1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/thread.h>
#include <sys/proc.h>
#include <sys/callb.h>
#include <sys/vnode.h>
#include <sys/debug.h>
#include <sys/systm.h> /* for bzero */
#include <sys/memlist.h>
#include <sys/cmn_err.h>
#include <sys/sysmacros.h>
#include <sys/vmsystm.h> /* for NOMEMWAIT() */
#include <sys/atomic.h> /* used to update kcage_freemem */
#include <sys/kmem.h> /* for kmem_reap */
#include <sys/errno.h>
#include <sys/mem_cage.h>
#include <vm/seg_kmem.h>
#include <vm/page.h>
#include <vm/hat.h>
#include <vm/vm_dep.h>
#include <sys/mem_config.h>
#include <sys/lgrp.h>
#include <sys/rwlock.h>
#include <sys/cpupart.h>
extern pri_t maxclsyspri;
#ifdef DEBUG
#define KCAGE_STATS
#endif
#ifdef KCAGE_STATS
#define KCAGE_STATS_VERSION 9 /* can help report generators */
#define KCAGE_STATS_NSCANS 256 /* depth of scan statistics buffer */
struct kcage_stats_scan {
/* managed by KCAGE_STAT_* macros */
clock_t scan_lbolt;
uint_t scan_id;
/* set in kcage_cageout() */
uint_t kt_passes;
clock_t kt_ticks;
pgcnt_t kt_kcage_freemem_start;
pgcnt_t kt_kcage_freemem_end;
pgcnt_t kt_freemem_start;
pgcnt_t kt_freemem_end;
uint_t kt_examined;
uint_t kt_cantlock;
uint_t kt_gotone;
uint_t kt_gotonefree;
uint_t kt_skiplevel;
uint_t kt_skipshared;
uint_t kt_skiprefd;
uint_t kt_destroy;
/* set in kcage_invalidate_page() */
uint_t kip_reloclocked;
uint_t kip_relocmod;
uint_t kip_destroy;
uint_t kip_nomem;
uint_t kip_demotefailed;
/* set in kcage_expand() */
uint_t ke_wanted;
uint_t ke_examined;
uint_t ke_lefthole;
uint_t ke_gotone;
uint_t ke_gotonefree;
};
struct kcage_stats {
/* managed by KCAGE_STAT_* macros */
uint_t version;
uint_t size;
/* set in kcage_cageout */
uint_t kt_wakeups;
uint_t kt_scans;
uint_t kt_cageout_break;
/* set in kcage_expand */
uint_t ke_calls;
uint_t ke_nopfn;
uint_t ke_nopaget;
uint_t ke_isnoreloc;
uint_t ke_deleting;
uint_t ke_lowfreemem;
uint_t ke_terminate;
/* set in kcage_freemem_add() */
uint_t kfa_trottlewake;
/* set in kcage_freemem_sub() */
uint_t kfs_cagewake;
/* set in kcage_create_throttle */
uint_t kct_calls;
uint_t kct_cageout;
uint_t kct_critical;
uint_t kct_exempt;
uint_t kct_cagewake;
uint_t kct_wait;
uint_t kct_progress;
uint_t kct_noprogress;
uint_t kct_timeout;
/* set in kcage_cageout_wakeup */
uint_t kcw_expandearly;
/* managed by KCAGE_STAT_* macros */
uint_t scan_array_size;
uint_t scan_index;
struct kcage_stats_scan scans[KCAGE_STATS_NSCANS];
};
static struct kcage_stats kcage_stats;
static struct kcage_stats_scan kcage_stats_scan_zero;
/*
* No real need for atomics here. For the most part the incs and sets are
* done by the kernel cage thread. There are a few that are done by any
* number of other threads. Those cases are noted by comments.
*/
#define KCAGE_STAT_INCR(m) kcage_stats.m++
#define KCAGE_STAT_NINCR(m, v) kcage_stats.m += (v)
#define KCAGE_STAT_INCR_SCAN(m) \
KCAGE_STAT_INCR(scans[kcage_stats.scan_index].m)
#define KCAGE_STAT_NINCR_SCAN(m, v) \
KCAGE_STAT_NINCR(scans[kcage_stats.scan_index].m, v)
#define KCAGE_STAT_SET(m, v) kcage_stats.m = (v)
#define KCAGE_STAT_SETZ(m, v) \
if (kcage_stats.m == 0) kcage_stats.m = (v)
#define KCAGE_STAT_SET_SCAN(m, v) \
KCAGE_STAT_SET(scans[kcage_stats.scan_index].m, v)
#define KCAGE_STAT_SETZ_SCAN(m, v) \
KCAGE_STAT_SETZ(scans[kcage_stats.scan_index].m, v)
#define KCAGE_STAT_INC_SCAN_INDEX \
KCAGE_STAT_SET_SCAN(scan_lbolt, lbolt); \
KCAGE_STAT_SET_SCAN(scan_id, kcage_stats.scan_index); \
kcage_stats.scan_index = \
(kcage_stats.scan_index + 1) % KCAGE_STATS_NSCANS; \
kcage_stats.scans[kcage_stats.scan_index] = kcage_stats_scan_zero
#define KCAGE_STAT_INIT_SCAN_INDEX \
kcage_stats.version = KCAGE_STATS_VERSION; \
kcage_stats.size = sizeof (kcage_stats); \
kcage_stats.scan_array_size = KCAGE_STATS_NSCANS; \
kcage_stats.scan_index = 0
#else /* KCAGE_STATS */
#define KCAGE_STAT_INCR(v)
#define KCAGE_STAT_NINCR(m, v)
#define KCAGE_STAT_INCR_SCAN(v)
#define KCAGE_STAT_NINCR_SCAN(m, v)
#define KCAGE_STAT_SET(m, v)
#define KCAGE_STAT_SETZ(m, v)
#define KCAGE_STAT_SET_SCAN(m, v)
#define KCAGE_STAT_SETZ_SCAN(m, v)
#define KCAGE_STAT_INC_SCAN_INDEX
#define KCAGE_STAT_INIT_SCAN_INDEX
#endif /* KCAGE_STATS */
static kmutex_t kcage_throttle_mutex; /* protects kcage_throttle_cv */
static kcondvar_t kcage_throttle_cv;
static kmutex_t kcage_cageout_mutex; /* protects cv and ready flag */
static kcondvar_t kcage_cageout_cv; /* cageout thread naps here */
static int kcage_cageout_ready; /* nonzero when cageout thread ready */
kthread_id_t kcage_cageout_thread; /* to aid debugging */
static krwlock_t kcage_range_rwlock; /* protects kcage_glist elements */
/*
* Cage expansion happens within a range.
*/
struct kcage_glist {
struct kcage_glist *next;
pfn_t base;
pfn_t lim;
pfn_t curr;
int decr;
};
static struct kcage_glist *kcage_glist;
static struct kcage_glist *kcage_current_glist;
/*
* The firstfree element is provided so that kmem_alloc can be avoided
* until that cage has somewhere to go. This is not currently a problem
* as early kmem_alloc's use BOP_ALLOC instead of page_create_va.
