summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/taskq.c
blob: 93faf53dbcee35cbe525a44dfecfd3c59e2fb31d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Kernel task queues: general-purpose asynchronous task scheduling.
 *
 * A common problem in kernel programming is the need to schedule tasks
 * to be performed later, by another thread. There are several reasons
 * you may want or need to do this:
 *
 * (1) The task isn't time-critical, but your current code path is.
 *
 * (2) The task may require grabbing locks that you already hold.
 *
 * (3) The task may need to block (e.g. to wait for memory), but you
 *     cannot block in your current context.
 *
 * (4) Your code path can't complete because of some condition, but you can't
 *     sleep or fail, so you queue the task for later execution when condition
 *     disappears.
 *
 * (5) You just want a simple way to launch multiple tasks in parallel.
 *
 * Task queues provide such a facility. In its simplest form (used when
 * performance is not a critical consideration) a task queue consists of a
 * single list of tasks, together with one or more threads to service the
 * list. There are some cases when this simple queue is not sufficient:
 *
 * (1) The task queues are very hot and there is a need to avoid data and lock
 *	contention over global resources.
 *
 * (2) Some tasks may depend on other tasks to complete, so they can't be put in
 *	the same list managed by the same thread.
 *
 * (3) Some tasks may block for a long time, and this should not block other
 * 	tasks in the queue.
 *
 * To provide useful service in such cases we define a "dynamic task queue"
 * which has an individual thread for each of the tasks. These threads are
 * dynamically created as they are needed and destroyed when they are not in
 * use. The API for managing task pools is the same as for managing task queues
 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
 * dynamic task pool behavior is desired.
 *
 * Dynamic task queues may also place tasks in the normal queue (called "backing
 * queue") when task pool runs out of resources. Users of task queues may
 * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
 * flags.
 *
 * The backing task queue is also used for scheduling internal tasks needed for
 * dynamic task queue maintenance.
 *
 * INTERFACES ==================================================================
 *
 * taskq_t *taskq_create(name, nthreads, pri_t pri, minalloc, maxall, flags);
 *
 *	Create a taskq with specified properties.
 *	Possible 'flags':
 *
 *	  TASKQ_DYNAMIC: Create task pool for task management. If this flag is
 *		specified, 'nthreads' specifies the maximum number of threads in
 *		the task queue. Task execution order for dynamic task queues is
 *		not predictable.
 *
 *		If this flag is not specified (default case) a
 *		single-list task queue is created with 'nthreads' threads
 *		servicing it. Entries in this queue are managed by
 *		taskq_ent_alloc() and taskq_ent_free() which try to keep the
 *		task population between 'minalloc' and 'maxalloc', but the
 *		latter limit is only advisory for TQ_SLEEP dispatches and the
 *		former limit is only advisory for TQ_NOALLOC dispatches. If
 *		TASKQ_PREPOPULATE is set in 'flags', the taskq will be
 *		prepopulated with 'minalloc' task structures.
 *
 *		Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
 *		executed in the order they are scheduled if nthreads == 1.
 *		If nthreads > 1, task execution order is not predictable.
 *
 *	  TASKQ_PREPOPULATE: Prepopulate task queue with threads.
 *		Also prepopulate the task queue with 'minalloc' task structures.
 *
 *	  TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be
 *		interpreted as a percentage of the # of online CPUs on the
 *		system.  The taskq subsystem will automatically adjust the
 *		number of threads in the taskq in response to CPU online
 *		and offline events, to keep the ratio.  nthreads must be in
 *		the range [0,100].
 *
 *		The calculation used is:
 *
 *			MAX((ncpus_online * percentage)/100, 1)
 *
 *		This flag is not supported for DYNAMIC task queues.
 *		This flag is not compatible with TASKQ_CPR_SAFE.
 *
 *	  TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
 *		use their own protocol for handling CPR issues. This flag is not
 *		supported for DYNAMIC task queues.  This flag is not compatible
 *		with TASKQ_THREADS_CPU_PCT.
 *
 *	The 'pri' field specifies the default priority for the threads that
 *	service all scheduled tasks.
 *
 * void taskq_destroy(tap):
 *
 *	Waits for any scheduled tasks to complete, then destroys the taskq.
 *	Caller should guarantee that no new tasks are scheduled in the closing
 *	taskq.
 *
 * taskqid_t taskq_dispatch(tq, func, arg, flags):
 *
 *	Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
 *	the caller is willing to block for memory.  The function returns an
 *	opaque value which is zero iff dispatch fails.  If flags is TQ_NOSLEEP
 *	or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
 *	and returns (taskqid_t)0.
 *
 *	ASSUMES: func != NULL.
 *
 *	Possible flags:
 *	  TQ_NOSLEEP: Do not wait for resources; may fail.
 *
 *	  TQ_NOALLOC: Do not allocate memory; may fail.  May only be used with
 *		non-dynamic task queues.
 *
 *	  TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
 *		lack of available resources and fail. If this flag is not
 * 		set, and the task pool is exhausted, the task may be scheduled
 *		in the backing queue. This flag may ONLY be used with dynamic
 *		task queues.
 *
 *		NOTE: This flag should always be used when a task queue is used
 *		for tasks that may depend on each other for completion.
 *		Enqueueing dependent tasks may create deadlocks.
 *
 *	  TQ_SLEEP:   May block waiting for resources. May still fail for
 * 		dynamic task queues if TQ_NOQUEUE is also specified, otherwise
 *		always succeed.
 *
 *	NOTE: Dynamic task queues are much more likely to fail in
 *		taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
 *		is important to have backup strategies handling such failures.
 *
 * void taskq_wait(tq):
 *
 *	Waits for all previously scheduled tasks to complete.
 *
 *	NOTE: It does not stop any new task dispatches.
 *	      Do NOT call taskq_wait() from a task: it will cause deadlock.
 *
 * void taskq_suspend(tq)
 *
 *	Suspend all task execution. Tasks already scheduled for a dynamic task
 *	queue will still be executed, but all new scheduled tasks will be
 *	suspended until taskq_resume() is called.
 *
 * int  taskq_suspended(tq)
 *
 *	Returns 1 if taskq is suspended and 0 otherwise. It is intended to
 *	ASSERT that the task queue is suspended.
 *
 * void taskq_resume(tq)
 *
 *	Resume task queue execution.
 *
 * int  taskq_member(tq, thread)
 *
 *	Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
 *	intended use is to ASSERT that a given function is called in taskq
 *	context only.
 *
 * system_taskq
 *
 *	Global system-wide dynamic task queue for common uses. It may be used by
 *	any subsystem that needs to schedule tasks and does not need to manage
 *	its own task queues. It is initialized quite early during system boot.
 *
 * IMPLEMENTATION ==============================================================
 *
 * This is schematic representation of the task queue structures.
 *
 *   taskq:
 *   +-------------+
 *   | tq_lock     | +---< taskq_ent_free()
 *   +-------------+ |
 *   |...          | | tqent:                  tqent:
 *   +-------------+ | +------------+          +------------+
 *   | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
 *   +-------------+   +------------+          +------------+
 *   |...          |   | ...        |          | ...        |
 *   +-------------+   +------------+          +------------+
 *   | tq_task     |    |
 *   |             |    +-------------->taskq_ent_alloc()
 * +--------------------------------------------------------------------------+
 * | |                     |            tqent                   tqent         |
 * | +---------------------+     +--> +------------+     +--> +------------+  |
 * | | ...		   |     |    | func, arg  |     |    | func, arg  |  |
 * +>+---------------------+ <---|-+  +------------+ <---|-+  +------------+  |
 *   | tq_taskq.tqent_next | ----+ |  | tqent_next | --->+ |  | tqent_next |--+
 *   +---------------------+	   |  +------------+     ^ |  +------------+
 * +-| tq_task.tqent_prev  |	   +--| tqent_prev |     | +--| tqent_prev |  ^
 * | +---------------------+	      +------------+     |    +------------+  |
 * | |...		   |	      | ...        |     |    | ...        |  |
 * | +---------------------+	      +------------+     |    +------------+  |
 * |                                      ^              |                    |
 * |                                      |              |                    |
 * +--------------------------------------+--------------+       TQ_APPEND() -+
 *   |             |                      |
 *   |...          |   taskq_thread()-----+
 *   +-------------+
 *   | tq_buckets  |--+-------> [ NULL ] (for regular task queues)
 *   +-------------+  |
 *                    |   DYNAMIC TASK QUEUES:
 *                    |
 *                    +-> taskq_bucket[nCPU]       	taskq_bucket_dispatch()
 *                        +-------------------+                    ^
 *                   +--->| tqbucket_lock     |                    |
 *                   |    +-------------------+   +--------+      +--------+
 *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  | ^
