remove failed\n",
				    newname);
			}
		}
	} else {
		nvf_error("%s: create failed - %d\n", filename, err);
	}

	if (err == 0) {
		if ((err = kfrename(newname, filename)) != 0) {
			nvf_error("%s: rename from %s failed\n",
			    newname, filename);
		}
	}

	kmem_free(newname, len);
	kmem_free(buf, buflen);

	return (err);
}

static int
e_fwrite_nvlist(nvfd_t *nvfd, nvlist_t *nvl)
{
	int err;

	if ((err = fwrite_nvlist(nvfd->nvf_cache_path, nvl)) == 0)
		return (DDI_SUCCESS);
	else {
		if (err == EROFS)
			NVF_MARK_READONLY(nvfd);
		return (DDI_FAILURE);
	}
}

static void
nvp_list_free(nvfd_t *nvf)
{
	ASSERT(RW_WRITE_HELD(&nvf->nvf_lock));
	(nvf->nvf_list_free)((nvf_handle_t)nvf);
	ASSERT(RW_WRITE_HELD(&nvf->nvf_lock));
}

/*
 * Read a file in the nvlist format
 *	EIO - i/o error during read
 *	ENOENT - file not found
 *	EINVAL - file contents corrupted
 */
static int
fread_nvp_list(nvfd_t *nvfd)
{
	nvlist_t	*nvl;
	nvpair_t	*nvp;
	char		*name;
	nvlist_t	*sublist;
	int		rval;
	int		rv;

	ASSERT(RW_WRITE_HELD(&(nvfd->nvf_lock)));

	rval = fread_nvlist(nvfd->nvf_cache_path, &nvl);
	if (rval != 0)
		return (rval);
	ASSERT(nvl != NULL);

	nvp = NULL;
	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
		name = nvpair_name(nvp);
		ASSERT(strlen(name) > 0);

		switch (nvpair_type(nvp)) {
		case DATA_TYPE_NVLIST:
			rval = nvpair_value_nvlist(nvp, &sublist);
			if (rval != 0) {
				nvf_error(
				    "nvpair_value_nvlist error %s %d\n",
				    name, rval);
				goto error;
			}

			/*
			 * unpack nvlist for this device and
			 * add elements to data list.
			 */
			ASSERT(RW_WRITE_HELD(&(nvfd->nvf_lock)));
			rv = (nvfd->nvf_unpack_nvlist)
			    ((nvf_handle_t)nvfd, sublist, name);
			ASSERT(RW_WRITE_HELD(&(nvfd->nvf_lock)));
			if (rv != 0) {
				nvf_error(
				    "%s: %s invalid list element\n",
				    nvfd->nvf_cache_path, name);
				rval = EINVAL;
				goto error;
			}
			break;

		default:
			nvf_error("%s: %s unsupported data type %d\n",
			    nvfd->nvf_cache_path, name, nvpair_type(nvp));
			rval = EINVAL;
			goto error;
		}
	}

	nvlist_free(nvl);

	return (0);

error:
	nvlist_free(nvl);
	nvp_list_free(nvfd);
	return (rval);
}


int
nvf_read_file(nvf_handle_t nvf_handle)
{
	nvfd_t *nvfd = (nvfd_t *)nvf_handle;
	int rval;

	ASSERT(RW_WRITE_HELD(&nvfd->nvf_lock));

	if (kfio_disable_read)
		return (0);

	KFDEBUG((CE_CONT, "reading %s\n", nvfd->nvf_cache_path));

	rval = fread_nvp_list(nvfd);
	if (rval) {
		switch (rval) {
		case EIO:
			nvfd->nvf_flags |= NVF_F_REBUILD_MSG;
			cmn_err(CE_WARN, "%s: I/O error",
			    nvfd->nvf_cache_path);
			break;
		case ENOENT:
			nvfd->nvf_flags |= NVF_F_CREATE_MSG;
			nvf_error("%s: not found\n",
			    nvfd->nvf_cache_path);
			break;
		case EINVAL:
		default:
			nvfd->nvf_flags |= NVF_F_REBUILD_MSG;
			cmn_err(CE_WARN, "%s: data file corrupted",
			    nvfd->nvf_cache_path);
			break;
		}
	}
	return (rval);
}

static void
nvf_write_is_complete(nvfd_t *fd)
{
	if (fd->nvf_write_complete) {
		(fd->nvf_write_complete)((nvf_handle_t)fd);
	}
}

/*ARGSUSED*/
static void
nvpflush_timeout(void *arg)
{
	clock_t nticks;

	mutex_enter(&nvpflush_lock);
	nticks = nvpticks - ddi_get_lbolt();
	if (nticks > 4) {
		nvpflush_timer_busy = 1;
		mutex_exit(&nvpflush_lock);
		nvpflush_id = timeout(nvpflush_timeout, NULL, nticks);
	} else {
		do_nvpflush = 1;
		NVPDAEMON_DEBUG((CE_CONT, "signal nvpdaemon\n"));
		cv_signal(&nvpflush_cv);
		nvpflush_id = 0;
		nvpflush_timer_busy = 0;
		mutex_exit(&nvpflush_lock);
	}
}