*/
static vmem_t *kcage_arena;
static struct kcage_glist kcage_glist_firstfree;
static struct kcage_glist *kcage_glist_freelist = &kcage_glist_firstfree;
/*
* Miscellaneous forward references
*/
static struct kcage_glist *kcage_glist_alloc(void);
static int kcage_glist_delete(pfn_t, pfn_t, struct kcage_glist **);
static void kcage_cageout(void);
static int kcage_invalidate_page(page_t *, pgcnt_t *);
static int kcage_setnoreloc_pages(page_t *, se_t);
static int kcage_range_add_internal(pfn_t base, pgcnt_t npgs, kcage_dir_t);
static void kcage_init(pgcnt_t preferred_size);
static int kcage_range_delete_internal(pfn_t base, pgcnt_t npgs);
/*
* Kernel Memory Cage counters and thresholds.
*/
int kcage_on = 0;
pgcnt_t kcage_freemem;
pgcnt_t kcage_needfree;
pgcnt_t kcage_lotsfree;
pgcnt_t kcage_desfree;
pgcnt_t kcage_minfree;
pgcnt_t kcage_throttlefree;
pgcnt_t kcage_reserve;
int kcage_maxwait = 10; /* in seconds */
/* when we use lp for kmem we start the cage at a higher initial value */
pgcnt_t kcage_kmemlp_mincage;
#ifdef DEBUG
pgcnt_t kcage_pagets;
#define KCAGEPAGETS_INC() kcage_pagets++
#else
#define KCAGEPAGETS_INC()
#endif
/* kstats to export what pages are currently caged */
kmutex_t kcage_kstat_lock;
static int kcage_kstat_update(kstat_t *ksp, int rw);
static int kcage_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
/*
* Startup and Dynamic Reconfiguration interfaces.
* kcage_range_add()
* kcage_range_del()
* kcage_range_delete_post_mem_del()
* kcage_range_init()
* kcage_set_thresholds()
*/
/*
* Called from page_get_contig_pages to get the approximate kcage pfn range
* for exclusion from search for contiguous pages. This routine is called
* without kcage_range lock (kcage routines can call page_get_contig_pages
* through page_relocate) and with the assumption, based on kcage_range_add,
* that kcage_current_glist always contain a valid pointer.
*/
int
kcage_current_pfn(pfn_t *pfncur)
{
struct kcage_glist *lp = kcage_current_glist;
ASSERT(kcage_on);
ASSERT(lp != NULL);
*pfncur = lp->curr;
return (lp->decr);
}
/*
* Called from vm_pagelist.c during coalesce to find kernel cage regions
* within an mnode. Looks for the lowest range between lo and hi.
*
* Kernel cage memory is defined between kcage_glist and kcage_current_glist.
* Non-cage memory is defined between kcage_current_glist and list end.
*
* If incage is set, returns the lowest kcage range. Otherwise returns lowest
* non-cage range.
*
* Returns zero on success and nlo, nhi:
* lo <= nlo < nhi <= hi
* Returns non-zero if no overlapping range is found.
*/
int
kcage_next_range(int incage, pfn_t lo, pfn_t hi,
pfn_t *nlo, pfn_t *nhi)
{
struct kcage_glist *lp;
pfn_t tlo = hi;
pfn_t thi = hi;
ASSERT(lo <= hi);
/*
* Reader lock protects the list, but kcage_get_pfn
* running concurrently may advance kcage_current_glist
* and also update kcage_current_glist->curr. Page
* coalesce can handle this race condition.
*/
rw_enter(&kcage_range_rwlock, RW_READER);
for (lp = incage ? kcage_glist : kcage_current_glist;
lp != NULL; lp = lp->next) {
pfn_t klo, khi;
/* find the range limits in this element */
if ((incage && lp->decr) || (!incage && !lp->decr)) {
klo = lp->curr;
khi = lp->lim;
} else {
klo = lp->base;
khi = lp->curr;
}
/* handle overlap */
if (klo < tlo && klo < khi && lo < khi && klo < hi) {
tlo = MAX(lo, klo);
thi = MIN(hi, khi);
if (tlo == lo)
break;
}
/* check end of kcage */
if (incage && lp == kcage_current_glist) {
break;
}
}
rw_exit(&kcage_range_rwlock);
/* return non-zero if no overlapping range found */
if (tlo == thi)
return (1);
ASSERT(lo <= tlo && tlo < thi && thi <= hi);
/* return overlapping range */
*nlo = tlo;
*nhi = thi;
return (0);
}
void
kcage_range_init(struct memlist *ml, kcage_dir_t d, pgcnt_t preferred_size)
{
int ret = 0;
ASSERT(kcage_arena == NULL);
kcage_arena = vmem_create("kcage_arena", NULL, 0, sizeof (uint64_t),
segkmem_alloc, segkmem_free, heap_arena, 0, VM_SLEEP);
ASSERT(kcage_arena != NULL);
if (d == KCAGE_DOWN) {
while (ml->next != NULL)
ml = ml->next;
}
rw_enter(&kcage_range_rwlock, RW_WRITER);
while (ml != NULL) {
ret = kcage_range_add_internal(btop(ml->address),
btop(ml->size), d);
if (ret)
panic("kcage_range_add_internal failed: "
"ml=%p, ret=0x%x\n", (void *)ml, ret);
ml = (d == KCAGE_DOWN ? ml->prev : ml->next);
}
rw_exit(&kcage_range_rwlock);
if (ret == 0)
kcage_init(preferred_size);
}
/*
* Third arg controls direction of growth: 0: increasing pfns,
* 1: decreasing.
*/
static int
kcage_range_add_internal(pfn_t base, pgcnt_t npgs, kcage_dir_t d)
{
struct kcage_glist *new, **lpp;
pfn_t lim;
ASSERT(rw_write_held(&kcage_range_rwlock));
ASSERT(npgs != 0);
if (npgs == 0)
return (EINVAL);
lim = base + npgs;
ASSERT(lim > base);
if (lim <= base)
return (EINVAL);
new = kcage_glist_alloc();
if (new == NULL) {
return (ENOMEM);
}
new->base = base;
new->lim = lim;
new->decr = (d == KCAGE_DOWN);
if (new->decr != 0)
new->curr = new->lim;
else
new->curr = new->base;
/*
* Any overlapping existing ranges are removed by deleting
* from the new list as we search for the tail.
*/
lpp = &kcage_glist;
while (*lpp != NULL) {
int ret;
ret = kcage_glist_delete((*lpp)->base, (*lpp)->lim, &new);
if (ret != 0)
return (ret);
lpp = &(*lpp)->next;
}
*lpp = new;
if (kcage_current_glist == NULL) {
kcage_current_glist = kcage_glist;
}
return (0);
}
int
kcage_range_add(pfn_t base, pgcnt_t npgs, kcage_dir_t d)
{
int ret;
rw_enter(&kcage_range_rwlock, RW_WRITER);
ret = kcage_range_add_internal(base, npgs, d);
rw_exit(&kcage_range_rwlock);
return (ret);
}
/*
* Calls to add and delete must be protected by kcage_range_rwlock
*/
static int
kcage_range_delete_internal(pfn_t base, pgcnt_t npgs)
{
struct kcage_glist *lp;
pfn_t lim;
ASSERT(rw_write_held(&kcage_range_rwlock));
ASSERT(npgs != 0);
if (npgs == 0)
return (EINVAL);
lim = base + npgs;
ASSERT(lim > base);
if (lim <= base)
return (EINVAL);
/*
* Check if the delete is OK first as a number of elements
* might be involved and it will be difficult to go
* back and undo (can't just add the range back in).