 *                   |    +-------------------+<--+--------+<--...+--------+ |
 *                   |    | ...               |   | thread |      | thread | |
 *                   |    +-------------------+   +--------+      +--------+ |
 *                   |    +-------------------+                              |
 * taskq_dispatch()--+--->| tqbucket_lock     |             TQ_APPEND()------+
 *      TQ_HASH()    |    +-------------------+   +--------+      +--------+
 *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  |
 *                   |    +-------------------+<--+--------+<--...+--------+
 *                   |    | ...               |   | thread |      | thread |
 *                   |    +-------------------+   +--------+      +--------+
 *		     +---> 	...
 *
 *
 * Task queues use tq_task field to link new entry in the queue. The queue is a
 * circular doubly-linked list. Entries are put in the end of the list with
 * TQ_APPEND() and processed from the front of the list by taskq_thread() in
 * FIFO order. Task queue entries are cached in the free list managed by
 * taskq_ent_alloc() and taskq_ent_free() functions.
 *
 *	All threads used by task queues mark t_taskq field of the thread to
 *	point to the task queue.
 *
 * Taskq Thread Management -----------------------------------------------------
 *
 * Taskq's non-dynamic threads are managed with several variables and flags:
 *
 *	* tq_nthreads	- The number of threads in taskq_thread() for the
 *			  taskq.
 *
 *	* tq_active	- The number of threads not waiting on a CV in
 *			  taskq_thread(); includes newly created threads
 *			  not yet counted in tq_nthreads.
 *
 *	* tq_nthreads_target
 *			- The number of threads desired for the taskq.
 *
 *	* tq_flags & TASKQ_CHANGING
 *			- Indicates that tq_nthreads != tq_nthreads_target.
 *
 *	* tq_flags & TASKQ_THREAD_CREATED
 *			- Indicates that a thread is being created in the taskq.
 *
 * During creation, tq_nthreads and tq_active are set to 0, and
 * tq_nthreads_target is set to the number of threads desired.  The
 * TASKQ_CHANGING flag is set, and taskq_create_thread() is called to
 * create the first thread. taskq_create_thread() increments tq_active,
 * sets TASKQ_THREAD_CREATED, and creates the new thread.
 *
 * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
 * flag, and increments tq_nthreads.  It stores the new value of
 * tq_nthreads as its "thread_id", and stores its thread pointer in the
 * tq_threadlist at the (thread_id - 1).  We keep the thread_id space
 * densely packed by requiring that only the largest thread_id can exit during
 * normal adjustment.   The exception is during the destruction of the
 * taskq; once tq_nthreads_target is set to zero, no new threads will be created
 * for the taskq queue, so every thread can exit without any ordering being
 * necessary.
 *
 * Threads will only process work if their thread id is <= tq_nthreads_target.
 *
 * When TASKQ_CHANGING is set, threads will check the current thread target
 * whenever they wake up, and do whatever they can to apply its effects.
 *
 * TASKQ_THREAD_CPU_PCT --------------------------------------------------------
 *
 * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
 * percentage in tq_threads_ncpus_pct, start them off with the correct thread
 * target, and add them to the taskq_cpupct_list for later adjustment.
 *
 * We register taskq_cpu_setup() to be called whenever a CPU changes state.  It
 * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target
 * if need be, and wakes up all of the threads to process the change.
 *
 * Dynamic Task Queues Implementation ------------------------------------------
 *
 * For a dynamic task queues there is a 1-to-1 mapping between a thread and
 * taskq_ent_structure. Each entry is serviced by its own thread and each thread
 * is controlled by a single entry.
 *
 * Entries are distributed over a set of buckets. To avoid using modulo
 * arithmetics the number of buckets is 2^n and is determined as the nearest
 * power of two roundown of the number of CPUs in the system. Tunable
 * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
 * is attached to a bucket for its lifetime and can't migrate to other buckets.
 *
 * Entries that have scheduled tasks are not placed in any list. The dispatch
 * function sets their "func" and "arg" fields and signals the corresponding
 * thread to execute the task. Once the thread executes the task it clears the
 * "func" field and places an entry on the bucket cache of free entries pointed
 * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
 * field equal to NULL. The free list is a circular doubly-linked list identical
 * in structure to the tq_task list above, but entries are taken from it in LIFO
 * order - the last freed entry is the first to be allocated. The
 * taskq_bucket_dispatch() function gets the most recently used entry from the
 * free list, sets its "func" and "arg" fields and signals a worker thread.
 *
 * After executing each task a per-entry thread taskq_d_thread() places its
 * entry on the bucket free list and goes to a timed sleep. If it wakes up
 * without getting new task it removes the entry from the free list and destroys
 * itself. The thread sleep time is controlled by a tunable variable
 * `taskq_thread_timeout'.
 *
 * There are various statistics kept in the bucket which allows for later
 * analysis of taskq usage patterns. Also, a global copy of taskq creation and
 * death statistics is kept in the global taskq data structure. Since thread
 * creation and death happen rarely, updating such global data does not present
 * a performance problem.
 *
 * NOTE: Threads are not bound to any CPU and there is absolutely no association
 *       between the bucket and actual thread CPU, so buckets are used only to
 *	 split resources and reduce resource contention. Having threads attached
 *	 to the CPU denoted by a bucket may reduce number of times the job
 *	 switches between CPUs.
 *
 *	 Current algorithm creates a thread whenever a bucket has no free
 *	 entries. It would be nice to know how many threads are in the running
 *	 state and don't create threads if all CPUs are busy with existing
 *	 tasks, but it is unclear how such strategy can be implemented.
 *
 *	 Currently buckets are created statically as an array attached to task
 *	 queue. On some system with nCPUs < max_ncpus it may waste system
 *	 memory. One solution may be allocation of buckets when they are first
 *	 touched, but it is not clear how useful it is.
 *
 * SUSPEND/RESUME implementation -----------------------------------------------
 *
 *	Before executing a task taskq_thread() (executing non-dynamic task
 *	queues) obtains taskq's thread lock as a reader. The taskq_suspend()
 *	function gets the same lock as a writer blocking all non-dynamic task
 *	execution. The taskq_resume() function releases the lock allowing
 *	taskq_thread to continue execution.
 *
 *	For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
 *	taskq_suspend() function. After that taskq_bucket_dispatch() always
 *	fails, so that taskq_dispatch() will either enqueue tasks for a
 *	suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
 *	flags.
 *
 *	NOTE: taskq_suspend() does not immediately block any tasks already
 *	      scheduled for dynamic task queues. It only suspends new tasks
 *	      scheduled after taskq_suspend() was called.
 *
 *	taskq_member() function works by comparing a thread t_taskq pointer with
 *	the passed thread pointer.
 *
 * LOCKS and LOCK Hierarchy ----------------------------------------------------
 *
 *   There are three locks used in task queues:
 *
 *   1) The taskq_t's tq_lock, protecting global task queue state.
 *
 *   2) Each per-CPU bucket has a lock for bucket management.
 *
 *   3) The global taskq_cpupct_lock, which protects the list of
 *      TASKQ_THREADS_CPU_PCT taskqs.
 *
 *   If both (1) and (2) are needed, tq_lock should be taken *after* the bucket
 *   lock.
 *
 *   If both (1) and (3) are needed, tq_lock should be taken *after*
 *   taskq_cpupct_lock.
 *
 * DEBUG FACILITIES ------------------------------------------------------------
 *
 * For DEBUG kernels it is possible to induce random failures to
 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
 * failures for dynamic and static task queues respectively.
 *
 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
 *
 * TUNABLES --------------------------------------------------------------------
 *
 *	system_taskq_size	- Size of the global system_taskq.
 *				  This value is multiplied by nCPUs to determine
 *				  actual size.
 *				  Default value: 64
 *
 *	taskq_minimum_nthreads_max
 *				- Minimum size of the thread list for a taskq.
 *				  Useful for testing different thread pool
 *				  sizes by overwriting tq_nthreads_target.
 *
 *	taskq_thread_timeout	- Maximum idle time for taskq_d_thread()
 *				  Default value: 5 minutes
 *
 *	taskq_maxbuckets	- Maximum number of buckets in any task queue
 *				  Default value: 128
 *
 *	taskq_search_depth	- Maximum # of buckets searched for a free entry
 *				  Default value: 4
 *
 *	taskq_dmtbf		- Mean time between induced dispatch failures
 *				  for dynamic task queues.
 *				  Default value: UINT_MAX (no induced failures)
 *
 *	taskq_smtbf		- Mean time between induced dispatch failures
 *				  for static task queues.
 *				  Default value: UINT_MAX (no induced failures)
 *
 * CONDITIONAL compilation -----------------------------------------------------
 *
 *    TASKQ_STATISTIC	- If set will enable bucket statistic (default).
 *
 */