/*
 * After marking a list as dirty, wake the nvpflush daemon
 * to perform the update.
 */
void
nvf_wake_daemon(void)
{
	clock_t nticks;

	/*
	 * If the system isn't up yet or is shutting down,
	 * don't even think about starting a flush.
	 */
	if (!i_ddi_io_initialized() || sys_shutdown)
		return;

	mutex_enter(&nvpflush_lock);

	if (nvpflush_daemon_active == 0) {
		nvpflush_daemon_active = 1;
		mutex_exit(&nvpflush_lock);
		NVPDAEMON_DEBUG((CE_CONT, "starting nvpdaemon thread\n"));
		nvpflush_thr_id = thread_create(NULL, 0,
		    (void (*)())nvpflush_daemon,
		    NULL, 0, &p0, TS_RUN, minclsyspri);
		mutex_enter(&nvpflush_lock);
	}

	nticks = nvpflush_delay * TICKS_PER_SECOND;
	nvpticks = ddi_get_lbolt() + nticks;
	if (nvpflush_timer_busy == 0) {
		nvpflush_timer_busy = 1;
		mutex_exit(&nvpflush_lock);
		nvpflush_id = timeout(nvpflush_timeout, NULL, nticks + 4);
	} else
		mutex_exit(&nvpflush_lock);
}

static int
nvpflush_one(nvfd_t *nvfd)
{
	int rval = DDI_SUCCESS;
	nvlist_t *nvl;

	rw_enter(&nvfd->nvf_lock, RW_READER);

	ASSERT((nvfd->nvf_flags & NVF_F_FLUSHING) == 0);

	if (!NVF_IS_DIRTY(nvfd) ||
	    NVF_IS_READONLY(nvfd) || kfio_disable_write || sys_shutdown) {
		NVF_CLEAR_DIRTY(nvfd);
		rw_exit(&nvfd->nvf_lock);
		return (DDI_SUCCESS);
	}

	if (rw_tryupgrade(&nvfd->nvf_lock) == 0) {
		nvf_error("nvpflush: "
		    "%s rw upgrade failed\n", nvfd->nvf_cache_path);
		rw_exit(&nvfd->nvf_lock);
		return (DDI_FAILURE);
	}
	if (((nvfd->nvf_pack_list)
	    ((nvf_handle_t)nvfd, &nvl)) != DDI_SUCCESS) {
		nvf_error("nvpflush: "
		    "%s nvlist construction failed\n", nvfd->nvf_cache_path);
		ASSERT(RW_WRITE_HELD(&nvfd->nvf_lock));
		rw_exit(&nvfd->nvf_lock);
		return (DDI_FAILURE);
	}
	ASSERT(RW_WRITE_HELD(&nvfd->nvf_lock));

	NVF_CLEAR_DIRTY(nvfd);
	nvfd->nvf_flags |= NVF_F_FLUSHING;
	rw_exit(&nvfd->nvf_lock);

	rval = e_fwrite_nvlist(nvfd, nvl);
	nvlist_free(nvl);

	rw_enter(&nvfd->nvf_lock, RW_WRITER);
	nvfd->nvf_flags &= ~NVF_F_FLUSHING;
	if (rval == DDI_FAILURE) {
		if (NVF_IS_READONLY(nvfd)) {
			rval = DDI_SUCCESS;
			nvfd->nvf_flags &= ~(NVF_F_ERROR | NVF_F_DIRTY);
		} else if ((nvfd->nvf_flags & NVF_F_ERROR) == 0) {
			cmn_err(CE_CONT,
			    "%s: update failed\n", nvfd->nvf_cache_path);
			nvfd->nvf_flags |= NVF_F_ERROR | NVF_F_DIRTY;
		}
	} else {
		if (nvfd->nvf_flags & NVF_F_CREATE_MSG) {
			cmn_err(CE_CONT,
			    "!Creating %s\n", nvfd->nvf_cache_path);
			nvfd->nvf_flags &= ~NVF_F_CREATE_MSG;
		}
		if (nvfd->nvf_flags & NVF_F_REBUILD_MSG) {
			cmn_err(CE_CONT,
			    "!Rebuilding %s\n", nvfd->nvf_cache_path);
			nvfd->nvf_flags &= ~NVF_F_REBUILD_MSG;
		}
		if (nvfd->nvf_flags & NVF_F_ERROR) {
			cmn_err(CE_CONT,
			    "%s: update now ok\n", nvfd->nvf_cache_path);
			nvfd->nvf_flags &= ~NVF_F_ERROR;
		}
		/*
		 * The file may need to be flushed again if the cached
		 * data was touched while writing the earlier contents.
		 */
		if (NVF_IS_DIRTY(nvfd))
			rval = DDI_FAILURE;
	}

	rw_exit(&nvfd->nvf_lock);
	return (rval);
}


static void
nvpflush_daemon(void)
{
	callb_cpr_t cprinfo;
	nvfd_t *nvfdp, *nextfdp;
	clock_t clk;
	int rval;
	int want_wakeup;
	int is_now_clean;