*/
for (lp = kcage_glist; lp != NULL; lp = lp->next) {
/*
* If there have been no pages allocated from this
* element, we don't need to check it.
*/
if ((lp->decr == 0 && lp->curr == lp->base) ||
(lp->decr != 0 && lp->curr == lp->lim))
continue;
/*
* If the element does not overlap, its OK.
*/
if (base >= lp->lim || lim <= lp->base)
continue;
/*
* Overlapping element: Does the range to be deleted
* overlap the area already used? If so fail.
*/
if (lp->decr == 0 && base < lp->curr && lim >= lp->base) {
return (EBUSY);
}
if (lp->decr != 0 && base < lp->lim && lim >= lp->curr) {
return (EBUSY);
}
}
return (kcage_glist_delete(base, lim, &kcage_glist));
}
int
kcage_range_delete(pfn_t base, pgcnt_t npgs)
{
int ret;
rw_enter(&kcage_range_rwlock, RW_WRITER);
ret = kcage_range_delete_internal(base, npgs);
rw_exit(&kcage_range_rwlock);
return (ret);
}
/*
* Calls to add and delete must be protected by kcage_range_rwlock.
* This routine gets called after successful Solaris memory
* delete operation from DR post memory delete routines.
*/
static int
kcage_range_delete_post_mem_del_internal(pfn_t base, pgcnt_t npgs)
{
pfn_t lim;
ASSERT(rw_write_held(&kcage_range_rwlock));
ASSERT(npgs != 0);
if (npgs == 0)
return (EINVAL);
lim = base + npgs;
ASSERT(lim > base);
if (lim <= base)
return (EINVAL);
return (kcage_glist_delete(base, lim, &kcage_glist));
}
int
kcage_range_delete_post_mem_del(pfn_t base, pgcnt_t npgs)
{
int ret;
rw_enter(&kcage_range_rwlock, RW_WRITER);
ret = kcage_range_delete_post_mem_del_internal(base, npgs);
rw_exit(&kcage_range_rwlock);
return (ret);
}
/*
* No locking is required here as the whole operation is covered
* by kcage_range_rwlock writer lock.
*/
static struct kcage_glist *
kcage_glist_alloc(void)
{
struct kcage_glist *new;
if ((new = kcage_glist_freelist) != NULL) {
kcage_glist_freelist = new->next;
} else if (kernel_cage_enable) {
new = vmem_alloc(kcage_arena, sizeof (*new), VM_NOSLEEP);
} else {
/*
* On DR supported platforms we allow memory add
* even when kernel cage is disabled. "kcage_arena" is
* created only when kernel cage is enabled.
*/
new = kmem_zalloc(sizeof (*new), KM_NOSLEEP);
}
if (new != NULL)
bzero(new, sizeof (*new));
return (new);
}
static void
kcage_glist_free(struct kcage_glist *lp)
{
lp->next = kcage_glist_freelist;
kcage_glist_freelist = lp;
}
static int
kcage_glist_delete(pfn_t base, pfn_t lim, struct kcage_glist **lpp)
{
struct kcage_glist *lp, *prev = *lpp;
while ((lp = *lpp) != NULL) {
if (lim > lp->base && base < lp->lim) {
/* The delete range overlaps this element. */
if (base <= lp->base && lim >= lp->lim) {
/* Delete whole element. */
*lpp = lp->next;
if (lp == kcage_current_glist) {
/* This can never happen. */
ASSERT(kcage_current_glist != prev);
kcage_current_glist = prev;
}
kcage_glist_free(lp);
continue;
}
/* Partial delete. */
if (base > lp->base && lim < lp->lim) {
struct kcage_glist *new;
/*
* Remove a section from the middle,
* need to allocate a new element.
*/
new = kcage_glist_alloc();
if (new == NULL) {
return (ENOMEM);
}
/*
* Tranfser unused range to new.
* Edit lp in place to preserve
* kcage_current_glist.
*/
new->decr = lp->decr;
if (new->decr != 0) {
new->base = lp->base;
new->lim = base;
new->curr = base;
lp->base = lim;
} else {
new->base = lim;
new->lim = lp->lim;
new->curr = new->base;
lp->lim = base;
}
/* Insert new. */
new->next = lp->next;
lp->next = new;
lpp = &lp->next;
} else {
/* Delete part of current block. */
if (base > lp->base) {
ASSERT(lim >= lp->lim);
ASSERT(base < lp->lim);
if (lp->decr != 0 &&
lp->curr == lp->lim)
lp->curr = base;
lp->lim = base;
} else {
ASSERT(base <= lp->base);
ASSERT(lim > lp->base);
if (lp->decr == 0 &&
lp->curr == lp->base)
lp->curr = lim;
lp->base = lim;
}
}
}
prev = *lpp;
lpp = &(*lpp)->next;
}
return (0);
}
/*
* If lockit is 1, kcage_get_pfn holds the
* reader lock for kcage_range_rwlock.
* Changes to lp->curr can cause race conditions, but
* they are handled by higher level code (see kcage_next_range.)
*/
static pfn_t
kcage_get_pfn(int lockit)
{
struct kcage_glist *lp;
pfn_t pfn = PFN_INVALID;
if (lockit && !rw_tryenter(&kcage_range_rwlock, RW_READER))
return (pfn);
lp = kcage_current_glist;
while (lp != NULL) {
if (lp->decr != 0) {
if (lp->curr != lp->base) {
pfn = --lp->curr;
break;
}
} else {
if (lp->curr != lp->lim) {
pfn = lp->curr++;
break;
}
}
lp = lp->next;
if (lp)
kcage_current_glist = lp;
}
if (lockit)
rw_exit(&kcage_range_rwlock);
return (pfn);
}
/*
* Walk the physical address space of the cage.
* This routine does not guarantee to return PFNs in the order
* in which they were allocated to the cage. Instead, it walks
* each range as they appear on the growth list returning the PFNs
* range in ascending order.
*
* To begin scanning at lower edge of cage, reset should be nonzero.
* To step through cage, reset should be zero.
*
* PFN_INVALID will be returned when the upper end of the cage is
* reached -- indicating a full scan of the cage has been completed since
* previous reset. PFN_INVALID will continue to be returned until
* kcage_walk_cage is reset.
*
* It is possible to receive a PFN_INVALID result on reset if a growth
* list is not installed or if none of the PFNs in the installed list have
* been allocated to the cage. In otherwords, there is no cage.
*
* Caller need not hold kcage_range_rwlock while calling this function
* as the front part of the list is static - pages never come out of
* the cage.
*
* The caller is expected to only be kcage_cageout().