#include <sys/taskq_impl.h>
#include <sys/thread.h>
#include <sys/proc.h>
#include <sys/kmem.h>
#include <sys/vmem.h>
#include <sys/callb.h>
#include <sys/systm.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/vmsystm.h>	/* For throttlefree */
#include <sys/sysmacros.h>
#include <sys/cpuvar.h>
#include <sys/sdt.h>
#include <sys/note.h>

static kmem_cache_t *taskq_ent_cache, *taskq_cache;

/*
 * Pseudo instance numbers for taskqs without explicitly provided instance.
 */
static vmem_t *taskq_id_arena;

/* Global system task queue for common use */
taskq_t	*system_taskq;

/*
 * Maximum number of entries in global system taskq is
 * 	system_taskq_size * max_ncpus
 */
#define	SYSTEM_TASKQ_SIZE 64
int system_taskq_size = SYSTEM_TASKQ_SIZE;

/*
 * Minimum size for tq_nthreads_max; useful for those who want to play around
 * with increasing a taskq's tq_nthreads_target.
 */
int taskq_minimum_nthreads_max = 1;

/* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
#define	TASKQ_CPUPCT_MAX_PERCENT	1000
int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT;

/*
 * Dynamic task queue threads that don't get any work within
 * taskq_thread_timeout destroy themselves
 */
#define	TASKQ_THREAD_TIMEOUT (60 * 5)
int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;

#define	TASKQ_MAXBUCKETS 128
int taskq_maxbuckets = TASKQ_MAXBUCKETS;

/*
 * When a bucket has no available entries another buckets are tried.
 * taskq_search_depth parameter limits the amount of buckets that we search
 * before failing. This is mostly useful in systems with many CPUs where we may
 * spend too much time scanning busy buckets.
 */
#define	TASKQ_SEARCH_DEPTH 4
int taskq_search_depth = TASKQ_SEARCH_DEPTH;

/*
 * Hashing function: mix various bits of x. May be pretty much anything.
 */
#define	TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))

/*
 * We do not create any new threads when the system is low on memory and start
 * throttling memory allocations. The following macro tries to estimate such
 * condition.
 */
#define	ENOUGH_MEMORY() (freemem > throttlefree)

/*
 * Static functions.
 */
static taskq_t	*taskq_create_common(const char *, int, int, pri_t, int,
    int, uint_t);
static void taskq_thread(void *);
static void taskq_d_thread(taskq_ent_t *);
static void taskq_bucket_extend(void *);
static int  taskq_constructor(void *, void *, int);
static void taskq_destructor(void *, void *);
static int  taskq_ent_constructor(void *, void *, int);
static void taskq_ent_destructor(void *, void *);
static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
static void taskq_ent_free(taskq_t *, taskq_ent_t *);
static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
    void *);