	ASSERT(modrootloaded);

	nvpflush_thread = curthread;
	NVPDAEMON_DEBUG((CE_CONT, "nvpdaemon: init\n"));

	CALLB_CPR_INIT(&cprinfo, &nvpflush_lock, callb_generic_cpr, "nvp");
	mutex_enter(&nvpflush_lock);
	for (;;) {
		CALLB_CPR_SAFE_BEGIN(&cprinfo);
		while (do_nvpflush == 0) {
			clk = cv_timedwait(&nvpflush_cv, &nvpflush_lock,
			    ddi_get_lbolt() +
			    (nvpdaemon_idle_time * TICKS_PER_SECOND));
			if ((clk == -1 && do_nvpflush == 0 &&
			    nvpflush_timer_busy == 0) || sys_shutdown) {
				/*
				 * Note that CALLB_CPR_EXIT calls mutex_exit()
				 * on the lock passed in to CALLB_CPR_INIT,
				 * so the lock must be held when invoking it.
				 */
				CALLB_CPR_SAFE_END(&cprinfo, &nvpflush_lock);
				NVPDAEMON_DEBUG((CE_CONT, "nvpdaemon: exit\n"));
				ASSERT(mutex_owned(&nvpflush_lock));
				nvpflush_thr_id = NULL;
				nvpflush_daemon_active = 0;
				CALLB_CPR_EXIT(&cprinfo);
				thread_exit();
			}
		}
		CALLB_CPR_SAFE_END(&cprinfo, &nvpflush_lock);

		nvpbusy = 1;
		want_wakeup = 0;
		do_nvpflush = 0;
		mutex_exit(&nvpflush_lock);

		/*
		 * Try flushing what's dirty, reschedule if there's
		 * a failure or data gets marked as dirty again.
		 * First move each file marked dirty to the dirty
		 * list to avoid locking the list across the write.
		 */
		mutex_enter(&nvf_cache_mutex);
		for (nvfdp = list_head(&nvf_cache_files);
		    nvfdp; nvfdp = nextfdp) {
			nextfdp = list_next(&nvf_cache_files, nvfdp);
			rw_enter(&nvfdp->nvf_lock, RW_READER);
			if (NVF_IS_DIRTY(nvfdp)) {
				list_remove(&nvf_cache_files, nvfdp);
				list_insert_tail(&nvf_dirty_files, nvfdp);
				rw_exit(&nvfdp->nvf_lock);
			} else {
				NVPDAEMON_DEBUG((CE_CONT,
				    "nvpdaemon: not dirty %s\n",
				    nvfdp->nvf_cache_path));
				rw_exit(&nvfdp->nvf_lock);
			}
		}
		mutex_exit(&nvf_cache_mutex);

		/*
		 * Now go through the dirty list
		 */
		for (nvfdp = list_head(&nvf_dirty_files);
		    nvfdp; nvfdp = nextfdp) {
			nextfdp = list_next(&nvf_dirty_files, nvfdp);

			is_now_clean = 0;
			rw_enter(&nvfdp->nvf_lock, RW_READER);
			if (NVF_IS_DIRTY(nvfdp)) {
				NVPDAEMON_DEBUG((CE_CONT,
				    "nvpdaemon: flush %s\n",
				    nvfdp->nvf_cache_path));
				rw_exit(&nvfdp->nvf_lock);
				rval = nvpflush_one(nvfdp);
				rw_enter(&nvfdp->nvf_lock, RW_READER);
				if (rval != DDI_SUCCESS ||
				    NVF_IS_DIRTY(nvfdp)) {
					rw_exit(&nvfdp->nvf_lock);
					NVPDAEMON_DEBUG((CE_CONT,
					    "nvpdaemon: %s dirty again\n",
					    nvfdp->nvf_cache_path));
					want_wakeup = 1;
				} else {
					rw_exit(&nvfdp->nvf_lock);
					nvf_write_is_complete(nvfdp);
					is_now_clean = 1;
				}
			} else {
				NVPDAEMON_DEBUG((CE_CONT,
				    "nvpdaemon: not dirty %s\n",
				    nvfdp->nvf_cache_path));
				rw_exit(&nvfdp->nvf_lock);
				is_now_clean = 1;
			}

			if (is_now_clean) {
				mutex_enter(&nvf_cache_mutex);
				list_remove(&nvf_dirty_files, nvfdp);
				list_insert_tail(&nvf_cache_files,
				    nvfdp);
				mutex_exit(&nvf_cache_mutex);
			}
		}

		if (want_wakeup)
			nvf_wake_daemon();

		mutex_enter(&nvpflush_lock);
		nvpbusy = 0;
	}
}