*/
static pfn_t
kcage_walk_cage(int reset)
{
static struct kcage_glist *lp = NULL;
static pfn_t pfn;
if (reset)
lp = NULL;
if (lp == NULL) {
lp = kcage_glist;
pfn = PFN_INVALID;
}
again:
if (pfn == PFN_INVALID) {
if (lp == NULL)
return (PFN_INVALID);
if (lp->decr != 0) {
/*
* In this range the cage grows from the highest
* address towards the lowest.
* Arrange to return pfns from curr to lim-1,
* inclusive, in ascending order.
*/
pfn = lp->curr;
} else {
/*
* In this range the cage grows from the lowest
* address towards the highest.
* Arrange to return pfns from base to curr,
* inclusive, in ascending order.
*/
pfn = lp->base;
}
}
if (lp->decr != 0) { /* decrementing pfn */
if (pfn == lp->lim) {
/* Don't go beyond the static part of the glist. */
if (lp == kcage_current_glist)
lp = NULL;
else
lp = lp->next;
pfn = PFN_INVALID;
goto again;
}
ASSERT(pfn >= lp->curr && pfn < lp->lim);
} else { /* incrementing pfn */
if (pfn == lp->curr) {
/* Don't go beyond the static part of the glist. */
if (lp == kcage_current_glist)
lp = NULL;
else
lp = lp->next;
pfn = PFN_INVALID;
goto again;
}
ASSERT(pfn >= lp->base && pfn < lp->curr);
}
return (pfn++);
}
/*
* Callback functions for to recalc cage thresholds after
* Kphysm memory add/delete operations.
*/
/*ARGSUSED*/
static void
kcage_kphysm_postadd_cb(void *arg, pgcnt_t delta_pages)
{
kcage_recalc_thresholds();
}
/*ARGSUSED*/
static int
kcage_kphysm_predel_cb(void *arg, pgcnt_t delta_pages)
{
/* TODO: when should cage refuse memory delete requests? */
return (0);
}
/*ARGSUSED*/
static void
kcage_kphysm_postdel_cb(void *arg, pgcnt_t delta_pages, int cancelled)
{
kcage_recalc_thresholds();
}
static kphysm_setup_vector_t kcage_kphysm_vectors = {
KPHYSM_SETUP_VECTOR_VERSION,
kcage_kphysm_postadd_cb,
kcage_kphysm_predel_cb,
kcage_kphysm_postdel_cb
};
/*
* This is called before a CPR suspend and after a CPR resume. We have to
* turn off kcage_cageout_ready before a suspend, and turn it back on after a
* restart.
*/
/*ARGSUSED*/
static boolean_t
kcage_cageout_cpr(void *arg, int code)
{
if (code == CB_CODE_CPR_CHKPT) {
ASSERT(kcage_cageout_ready);
kcage_cageout_ready = 0;
return (B_TRUE);
} else if (code == CB_CODE_CPR_RESUME) {
ASSERT(kcage_cageout_ready == 0);
kcage_cageout_ready = 1;
return (B_TRUE);
}
return (B_FALSE);
}
/*
* kcage_recalc_preferred_size() increases initial cage size to improve large
* page availability when lp for kmem is enabled and kpr is disabled
*/
static pgcnt_t
kcage_recalc_preferred_size(pgcnt_t preferred_size)
{
if (SEGKMEM_USE_LARGEPAGES && segkmem_reloc == 0) {
pgcnt_t lpmincage = kcage_kmemlp_mincage;
if (lpmincage == 0) {
lpmincage = MIN(P2ROUNDUP(((physmem * PAGESIZE) / 8),
segkmem_heaplp_quantum), 0x40000000UL) / PAGESIZE;
}
kcage_kmemlp_mincage = MIN(lpmincage,
(segkmem_kmemlp_max / PAGESIZE));
preferred_size = MAX(kcage_kmemlp_mincage, preferred_size);
}
return (preferred_size);
}
/*
* Kcage_init() builds the cage and initializes the cage thresholds.
* The size of the cage is determined by the argument preferred_size.
* or the actual amount of memory, whichever is smaller.
*/
static void
kcage_init(pgcnt_t preferred_size)
{
pgcnt_t wanted;
pfn_t pfn;
page_t *pp;
kstat_t *ksp;
extern struct vnode kvp;
extern void page_list_noreloc_startup(page_t *);
ASSERT(!kcage_on);
/* increase preferred cage size for lp for kmem */
preferred_size = kcage_recalc_preferred_size(preferred_size);
/* Debug note: initialize this now so early expansions can stat */
KCAGE_STAT_INIT_SCAN_INDEX;
/*
* Initialize cage thresholds and install kphysm callback.
* If we can't arrange to have the thresholds track with
* available physical memory, then the cage thresholds may
* end up over time at levels that adversly effect system
* performance; so, bail out.
*/
kcage_recalc_thresholds();
if (kphysm_setup_func_register(&kcage_kphysm_vectors, NULL)) {
ASSERT(0); /* Catch this in DEBUG kernels. */
return;
}
/*
* Limit startup cage size within the range of kcage_minfree
* and availrmem, inclusively.
*/
wanted = MIN(MAX(preferred_size, kcage_minfree), availrmem);
/*
* Construct the cage. PFNs are allocated from the glist. It
* is assumed that the list has been properly ordered for the
* platform by the platform code. Typically, this is as simple
* as calling kcage_range_init(phys_avail, decr), where decr is
* 1 if the kernel has been loaded into upper end of physical
* memory, or 0 if the kernel has been loaded at the low end.
*
* Note: it is assumed that we are in the startup flow, so there
* is no reason to grab the page lock.
*/
kcage_freemem = 0;
pfn = PFN_INVALID; /* prime for alignment test */
while (wanted != 0) {
if ((pfn = kcage_get_pfn(0)) == PFN_INVALID)
break;
if ((pp = page_numtopp_nolock(pfn)) != NULL) {
KCAGEPAGETS_INC();
/*
* Set the noreloc state on the page.
* If the page is free and not already
* on the noreloc list then move it.
*/
if (PP_ISFREE(pp)) {
if (PP_ISNORELOC(pp) == 0)
page_list_noreloc_startup(pp);
} else {
ASSERT(pp->p_szc == 0);
PP_SETNORELOC(pp);
}
}
PLCNT_XFER_NORELOC(pp);
wanted -= 1;
}
/*
* Need to go through and find kernel allocated pages
* and capture them into the Cage. These will primarily
* be pages gotten through boot_alloc().
*/
if (kvp.v_pages) {
pp = kvp.v_pages;
do {
ASSERT(!PP_ISFREE(pp));
ASSERT(pp->p_szc == 0);
if (PP_ISNORELOC(pp) == 0) {
PP_SETNORELOC(pp);
PLCNT_XFER_NORELOC(pp);
}
} while ((pp = pp->p_vpnext) != kvp.v_pages);
}
kcage_on = 1;
/*
* CB_CL_CPR_POST_KERNEL is the class that executes from cpr_suspend()
* after the cageout thread is blocked, and executes from cpr_resume()
* before the cageout thread is restarted. By executing in this class,
* we are assured that the kernel cage thread won't miss wakeup calls
* and also CPR's larger kmem_alloc requests will not fail after
* CPR shuts down the cageout kernel thread.