/*
 * Task queues kstats.
 */
struct taskq_kstat {
	kstat_named_t	tq_tasks;
	kstat_named_t	tq_executed;
	kstat_named_t	tq_maxtasks;
	kstat_named_t	tq_totaltime;
	kstat_named_t	tq_nalloc;
	kstat_named_t	tq_nactive;
	kstat_named_t	tq_pri;
	kstat_named_t	tq_nthreads;
} taskq_kstat = {
	{ "tasks",		KSTAT_DATA_UINT64 },
	{ "executed",		KSTAT_DATA_UINT64 },
	{ "maxtasks",		KSTAT_DATA_UINT64 },
	{ "totaltime",		KSTAT_DATA_UINT64 },
	{ "nactive",		KSTAT_DATA_UINT64 },
	{ "nalloc",		KSTAT_DATA_UINT64 },
	{ "priority",		KSTAT_DATA_UINT64 },
	{ "threads",		KSTAT_DATA_UINT64 },
};

struct taskq_d_kstat {
	kstat_named_t	tqd_pri;
	kstat_named_t	tqd_btasks;
	kstat_named_t	tqd_bexecuted;
	kstat_named_t	tqd_bmaxtasks;
	kstat_named_t	tqd_bnalloc;
	kstat_named_t	tqd_bnactive;
	kstat_named_t	tqd_btotaltime;
	kstat_named_t	tqd_hits;
	kstat_named_t	tqd_misses;
	kstat_named_t	tqd_overflows;
	kstat_named_t	tqd_tcreates;
	kstat_named_t	tqd_tdeaths;
	kstat_named_t	tqd_maxthreads;
	kstat_named_t	tqd_nomem;
	kstat_named_t	tqd_disptcreates;
	kstat_named_t	tqd_totaltime;
	kstat_named_t	tqd_nalloc;
	kstat_named_t	tqd_nfree;
} taskq_d_kstat = {
	{ "priority",		KSTAT_DATA_UINT64 },
	{ "btasks",		KSTAT_DATA_UINT64 },
	{ "bexecuted",		KSTAT_DATA_UINT64 },
	{ "bmaxtasks",		KSTAT_DATA_UINT64 },
	{ "bnalloc",		KSTAT_DATA_UINT64 },
	{ "bnactive",		KSTAT_DATA_UINT64 },
	{ "btotaltime",		KSTAT_DATA_UINT64 },
	{ "hits",		KSTAT_DATA_UINT64 },
	{ "misses",		KSTAT_DATA_UINT64 },
	{ "overflows",		KSTAT_DATA_UINT64 },
	{ "tcreates",		KSTAT_DATA_UINT64 },
	{ "tdeaths",		KSTAT_DATA_UINT64 },
	{ "maxthreads",		KSTAT_DATA_UINT64 },
	{ "nomem",		KSTAT_DATA_UINT64 },
	{ "disptcreates",	KSTAT_DATA_UINT64 },
	{ "totaltime",		KSTAT_DATA_UINT64 },
	{ "nalloc",		KSTAT_DATA_UINT64 },
	{ "nfree",		KSTAT_DATA_UINT64 },
};

static kmutex_t taskq_kstat_lock;
static kmutex_t taskq_d_kstat_lock;
static int taskq_kstat_update(kstat_t *, int);
static int taskq_d_kstat_update(kstat_t *, int);

/*
 * State for THREAD_CPU_PCT management
 */
typedef struct taskq_cpupct_ent {
	list_node_t	tp_link;
	taskq_t		*tp_taskq;
} taskq_cpupct_ent_t;

static kmutex_t taskq_cpupct_lock;
static list_t taskq_cpupct_list;
static int taskq_cpupct_ncpus_online;

/*
 * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
 */
#define	TASKQ_STATISTIC 1

#if TASKQ_STATISTIC
#define	TQ_STAT(b, x)	b->tqbucket_stat.x++
#else
#define	TQ_STAT(b, x)
#endif

/*
 * Random fault injection.
 */
uint_t taskq_random;
uint_t taskq_dmtbf = UINT_MAX;    /* mean time between injected failures */
uint_t taskq_smtbf = UINT_MAX;    /* mean time between injected failures */

/*
 * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
 *
 * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
 * they could prepopulate the cache and make sure that they do not use more
 * then minalloc entries.  So, fault injection in this case insures that
 * either TASKQ_PREPOPULATE is not set or there are more entries allocated
 * than is specified by minalloc.  TQ_NOALLOC dispatches are always allowed
 * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
 * dispatches.
 */
#ifdef DEBUG
#define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)		\
	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
	if ((flag & TQ_NOSLEEP) &&				\
	    taskq_random < 1771875 / taskq_dmtbf) {		\
		return (NULL);					\
	}

#define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)		\
	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
	if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) &&		\
	    (!(tq->tq_flags & TASKQ_PREPOPULATE) ||		\
	    (tq->tq_nalloc > tq->tq_minalloc)) &&		\
	    (taskq_random < (1771875 / taskq_smtbf))) {		\
		mutex_exit(&tq->tq_lock);			\
		return (NULL);					\
	}
#else
#define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
#define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
#endif

#define	IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) &&	\
	((l).tqent_prev == &(l)))

/*
 * Append `tqe' in the end of the doubly-linked list denoted by l.
 */
#define	TQ_APPEND(l, tqe) {					\
	tqe->tqent_next = &l;					\
	tqe->tqent_prev = l.tqent_prev;				\
	tqe->tqent_next->tqent_prev = tqe;			\
	tqe->tqent_prev->tqent_next = tqe;			\
}

/*
 * Schedule a task specified by func and arg into the task queue entry tqe.
 */
#define	TQ_ENQUEUE(tq, tqe, func, arg) {			\
	ASSERT(MUTEX_HELD(&tq->tq_lock));			\
	TQ_APPEND(tq->tq_task, tqe);				\
	tqe->tqent_func = (func);				\
	tqe->tqent_arg = (arg);					\
	tq->tq_tasks++;						\
	if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks)	\
		tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed;	\
	cv_signal(&tq->tq_dispatch_cv);				\
	DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
}

/*
 * Do-nothing task which may be used to prepopulate thread caches.
 */
/*ARGSUSED*/
void
nulltask(void *unused)
{
}


/*ARGSUSED*/
static int
taskq_constructor(void *buf, void *cdrarg, int kmflags)
{
	taskq_t *tq = buf;

	bzero(tq, sizeof (taskq_t));

	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);

	tq->tq_task.tqent_next = &tq->tq_task;
	tq->tq_task.tqent_prev = &tq->tq_task;

	return (0);
}

/*ARGSUSED*/
static void
taskq_destructor(void *buf, void *cdrarg)
{
	taskq_t *tq = buf;

	ASSERT(tq->tq_nthreads == 0);
	ASSERT(tq->tq_buckets == NULL);
	ASSERT(tq->tq_tcreates == 0);
	ASSERT(tq->tq_tdeaths == 0);

	mutex_destroy(&tq->tq_lock);
	rw_destroy(&tq->tq_threadlock);
	cv_destroy(&tq->tq_dispatch_cv);
	cv_destroy(&tq->tq_exit_cv);
	cv_destroy(&tq->tq_wait_cv);
}

/*ARGSUSED*/
static int
taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
{
	taskq_ent_t *tqe = buf;

	tqe->tqent_thread = NULL;
	cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);

	return (0);
}

/*ARGSUSED*/
static void
taskq_ent_destructor(void *buf, void *cdrarg)
{
	taskq_ent_t *tqe = buf;

	ASSERT(tqe->tqent_thread == NULL);
	cv_destroy(&tqe->tqent_cv);
}

void
taskq_init(void)
{
	taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
	    sizeof (taskq_ent_t), 0, taskq_ent_constructor,
	    taskq_ent_destructor, NULL, NULL, NULL, 0);
	taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
	    0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
	taskq_id_arena = vmem_create("taskq_id_arena",
	    (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0,
	    VM_SLEEP | VMC_IDENTIFIER);

	list_create(&taskq_cpupct_list, sizeof (taskq_cpupct_ent_t),
	    offsetof(taskq_cpupct_ent_t, tp_link));
}

/*ARGSUSED*/
static int
taskq_cpu_setup(cpu_setup_t what, int id, void *arg)
{
	taskq_cpupct_ent_t *tpp;
	int cpus_online = ncpus_online;

	/* offlines are called *before* the cpu is offlined. */
	if (what == CPU_OFF)
		cpus_online--;
	if (cpus_online < 1)
		cpus_online = 1;

	mutex_enter(&taskq_cpupct_lock);
	if (cpus_online == taskq_cpupct_ncpus_online) {
		mutex_exit(&taskq_cpupct_lock);
		return (0);
	}

	for (tpp = list_head(&taskq_cpupct_list); tpp != NULL;
	    tpp = list_next(&taskq_cpupct_list, tpp)) {
		taskq_t *tq = tpp->tp_taskq;
		int newtarget;

		mutex_enter(&tq->tq_lock);
		newtarget =
		    TASKQ_THREADS_PCT(cpus_online, tq->tq_threads_ncpus_pct);
		ASSERT3S(newtarget, <=, tq->tq_nthreads_max);
		if (newtarget != tq->tq_nthreads_target) {
			/* The taskq must not be exiting */
			ASSERT3S(tq->tq_nthreads_target, !=, 0);
			tq->tq_flags |= TASKQ_CHANGING;
			tq->tq_nthreads_target = newtarget;
			cv_broadcast(&tq->tq_dispatch_cv);
			cv_broadcast(&tq->tq_exit_cv);
		}
		mutex_exit(&tq->tq_lock);
	}

	taskq_cpupct_ncpus_online = cpus_online;
	mutex_exit(&taskq_cpupct_lock);
	return (0);
}

void
taskq_mp_init(void)
{
	mutex_enter(&cpu_lock);
	register_cpu_setup_func(taskq_cpu_setup, NULL);
	(void) taskq_cpu_setup(CPU_ON, 0, NULL);
	mutex_exit(&cpu_lock);
}

/*
 * Create global system dynamic task queue.
 */
void
system_taskq_init(void)
{
	system_taskq = taskq_create_common("system_taskq", 0,
	    system_taskq_size * max_ncpus, minclsyspri, 4, 512,
	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
}

/*
 * taskq_ent_alloc()
 *
 * Allocates a new taskq_ent_t structure either from the free list or from the
 * cache. Returns NULL if it can't be allocated.
 *
 * Assumes: tq->tq_lock is held.
 */
static taskq_ent_t *
taskq_ent_alloc(taskq_t *tq, int flags)
{
	int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;

	taskq_ent_t *tqe;

	ASSERT(MUTEX_HELD(&tq->tq_lock));

	/*
	 * TQ_NOALLOC allocations are allowed to use the freelist, even if
	 * we are below tq_minalloc.
	 */
	if ((tqe = tq->tq_freelist) != NULL &&
	    ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
		tq->tq_freelist = tqe->tqent_next;
	} else {
		if (flags & TQ_NOALLOC)
			return (NULL);

		mutex_exit(&tq->tq_lock);
		if (tq->tq_nalloc >= tq->tq_maxalloc) {
			if (kmflags & KM_NOSLEEP) {
				mutex_enter(&tq->tq_lock);
				return (NULL);
			}
			/*
			 * We don't want to exceed tq_maxalloc, but we can't
			 * wait for other tasks to complete (and thus free up
			 * task structures) without risking deadlock with
			 * the caller.  So, we just delay for one second
			 * to throttle the allocation rate.
			 */
			delay(hz);
		}
		tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
		mutex_enter(&tq->tq_lock);
		if (tqe != NULL)
			tq->tq_nalloc++;
	}
	return (tqe);
}

/*
 * taskq_ent_free()
 *
 * Free taskq_ent_t structure by either putting it on the free list or freeing
 * it to the cache.
 *
 * Assumes: tq->tq_lock is held.
 */
static void
taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
{
	ASSERT(MUTEX_HELD(&tq->tq_lock));

	if (tq->tq_nalloc <= tq->tq_minalloc) {
		tqe->tqent_next = tq->tq_freelist;
		tq->tq_freelist = tqe;
	} else {
		tq->tq_nalloc--;
		mutex_exit(&tq->tq_lock);
		kmem_cache_free(taskq_ent_cache, tqe);
		mutex_enter(&tq->tq_lock);
	}
}

/*
 * Dispatch a task "func(arg)" to a free entry of bucket b.
 *
 * Assumes: no bucket locks is held.
 *
 * Returns: a pointer to an entry if dispatch was successful.
 *	    NULL if there are no free entries or if the bucket is suspended.
 */
static taskq_ent_t *
taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
{
	taskq_ent_t *tqe;

	ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
	ASSERT(func != NULL);

	mutex_enter(&b->tqbucket_lock);

	ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist));
	ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist));

	/*
	 * Get en entry from the freelist if there is one.
	 * Schedule task into the entry.
	 */
	if ((b->tqbucket_nfree != 0) &&
	    !(b->tqbucket_flags & TQBUCKET_SUSPEND)) {
		tqe = b->tqbucket_freelist.tqent_prev;

		ASSERT(tqe != &b->tqbucket_freelist);
		ASSERT(tqe->tqent_thread != NULL);

		tqe->tqent_prev->tqent_next = tqe->tqent_next;
		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
		b->tqbucket_nalloc++;
		b->tqbucket_nfree--;
		tqe->tqent_func = func;
		tqe->tqent_arg = arg;
		TQ_STAT(b, tqs_hits);
		cv_signal(&tqe->tqent_cv);
		DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
		    taskq_ent_t *, tqe);
	} else {
		tqe = NULL;
		TQ_STAT(b, tqs_misses);
	}
	mutex_exit(&b->tqbucket_lock);
	return (tqe);
}