*/
(void) callb_add(kcage_cageout_cpr, NULL, CB_CL_CPR_POST_KERNEL,
"cageout");
/*
* Coalesce pages to improve large page availability. A better fix
* would to coalesce pages as they are included in the cage
*/
if (SEGKMEM_USE_LARGEPAGES) {
extern void page_freelist_coalesce_all(int mnode);
page_freelist_coalesce_all(-1); /* do all mnodes */
}
ksp = kstat_create("kcage", 0, "kcage_page_list", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
if (ksp != NULL) {
ksp->ks_update = kcage_kstat_update;
ksp->ks_snapshot = kcage_kstat_snapshot;
ksp->ks_lock = &kcage_kstat_lock; /* XXX - not really needed */
kstat_install(ksp);
}
}
static int
kcage_kstat_update(kstat_t *ksp, int rw)
{
struct kcage_glist *lp;
uint_t count;
if (rw == KSTAT_WRITE)
return (EACCES);
count = 0;
rw_enter(&kcage_range_rwlock, RW_WRITER);
for (lp = kcage_glist; lp != NULL; lp = lp->next) {
if (lp->decr) {
if (lp->curr != lp->lim) {
count++;
}
} else {
if (lp->curr != lp->base) {
count++;
}
}
}
rw_exit(&kcage_range_rwlock);
ksp->ks_ndata = count;
ksp->ks_data_size = count * 2 * sizeof (uint64_t);
return (0);
}
static int
kcage_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
{
struct kcage_glist *lp;
struct memunit {
uint64_t address;
uint64_t size;
} *kspmem;
if (rw == KSTAT_WRITE)
return (EACCES);
ksp->ks_snaptime = gethrtime();
kspmem = (struct memunit *)buf;
rw_enter(&kcage_range_rwlock, RW_WRITER);
for (lp = kcage_glist; lp != NULL; lp = lp->next, kspmem++) {
if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
break;
if (lp->decr) {
if (lp->curr != lp->lim) {
kspmem->address = ptob(lp->curr);
kspmem->size = ptob(lp->lim - lp->curr);
}
} else {
if (lp->curr != lp->base) {
kspmem->address = ptob(lp->base);
kspmem->size = ptob(lp->curr - lp->base);
}
}
}
rw_exit(&kcage_range_rwlock);
return (0);
}
void
kcage_recalc_thresholds()
{
static int first = 1;
static pgcnt_t init_lotsfree;
static pgcnt_t init_desfree;
static pgcnt_t init_minfree;
static pgcnt_t init_throttlefree;
static pgcnt_t init_reserve;
/* TODO: any reason to take more care than this with live editing? */
mutex_enter(&kcage_cageout_mutex);
mutex_enter(&freemem_lock);
if (first) {
first = 0;
init_lotsfree = kcage_lotsfree;
init_desfree = kcage_desfree;
init_minfree = kcage_minfree;
init_throttlefree = kcage_throttlefree;
init_reserve = kcage_reserve;
} else {
kcage_lotsfree = init_lotsfree;
kcage_desfree = init_desfree;
kcage_minfree = init_minfree;
kcage_throttlefree = init_throttlefree;
kcage_reserve = init_reserve;
}
if (kcage_lotsfree == 0)
kcage_lotsfree = MAX(32, total_pages / 256);
if (kcage_minfree == 0)
kcage_minfree = MAX(32, kcage_lotsfree / 2);
if (kcage_desfree == 0)
kcage_desfree = MAX(32, kcage_minfree);
if (kcage_throttlefree == 0)
kcage_throttlefree = MAX(32, kcage_minfree / 2);
if (kcage_reserve == 0)
kcage_reserve = MIN(32, kcage_throttlefree / 2);
mutex_exit(&freemem_lock);
mutex_exit(&kcage_cageout_mutex);
if (kcage_cageout_ready) {
if (kcage_freemem < kcage_desfree)
kcage_cageout_wakeup();
if (kcage_needfree) {
mutex_enter(&kcage_throttle_mutex);
cv_broadcast(&kcage_throttle_cv);
mutex_exit(&kcage_throttle_mutex);
}
}
}
/*
* Pageout interface:
* kcage_cageout_init()
*/
void
kcage_cageout_init()
{
if (kcage_on) {
(void) thread_create(NULL, 0, kcage_cageout,
NULL, 0, proc_pageout, TS_RUN, maxclsyspri - 1);
}
}
/*
* VM Interfaces:
* kcage_create_throttle()
* kcage_freemem_add()
* kcage_freemem_sub()
*/
/*
* Wakeup cageout thread and throttle waiting for the number of pages
* requested to become available. For non-critical requests, a
* timeout is added, since freemem accounting is separate from cage
* freemem accounting: it's possible for us to get stuck and not make
* forward progress even though there was sufficient freemem before
* arriving here.
*/
int
kcage_create_throttle(pgcnt_t npages, int flags)
{
int niter = 0;
pgcnt_t lastfree;
int enough = kcage_freemem > kcage_throttlefree + npages;
KCAGE_STAT_INCR(kct_calls); /* unprotected incr. */
kcage_cageout_wakeup(); /* just to be sure */
KCAGE_STAT_INCR(kct_cagewake); /* unprotected incr. */
/*
* Obviously, we can't throttle the cageout thread since
* we depend on it. We also can't throttle the panic thread.
*/
if (curthread == kcage_cageout_thread || panicstr) {
KCAGE_STAT_INCR(kct_cageout); /* unprotected incr. */
return (KCT_CRIT);
}
/*
* Don't throttle threads which are critical for proper
* vm management if we're above kcage_throttlefree or
* if freemem is very low.
*/
if (NOMEMWAIT()) {
if (enough) {
KCAGE_STAT_INCR(kct_exempt); /* unprotected incr. */
return (KCT_CRIT);
} else if (freemem < minfree) {
KCAGE_STAT_INCR(kct_critical); /* unprotected incr. */
return (KCT_CRIT);
}
}
/*
* Don't throttle real-time threads if kcage_freemem > kcage_reserve.
*/
if (DISP_PRIO(curthread) > maxclsyspri &&
kcage_freemem > kcage_reserve) {
KCAGE_STAT_INCR(kct_exempt); /* unprotected incr. */
return (KCT_CRIT);
}
/*
* Cause all other threads (which are assumed to not be
* critical to cageout) to wait here until their request
* can be satisfied. Be a little paranoid and wake the
* kernel cage on each loop through this logic.
*/
while (kcage_freemem < kcage_throttlefree + npages) {
ASSERT(kcage_on);
lastfree = kcage_freemem;
if (kcage_cageout_ready) {
mutex_enter(&kcage_throttle_mutex);
kcage_needfree += npages;
KCAGE_STAT_INCR(kct_wait);
kcage_cageout_wakeup();
KCAGE_STAT_INCR(kct_cagewake);
cv_wait(&kcage_throttle_cv, &kcage_throttle_mutex);
kcage_needfree -= npages;
mutex_exit(&kcage_throttle_mutex);
} else {
/*
* NOTE: atomics are used just in case we enter
* mp operation before the cageout thread is ready.