/*
 * Dispatch a task.
 *
 * Assumes: func != NULL
 *
 * Returns: NULL if dispatch failed.
 *	    non-NULL if task dispatched successfully.
 *	    Actual return value is the pointer to taskq entry that was used to
 *	    dispatch a task. This is useful for debugging.
 */
/* ARGSUSED */
taskqid_t
taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
{
	taskq_bucket_t *bucket = NULL;	/* Which bucket needs extension */
	taskq_ent_t *tqe = NULL;
	taskq_ent_t *tqe1;
	uint_t bsize;

	ASSERT(tq != NULL);
	ASSERT(func != NULL);

	if (!(tq->tq_flags & TASKQ_DYNAMIC)) {
		/*
		 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
		 */
		ASSERT(! (flags & TQ_NOQUEUE));
		/*
		 * Enqueue the task to the underlying queue.
		 */
		mutex_enter(&tq->tq_lock);

		TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);

		if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
			mutex_exit(&tq->tq_lock);
			return (NULL);
		}
		TQ_ENQUEUE(tq, tqe, func, arg);
		mutex_exit(&tq->tq_lock);
		return ((taskqid_t)tqe);
	}

	/*
	 * Dynamic taskq dispatching.
	 */
	ASSERT(!(flags & TQ_NOALLOC));
	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags);

	bsize = tq->tq_nbuckets;

	if (bsize == 1) {
		/*
		 * In a single-CPU case there is only one bucket, so get
		 * entry directly from there.
		 */
		if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg))
		    != NULL)
			return ((taskqid_t)tqe);	/* Fastpath */
		bucket = tq->tq_buckets;
	} else {
		int loopcount;
		taskq_bucket_t *b;
		uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3;

		h = TQ_HASH(h);

		/*
		 * The 'bucket' points to the original bucket that we hit. If we
		 * can't allocate from it, we search other buckets, but only
		 * extend this one.
		 */
		b = &tq->tq_buckets[h & (bsize - 1)];
		ASSERT(b->tqbucket_taskq == tq);	/* Sanity check */

		/*
		 * Do a quick check before grabbing the lock. If the bucket does
		 * not have free entries now, chances are very small that it
		 * will after we take the lock, so we just skip it.
		 */
		if (b->tqbucket_nfree != 0) {
			if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL)
				return ((taskqid_t)tqe);	/* Fastpath */
		} else {
			TQ_STAT(b, tqs_misses);
		}

		bucket = b;
		loopcount = MIN(taskq_search_depth, bsize);
		/*
		 * If bucket dispatch failed, search loopcount number of buckets
		 * before we give up and fail.
		 */
		do {
			b = &tq->tq_buckets[++h & (bsize - 1)];
			ASSERT(b->tqbucket_taskq == tq);  /* Sanity check */
			loopcount--;

			if (b->tqbucket_nfree != 0) {
				tqe = taskq_bucket_dispatch(b, func, arg);
			} else {
				TQ_STAT(b, tqs_misses);
			}
		} while ((tqe == NULL) && (loopcount > 0));
	}

	/*
	 * At this point we either scheduled a task and (tqe != NULL) or failed
	 * (tqe == NULL). Try to recover from fails.
	 */

	/*
	 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
	 */
	if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) {
		/*
		 * taskq_bucket_extend() may fail to do anything, but this is
		 * fine - we deal with it later. If the bucket was successfully
		 * extended, there is a good chance that taskq_bucket_dispatch()
		 * will get this new entry, unless someone is racing with us and
		 * stealing the new entry from under our nose.
		 * taskq_bucket_extend() may sleep.
		 */
		taskq_bucket_extend(bucket);
		TQ_STAT(bucket, tqs_disptcreates);
		if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL)
			return ((taskqid_t)tqe);
	}

	ASSERT(bucket != NULL);
	/*
	 * Since there are not enough free entries in the bucket, extend it
	 * in the background using backing queue.
	 */
	mutex_enter(&tq->tq_lock);
	if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) {
		TQ_ENQUEUE(tq, tqe1, taskq_bucket_extend,
		    bucket);
	} else {
		TQ_STAT(bucket, tqs_nomem);
	}

	/*
	 * Dispatch failed and we can't find an entry to schedule a task.
	 * Revert to the backing queue unless TQ_NOQUEUE was asked.
	 */
	if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) {
		if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) {
			TQ_ENQUEUE(tq, tqe, func, arg);
		} else {
			TQ_STAT(bucket, tqs_nomem);
		}
	}
	mutex_exit(&tq->tq_lock);

	return ((taskqid_t)tqe);
}

/*
 * Wait for all pending tasks to complete.
 * Calling taskq_wait from a task will cause deadlock.
 */
void
taskq_wait(taskq_t *tq)
{
	ASSERT(tq != curthread->t_taskq);

	mutex_enter(&tq->tq_lock);
	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
	mutex_exit(&tq->tq_lock);

	if (tq->tq_flags & TASKQ_DYNAMIC) {
		taskq_bucket_t *b = tq->tq_buckets;
		int bid = 0;
		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
			mutex_enter(&b->tqbucket_lock);
			while (b->tqbucket_nalloc > 0)
				cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
			mutex_exit(&b->tqbucket_lock);
		}
	}
}

/*
 * Suspend execution of tasks.
 *
 * Tasks in the queue part will be suspended immediately upon return from this
 * function. Pending tasks in the dynamic part will continue to execute, but all
 * new tasks will  be suspended.
 */
void
taskq_suspend(taskq_t *tq)
{
	rw_enter(&tq->tq_threadlock, RW_WRITER);

	if (tq->tq_flags & TASKQ_DYNAMIC) {
		taskq_bucket_t *b = tq->tq_buckets;
		int bid = 0;
		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
			mutex_enter(&b->tqbucket_lock);
			b->tqbucket_flags |= TQBUCKET_SUSPEND;
			mutex_exit(&b->tqbucket_lock);
		}
	}
	/*
	 * Mark task queue as being suspended. Needed for taskq_suspended().
	 */
	mutex_enter(&tq->tq_lock);
	ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
	tq->tq_flags |= TASKQ_SUSPENDED;
	mutex_exit(&tq->tq_lock);
}

/*
 * returns: 1 if tq is suspended, 0 otherwise.
 */
int
taskq_suspended(taskq_t *tq)
{
	return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
}

/*
 * Resume taskq execution.
 */
void
taskq_resume(taskq_t *tq)
{
	ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));

	if (tq->tq_flags & TASKQ_DYNAMIC) {
		taskq_bucket_t *b = tq->tq_buckets;
		int bid = 0;
		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
			mutex_enter(&b->tqbucket_lock);
			b->tqbucket_flags &= ~TQBUCKET_SUSPEND;
			mutex_exit(&b->tqbucket_lock);
		}
	}
	mutex_enter(&tq->tq_lock);
	ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
	tq->tq_flags &= ~TASKQ_SUSPENDED;
	mutex_exit(&tq->tq_lock);

	rw_exit(&tq->tq_threadlock);
}

int
taskq_member(taskq_t *tq, kthread_t *thread)
{
	return (thread->t_taskq == tq);
}

static void
taskq_thread_create(taskq_t *tq)
{
	kthread_t *t;

	ASSERT(MUTEX_HELD(&tq->tq_lock));
	ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED));

	tq->tq_flags |= TASKQ_THREAD_CREATED;
	tq->tq_active++;
	t = thread_create(NULL, 0, taskq_thread, tq, 0, &p0, TS_RUN,
	    tq->tq_pri);
	t->t_taskq = tq;
}

/*
 * Common "sleep taskq thread" function, which handles CPR stuff, as well
 * as giving a nice common point for debuggers to find inactive threads.
 */
static clock_t
taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv,
    callb_cpr_t *cprinfo, clock_t timeout)
{
	clock_t ret = 0;

	if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
		CALLB_CPR_SAFE_BEGIN(cprinfo);
	}
	if (timeout < 0)
		cv_wait(cv, mx);
	else
		ret = cv_timedwait(cv, mx, lbolt + timeout);

	if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
		CALLB_CPR_SAFE_END(cprinfo, mx);
	}

	return (ret);
}

/*
 * Worker thread for processing task queue.
 */
static void
taskq_thread(void *arg)
{
	int thread_id;

	taskq_t *tq = arg;
	taskq_ent_t *tqe;
	callb_cpr_t cprinfo;
	hrtime_t start, end;

	if (tq->tq_flags & TASKQ_CPR_SAFE) {
		CALLB_CPR_INIT_SAFE(curthread, tq->tq_name);
	} else {
		CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr,
		    tq->tq_name);
	}
	mutex_enter(&tq->tq_lock);
	thread_id = ++tq->tq_nthreads;
	ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED);
	tq->tq_flags &= ~TASKQ_THREAD_CREATED;

	VERIFY3S(thread_id, <=, tq->tq_nthreads_max);

	if (tq->tq_nthreads_max == 1)
		tq->tq_thread = curthread;
	else
		tq->tq_threadlist[thread_id - 1] = curthread;

	for (;;) {
		if (tq->tq_flags & TASKQ_CHANGING) {
			/* we're done; clear the CHANGING flag */
			if (tq->tq_nthreads == tq->tq_nthreads_target) {
				tq->tq_flags &= ~TASKQ_CHANGING;
				continue;
			}
			/* We're low on threads and none have been created */
			if (tq->tq_nthreads < tq->tq_nthreads_target &&
			    !(tq->tq_flags & TASKQ_THREAD_CREATED)) {
				taskq_thread_create(tq);
				continue;
			}
			/* We're no longer needed */
			if (thread_id > tq->tq_nthreads_target) {
				/*
				 * To preserve the one-to-one mapping between
				 * thread_id and thread, we must exit from
				 * highest thread ID to least.
				 *
				 * However, if everyone is exiting, the order
				 * doesn't matter, so just exit immediately.
				 * (this is safe, since you must wait for
				 * nthreads to reach 0 after setting
				 * tq_nthreads_target to 0)
				 */
				if (thread_id == tq->tq_nthreads ||
				    tq->tq_nthreads_target == 0)
					break;

				/* Wait for higher thread_ids to exit */
				(void) taskq_thread_wait(tq, &tq->tq_lock,
				    &tq->tq_exit_cv, &cprinfo, -1);
				continue;
			}
		}
		if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
			if (--tq->tq_active == 0)
				cv_broadcast(&tq->tq_wait_cv);
			(void) taskq_thread_wait(tq, &tq->tq_lock,
			    &tq->tq_dispatch_cv, &cprinfo, -1);
			tq->tq_active++;
			continue;
		}
		tqe->tqent_prev->tqent_next = tqe->tqent_next;
		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
		mutex_exit(&tq->tq_lock);

		rw_enter(&tq->tq_threadlock, RW_READER);
		start = gethrtime();
		DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
		    taskq_ent_t *, tqe);
		tqe->tqent_func(tqe->tqent_arg);
		DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
		    taskq_ent_t *, tqe);
		end = gethrtime();
		rw_exit(&tq->tq_threadlock);

		mutex_enter(&tq->tq_lock);
		tq->tq_totaltime += end - start;
		tq->tq_executed++;

		taskq_ent_free(tq, tqe);
	}

	if (tq->tq_nthreads_max == 1)
		tq->tq_thread = NULL;
	else
		tq->tq_threadlist[thread_id - 1] = NULL;

	ASSERT(tq->tq_nthreads > 0);
	if (--tq->tq_nthreads == 0)
		cv_broadcast(&tq->tq_wait_cv);

	/* let the other threads which need to exit know we're done */
	cv_broadcast(&tq->tq_exit_cv);

	/* We're exiting, and therefore no longer active */
	tq->tq_active--;

	ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
	CALLB_CPR_EXIT(&cprinfo);
	thread_exit();
}

/*
 * Worker per-entry thread for dynamic dispatches.
 */
static void
taskq_d_thread(taskq_ent_t *tqe)
{
	taskq_bucket_t	*bucket = tqe->tqent_bucket;
	taskq_t		*tq = bucket->tqbucket_taskq;
	kmutex_t	*lock = &bucket->tqbucket_lock;
	kcondvar_t	*cv = &tqe->tqent_cv;
	callb_cpr_t	cprinfo;
	clock_t		w;

	CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name);

	mutex_enter(lock);

	for (;;) {
		/*
		 * If a task is scheduled (func != NULL), execute it, otherwise
		 * sleep, waiting for a job.
		 */
		if (tqe->tqent_func != NULL) {
			hrtime_t	start;
			hrtime_t	end;

			ASSERT(bucket->tqbucket_nalloc > 0);

			/*
			 * It is possible to free the entry right away before
			 * actually executing the task so that subsequent
			 * dispatches may immediately reuse it. But this,
			 * effectively, creates a two-length queue in the entry
			 * and may lead to a deadlock if the execution of the
			 * current task depends on the execution of the next
			 * scheduled task. So, we keep the entry busy until the
			 * task is processed.
			 */

			mutex_exit(lock);
			start = gethrtime();
			DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq,
			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
			tqe->tqent_func(tqe->tqent_arg);
			DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq,
			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
			end = gethrtime();
			mutex_enter(lock);
			bucket->tqbucket_totaltime += end - start;