*/
atomic_add_long(&kcage_needfree, npages);
kcage_cageout_wakeup();
KCAGE_STAT_INCR(kct_cagewake); /* unprotected incr. */
atomic_add_long(&kcage_needfree, -npages);
}
if ((flags & PG_WAIT) == 0) {
if (kcage_freemem > lastfree) {
KCAGE_STAT_INCR(kct_progress);
niter = 0;
} else {
KCAGE_STAT_INCR(kct_noprogress);
if (++niter >= kcage_maxwait) {
KCAGE_STAT_INCR(kct_timeout);
return (KCT_FAILURE);
}
}
}
if (NOMEMWAIT() && freemem < minfree) {
return (KCT_CRIT);
}
}
return (KCT_NONCRIT);
}
void
kcage_freemem_add(pgcnt_t npages)
{
extern void wakeup_pcgs(void);
atomic_add_long(&kcage_freemem, npages);
wakeup_pcgs(); /* wakeup threads in pcgs() */
if (kcage_needfree != 0 &&
kcage_freemem >= (kcage_throttlefree + kcage_needfree)) {
mutex_enter(&kcage_throttle_mutex);
cv_broadcast(&kcage_throttle_cv);
KCAGE_STAT_INCR(kfa_trottlewake);
mutex_exit(&kcage_throttle_mutex);
}
}
void
kcage_freemem_sub(pgcnt_t npages)
{
atomic_add_long(&kcage_freemem, -npages);
if (kcage_freemem < kcage_desfree) {
kcage_cageout_wakeup();
KCAGE_STAT_INCR(kfs_cagewake); /* unprotected incr. */
}
}
/*
* return 0 on failure and 1 on success.
*/
static int
kcage_setnoreloc_pages(page_t *rootpp, se_t se)
{
pgcnt_t npgs, i;
page_t *pp;
pfn_t rootpfn = page_pptonum(rootpp);
uint_t szc;
ASSERT(!PP_ISFREE(rootpp));
ASSERT(PAGE_LOCKED_SE(rootpp, se));
if (!group_page_trylock(rootpp, se)) {
return (0);
}
szc = rootpp->p_szc;
if (szc == 0) {
/*
* The szc of a locked page can only change for pages that are
* non-swapfs (i.e. anonymous memory) file system pages.
*/
ASSERT(rootpp->p_vnode != NULL &&
!PP_ISKAS(rootpp) &&
!IS_SWAPFSVP(rootpp->p_vnode));
PP_SETNORELOC(rootpp);
return (1);
}
npgs = page_get_pagecnt(szc);
ASSERT(IS_P2ALIGNED(rootpfn, npgs));
pp = rootpp;
for (i = 0; i < npgs; i++, pp++) {
ASSERT(PAGE_LOCKED_SE(pp, se));
ASSERT(!PP_ISFREE(pp));
ASSERT(pp->p_szc == szc);
PP_SETNORELOC(pp);
}
group_page_unlock(rootpp);
return (1);
}
/*
* Attempt to convert page to a caged page (set the P_NORELOC flag).
* If successful and pages is free, move page to the tail of whichever
* list it is on.
* Returns:
* EBUSY page already locked, assimilated but not free.
* ENOMEM page assimilated, but memory too low to relocate. Page not free.
* EAGAIN page not assimilated. Page not free.
* ERANGE page assimilated. Page not root.
* 0 page assimilated. Page free.
* *nfreedp number of pages freed.
* NOTE: With error codes ENOMEM, EBUSY, and 0 (zero), there is no way
* to distinguish between a page that was already a NORELOC page from
* those newly converted to NORELOC pages by this invocation of
* kcage_assimilate_page.
*/
static int
kcage_assimilate_page(page_t *pp, pgcnt_t *nfreedp)
{
if (page_trylock(pp, SE_EXCL)) {
if (PP_ISNORELOC(pp)) {
check_free_and_return:
if (PP_ISFREE(pp)) {
page_unlock(pp);
*nfreedp = 0;
return (0);
} else {
page_unlock(pp);
return (EBUSY);
}
/*NOTREACHED*/
}
} else {
if (page_trylock(pp, SE_SHARED)) {
if (PP_ISNORELOC(pp))
goto check_free_and_return;
} else
return (EAGAIN);
if (!PP_ISFREE(pp)) {
page_unlock(pp);
return (EAGAIN);
}
/*
* Need to upgrade the lock on it and set the NORELOC
* bit. If it is free then remove it from the free
* list so that the platform free list code can keep
* NORELOC pages where they should be.
*/
/*
* Before doing anything, get the exclusive lock.
* This may fail (eg ISM pages are left shared locked).
* If the page is free this will leave a hole in the
* cage. There is no solution yet to this.
*/
if (!page_tryupgrade(pp)) {
page_unlock(pp);
return (EAGAIN);
}
}
ASSERT(PAGE_EXCL(pp));
if (PP_ISFREE(pp)) {
int which = PP_ISAGED(pp) ? PG_FREE_LIST : PG_CACHE_LIST;
page_list_sub(pp, which);
ASSERT(pp->p_szc == 0);
PP_SETNORELOC(pp);
PLCNT_XFER_NORELOC(pp);
page_list_add(pp, which | PG_LIST_TAIL);
page_unlock(pp);
*nfreedp = 1;
return (0);
} else {
if (pp->p_szc != 0) {
if (!kcage_setnoreloc_pages(pp, SE_EXCL)) {
page_unlock(pp);
return (EAGAIN);
}
ASSERT(PP_ISNORELOC(pp));
} else {
PP_SETNORELOC(pp);
}
PLCNT_XFER_NORELOC(pp);
return (kcage_invalidate_page(pp, nfreedp));
}
/*NOTREACHED*/
}
static int
kcage_expand()
{
int did_something = 0;
spgcnt_t wanted;
pfn_t pfn;
page_t *pp;
/* TODO: we don't really need n any more? */
pgcnt_t n;
pgcnt_t nf, nfreed;
/*
* Expand the cage if available cage memory is really low. Calculate
* the amount required to return kcage_freemem to the level of
* kcage_lotsfree, or to satisfy throttled requests, whichever is
* more. It is rare for their sum to create an artificial threshold
* above kcage_lotsfree, but it is possible.
*
* Exit early if expansion amount is equal to or less than zero.
* (<0 is possible if kcage_freemem rises suddenly.)
*
* Exit early when the global page pool (apparently) does not
* have enough free pages to page_relocate() even a single page.
*/
wanted = MAX(kcage_lotsfree, kcage_throttlefree + kcage_needfree)
- kcage_freemem;
if (wanted <= 0)
return (0);
else if (freemem < pageout_reserve + 1) {
KCAGE_STAT_INCR(ke_lowfreemem);
return (0);
}
KCAGE_STAT_INCR(ke_calls);
KCAGE_STAT_SET_SCAN(ke_wanted, (uint_t)wanted);
/*
* Assimilate more pages from the global page pool into the cage.
*/
n = 0; /* number of pages PP_SETNORELOC'd */
nf = 0; /* number of those actually free */
while (kcage_on && nf < wanted) {
pfn = kcage_get_pfn(1);
if (pfn == PFN_INVALID) { /* eek! no where to grow */
KCAGE_STAT_INCR(ke_nopfn);
goto terminate;
}
KCAGE_STAT_INCR_SCAN(ke_examined);
if ((pp = page_numtopp_nolock(pfn)) == NULL) {
KCAGE_STAT_INCR(ke_nopaget);
continue;
}
KCAGEPAGETS_INC();
/*
* Sanity check. Skip this pfn if it is
* being deleted.
*/
if (pfn_is_being_deleted(pfn)) {
KCAGE_STAT_INCR(ke_deleting);
continue;
}
if (PP_ISNORELOC(pp)) {
KCAGE_STAT_INCR(ke_isnoreloc);
continue;
}
switch (kcage_assimilate_page(pp, &nfreed)) {
case 0: /* assimilated, page is free */
KCAGE_STAT_NINCR_SCAN(ke_gotonefree, nfreed);
did_something = 1;
nf += nfreed;
n++;
break;
case EBUSY: /* assimilated, page not free */
case ERANGE: /* assimilated, page not root */
KCAGE_STAT_INCR_SCAN(ke_gotone);
did_something = 1;
n++;
break;
case ENOMEM: /* assimilated, but no mem */
KCAGE_STAT_INCR(ke_terminate);
did_something = 1;
n++;
goto terminate;
case EAGAIN: /* can't assimilate */
KCAGE_STAT_INCR_SCAN(ke_lefthole);
break;
default: /* catch this with debug kernels */
ASSERT(0);
break;
}
}
/*
* Realign cage edge with the nearest physical address
* boundry for big pages. This is done to give us a
* better chance of actually getting usable big pages
* in the cage.
*/
terminate:
return (did_something);
}
/*
* Relocate page opp (Original Page Pointer) from cage pool to page rpp
* (Replacement Page Pointer) in the global pool. Page opp will be freed
* if relocation is successful, otherwise it is only unlocked.
* On entry, page opp must be exclusively locked and not free.
* *nfreedp: number of pages freed.
*/
static int
kcage_relocate_page(page_t *pp, pgcnt_t *nfreedp)
{
page_t *opp = pp;
page_t *rpp = NULL;
spgcnt_t npgs;
int result;
ASSERT(!PP_ISFREE(opp));
ASSERT(PAGE_EXCL(opp));
result = page_relocate(&opp, &rpp, 1, 1, &npgs, NULL);
*nfreedp = npgs;
if (result == 0) {
while (npgs-- > 0) {
page_t *tpp;
ASSERT(rpp != NULL);
tpp = rpp;
page_sub(&rpp, tpp);
page_unlock(tpp);
}
ASSERT(rpp == NULL);
return (0); /* success */
}
page_unlock(opp);
return (result);
}
/*
* Based on page_invalidate_pages()
*
* Kcage_invalidate_page() uses page_relocate() twice. Both instances
* of use must be updated to match the new page_relocate() when it
* becomes available.
*
* Return result of kcage_relocate_page or zero if page was directly freed.
* *nfreedp: number of pages freed.
*/
static int
kcage_invalidate_page(page_t *pp, pgcnt_t *nfreedp)
{
int result;
#if defined(__sparc)
extern struct vnode prom_ppages;
ASSERT(pp->p_vnode != &prom_ppages);
#endif /* __sparc */
ASSERT(!PP_ISFREE(pp));
ASSERT(PAGE_EXCL(pp));
/*
* Is this page involved in some I/O? shared?
* The page_struct_lock need not be acquired to
* examine these fields since the page has an
* "exclusive" lock.
*/
if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
result = kcage_relocate_page(pp, nfreedp);
#ifdef KCAGE_STATS
if (result == 0)
KCAGE_STAT_INCR_SCAN(kip_reloclocked);
else if (result == ENOMEM)
KCAGE_STAT_INCR_SCAN(kip_nomem);
#endif
return (result);
}
ASSERT(pp->p_vnode->v_type != VCHR);
/*
* Unload the mappings and check if mod bit is set.
*/
(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
if (hat_ismod(pp)) {
result = kcage_relocate_page(pp, nfreedp);
#ifdef KCAGE_STATS
if (result == 0)
KCAGE_STAT_INCR_SCAN(kip_relocmod);
else if (result == ENOMEM)
KCAGE_STAT_INCR_SCAN(kip_nomem);
#endif
return (result);
}
if (!page_try_demote_pages(pp)) {
KCAGE_STAT_INCR_SCAN(kip_demotefailed);
page_unlock(pp);
return (EAGAIN);
}
/* LINTED: constant in conditional context */
VN_DISPOSE(pp, B_INVAL, 0, kcred);
KCAGE_STAT_INCR_SCAN(kip_destroy);
*nfreedp = 1;
return (0);
}
static void
kcage_cageout()
{
pfn_t pfn;
page_t *pp;
callb_cpr_t cprinfo;
int did_something;
int scan_again;
pfn_t start_pfn;
int pass;
int last_pass;
int pages_skipped;
int shared_skipped;
ulong_t shared_level = 8;
pgcnt_t nfreed;
#ifdef KCAGE_STATS
clock_t scan_start;
#endif
CALLB_CPR_INIT(&cprinfo, &kcage_cageout_mutex,
callb_generic_cpr, "cageout");
mutex_enter(&kcage_cageout_mutex);
kcage_cageout_thread = curthread;
pfn = PFN_INVALID; /* force scan reset */
start_pfn = PFN_INVALID; /* force init with 1st cage pfn */
kcage_cageout_ready = 1; /* switch kcage_cageout_wakeup mode */
loop:
/*
* Wait here. Sooner or later, kcage_freemem_sub() will notice
* that kcage_freemem is less than kcage_desfree. When it does
* notice, kcage_freemem_sub() will wake us up via call to
* kcage_cageout_wakeup().
*/
CALLB_CPR_SAFE_BEGIN(&cprinfo);
cv_wait(&kcage_cageout_cv, &kcage_cageout_mutex);
CALLB_CPR_SAFE_END(&cprinfo, &kcage_cageout_mutex);
KCAGE_STAT_INCR(kt_wakeups);
KCAGE_STAT_SET_SCAN(kt_freemem_start, freemem);
KCAGE_STAT_SET_SCAN(kt_kcage_freemem_start, kcage_freemem);
pass = 0;
last_pass = 0;
#ifdef KCAGE_STATS
scan_start = lbolt;
#endif
again:
if (!kcage_on)
goto loop;
KCAGE_STAT_INCR(kt_scans);
KCAGE_STAT_INCR_SCAN(kt_passes);
did_something = 0;
pages_skipped = 0;
shared_skipped = 0;
while ((kcage_freemem < kcage_lotsfree || kcage_needfree) &&
(pfn = kcage_walk_cage(pfn == PFN_INVALID)) != PFN_INVALID) {
if (start_pfn == PFN_INVALID)
start_pfn = pfn;
else if (start_pfn == pfn) {
last_pass = pass;
pass += 1;
/*
* Did a complete walk of kernel cage, but didn't free
* any pages. If only one cpu is active then
* stop kernel cage walk and try expanding.
*/
if (cp_default.cp_ncpus == 1 && did_something == 0) {
KCAGE_STAT_INCR(kt_cageout_break);
break;
}
}
pp = page_numtopp_nolock(pfn);
if (pp == NULL) {
continue;
}
KCAGE_STAT_INCR_SCAN(kt_examined);
/*
* Do a quick PP_ISNORELOC() and PP_ISFREE test outside
* of the lock. If one is missed it will be seen next
* time through.
*
* Skip non-caged-pages. These pages can exist in the cage
* because, if during cage expansion, a page is
* encountered that is long-term locked the lock prevents the
* expansion logic from setting the P_NORELOC flag. Hence,
* non-caged-pages surrounded by caged-pages.
*/
if (!PP_ISNORELOC(pp)) {
switch (kcage_assimilate_page(pp, &nfreed)) {
case 0:
did_something = 1;
KCAGE_STAT_NINCR_SCAN(kt_gotonefree,
nfreed);
break;
case EBUSY:
case ERANGE:
did_something = 1;
KCAGE_STAT_INCR_SCAN(kt_gotone);
break;
case EAGAIN:
case ENOMEM:
break;
default:
/* catch this with debug kernels */
ASSERT(0);
break;
}
continue;
} else {
int prm;
if (PP_ISFREE(pp)) {
continue;
}
if ((PP_ISKAS(pp) && pp->p_lckcnt > 0) ||
!page_trylock(pp, SE_EXCL)) {
KCAGE_STAT_INCR_SCAN(kt_cantlock);
continue;
}
/* P_NORELOC bit should not have gone away. */
ASSERT(PP_ISNORELOC(pp));
if (PP_ISFREE(pp) || (PP_ISKAS(pp) &&
pp->p_lckcnt > 0)) {
page_unlock(pp);
continue;
}
KCAGE_STAT_SET_SCAN(kt_skiplevel, shared_level);
if (hat_page_checkshare(pp, shared_level)) {
page_unlock(pp);
pages_skipped = 1;
shared_skipped = 1;
KCAGE_STAT_INCR_SCAN(kt_skipshared);
continue;
}
/*
* In pass {0, 1}, skip page if ref bit is set.
* In pass {0, 1, 2}, skip page if mod bit is set.
*/
prm = hat_pagesync(pp,
HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD);
/* On first pass ignore ref'd pages */
if (pass <= 1 && (prm & P_REF)) {
KCAGE_STAT_INCR_SCAN(kt_skiprefd);
pages_skipped = 1;
page_unlock(pp);
continue;
}
/* On pass 2, VN_DISPOSE if mod bit is not set */
if (pass <= 2) {
if (pp->p_szc != 0 || (prm & P_MOD) ||
pp->p_lckcnt || pp->p_cowcnt) {
pages_skipped = 1;
page_unlock(pp);
} else {
/*
* unload the mappings before
* checking if mod bit is set
*/
(void) hat_pageunload(pp,
HAT_FORCE_PGUNLOAD);
/*
* skip this page if modified
*/
if (hat_ismod(pp)) {
pages_skipped = 1;
page_unlock(pp);
continue;
}
KCAGE_STAT_INCR_SCAN(kt_destroy);
/* constant in conditional context */
/* LINTED */
VN_DISPOSE(pp, B_INVAL, 0, kcred);
did_something = 1;
}
continue;
}
if (kcage_invalidate_page(pp, &nfreed) == 0) {
did_something = 1;
KCAGE_STAT_NINCR_SCAN(kt_gotonefree, nfreed);
}
/*
* No need to drop the page lock here.
* Kcage_invalidate_page has done that for us
* either explicitly or through a page_free.
*/
}
}
/*
* Expand the cage only if available cage memory is really low.
* This test is done only after a complete scan of the cage.
* The reason for not checking and expanding more often is to
* avoid rapid expansion of the cage. Naturally, scanning the
* cage takes time. So by scanning first, we use that work as a
* delay loop in between expand decisions.
*/
scan_again = 0;
if (kcage_freemem < kcage_minfree || kcage_needfree) {
/*
* Kcage_expand() will return a non-zero value if it was
* able to expand the cage -- whether or not the new
* pages are free and immediately usable. If non-zero,
* we do another scan of the cage. The pages might be
* freed during that scan or by time we get back here.
* If not, we will attempt another expansion.
* However, if kcage_expand() returns zero, then it was
* unable to expand the cage. This is the case when the
* the growth list is exausted, therefore no work was done
* and there is no reason to scan the cage again.
* Note: Kernel cage scan is not repeated when only one
* cpu is active to avoid kernel cage thread hogging cpu.
*/
if (pass <= 3 && pages_skipped && cp_default.cp_ncpus > 1)
scan_again = 1;
else
(void) kcage_expand(); /* don't scan again */
} else if (kcage_freemem < kcage_lotsfree) {
/*
* If available cage memory is less than abundant
* and a full scan of the cage has not yet been completed,
* or a scan has completed and some work was performed,
* or pages were skipped because of sharing,
* or we simply have not yet completed two passes,
* then do another scan.
*/
if (pass <= 2 && pages_skipped)
scan_again = 1;
if (pass == last_pass || did_something)
scan_again = 1;
else if (shared_skipped && shared_level < (8<<24)) {
shared_level <<= 1;
scan_again = 1;
}
}
if (scan_again && cp_default.cp_ncpus > 1)
goto again;
else {
if (shared_level > 8)
shared_level >>= 1;
KCAGE_STAT_SET_SCAN(kt_freemem_end, freemem);
KCAGE_STAT_SET_SCAN(kt_kcage_freemem_end, kcage_freemem);
KCAGE_STAT_SET_SCAN(kt_ticks, lbolt - scan_start);
KCAGE_STAT_INC_SCAN_INDEX;
goto loop;
}
/*NOTREACHED*/
}
void
kcage_cageout_wakeup()
{
if (mutex_tryenter(&kcage_cageout_mutex)) {
if (kcage_cageout_ready) {
cv_signal(&kcage_cageout_cv);
} else if (kcage_freemem < kcage_minfree || kcage_needfree) {
/*
* Available cage memory is really low. Time to
* start expanding the cage. However, the
* kernel cage thread is not yet ready to
* do the work. Use *this* thread, which is
* most likely to be t0, to do the work.
*/
KCAGE_STAT_INCR(kcw_expandearly);
(void) kcage_expand();
KCAGE_STAT_INC_SCAN_INDEX;
}
mutex_exit(&kcage_cageout_mutex);
}
/* else, kernel cage thread is already running */
}
void
kcage_tick()
{
/*
* Once per second we wake up all the threads throttled
* waiting for cage memory, in case we've become stuck
* and haven't made forward progress expanding the cage.
*/
if (kcage_on && kcage_cageout_ready)
cv_broadcast(&kcage_throttle_cv);
}
|