			/*
			 * Return the entry to the bucket free list.
			 */
			tqe->tqent_func = NULL;
			TQ_APPEND(bucket->tqbucket_freelist, tqe);
			bucket->tqbucket_nalloc--;
			bucket->tqbucket_nfree++;
			ASSERT(!IS_EMPTY(bucket->tqbucket_freelist));
			/*
			 * taskq_wait() waits for nalloc to drop to zero on
			 * tqbucket_cv.
			 */
			cv_signal(&bucket->tqbucket_cv);
		}

		/*
		 * At this point the entry must be in the bucket free list -
		 * either because it was there initially or because it just
		 * finished executing a task and put itself on the free list.
		 */
		ASSERT(bucket->tqbucket_nfree > 0);
		/*
		 * Go to sleep unless we are closing.
		 * If a thread is sleeping too long, it dies.
		 */
		if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) {
			w = taskq_thread_wait(tq, lock, cv,
			    &cprinfo, taskq_thread_timeout * hz);
		}

		/*
		 * At this point we may be in two different states:
		 *
		 * (1) tqent_func is set which means that a new task is
		 *	dispatched and we need to execute it.
		 *
		 * (2) Thread is sleeping for too long or we are closing. In
		 *	both cases destroy the thread and the entry.
		 */

		/* If func is NULL we should be on the freelist. */
		ASSERT((tqe->tqent_func != NULL) ||
		    (bucket->tqbucket_nfree > 0));
		/* If func is non-NULL we should be allocated */
		ASSERT((tqe->tqent_func == NULL) ||
		    (bucket->tqbucket_nalloc > 0));

		/* Check freelist consistency */
		ASSERT((bucket->tqbucket_nfree > 0) ||
		    IS_EMPTY(bucket->tqbucket_freelist));
		ASSERT((bucket->tqbucket_nfree == 0) ||
		    !IS_EMPTY(bucket->tqbucket_freelist));

		if ((tqe->tqent_func == NULL) &&
		    ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) {
			/*
			 * This thread is sleeping for too long or we are
			 * closing - time to die.
			 * Thread creation/destruction happens rarely,
			 * so grabbing the lock is not a big performance issue.
			 * The bucket lock is dropped by CALLB_CPR_EXIT().
			 */

			/* Remove the entry from the free list. */
			tqe->tqent_prev->tqent_next = tqe->tqent_next;
			tqe->tqent_next->tqent_prev = tqe->tqent_prev;
			ASSERT(bucket->tqbucket_nfree > 0);
			bucket->tqbucket_nfree--;

			TQ_STAT(bucket, tqs_tdeaths);
			cv_signal(&bucket->tqbucket_cv);
			tqe->tqent_thread = NULL;
			mutex_enter(&tq->tq_lock);
			tq->tq_tdeaths++;
			mutex_exit(&tq->tq_lock);
			CALLB_CPR_EXIT(&cprinfo);
			kmem_cache_free(taskq_ent_cache, tqe);
			thread_exit();
		}
	}
}


/*
 * Taskq creation. May sleep for memory.
 * Always use automatically generated instances to avoid kstat name space
 * collisions.
 */

taskq_t *
taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
    int maxalloc, uint_t flags)
{
	return taskq_create_common(name, 0, nthreads, pri, minalloc,
	    maxalloc, flags | TASKQ_NOINSTANCE);
}

/*
 * Create an instance of task queue. It is legal to create task queues with the
 * same name and different instances.
 *
 * taskq_create_instance is used by ddi_taskq_create() where it gets the
 * instance from ddi_get_instance(). In some cases the instance is not
 * initialized and is set to -1. This case is handled as if no instance was
 * passed at all.
 */
taskq_t *
taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri,
    int minalloc, int maxalloc, uint_t flags)
{
	ASSERT((instance >= 0) || (instance == -1));

	if (instance < 0) {
		flags |= TASKQ_NOINSTANCE;
	}

	return (taskq_create_common(name, instance, nthreads,
	    pri, minalloc, maxalloc, flags));
}

static taskq_t *
taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
    int minalloc, int maxalloc, uint_t flags)
{
	taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
	uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
	uint_t bsize;	/* # of buckets - always power of 2 */
	int max_nthreads;

	/*
	 * TASKQ_DYNAMIC is incompatible with TASKQ_CPR_SAFE and
	 * TASKQ_THREADS_CPU_PCT.
	 */
	ASSERT(!(flags & TASKQ_DYNAMIC) ||
	    !(flags & (TASKQ_CPR_SAFE | TASKQ_THREADS_CPU_PCT)));
	/* TASKQ_CPR_SAFE is incompatible with TASKQ_THREADS_CPU_PCT */

	ASSERT(!(flags & TASKQ_CPR_SAFE) || !(flags & TASKQ_THREADS_CPU_PCT));

	bsize = 1 << (highbit(ncpus) - 1);
	ASSERT(bsize >= 1);
	bsize = MIN(bsize, taskq_maxbuckets);

	if (flags & TASKQ_DYNAMIC) {
		ASSERT3S(nthreads, >=, 1);
		tq->tq_maxsize = nthreads;

		/* For dynamic task queues use just one backup thread */
		nthreads = max_nthreads = 1;

	} else if (!(flags & TASKQ_THREADS_CPU_PCT)) {
		ASSERT3S(nthreads, >=, 1);
		max_nthreads = nthreads;
	} else {
		uint_t pct;
		ASSERT3S(nthreads, >=, 0);
		pct = nthreads;

		if (pct > taskq_cpupct_max_percent)
			pct = taskq_cpupct_max_percent;

		tq->tq_threads_ncpus_pct = pct;
		nthreads = TASKQ_THREADS_PCT(ncpus_online, pct);
		max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct);
	}

	if (max_nthreads < taskq_minimum_nthreads_max)
		max_nthreads = taskq_minimum_nthreads_max;

	/*
	 * Make sure the name is 0-terminated, and conforms to the rules for
	 * C indentifiers
	 */
	(void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
	strident_canon(tq->tq_name, TASKQ_NAMELEN + 1);

	tq->tq_flags = flags | TASKQ_CHANGING;
	tq->tq_active = 0;
	tq->tq_instance = instance;
	tq->tq_nthreads_target = nthreads;
	tq->tq_nthreads_max = max_nthreads;
	tq->tq_minalloc = minalloc;
	tq->tq_maxalloc = maxalloc;
	tq->tq_nbuckets = bsize;
	tq->tq_pri = pri;

	if (max_nthreads > 1)
		tq->tq_threadlist = kmem_alloc(
		    sizeof (kthread_t *) * max_nthreads, KM_SLEEP);

	/* Add the taskq to the list of CPU_PCT taskqs */
	if (flags & TASKQ_THREADS_CPU_PCT) {
		taskq_cpupct_ent_t *tpp = kmem_zalloc(sizeof (*tpp), KM_SLEEP);

		list_link_init(&tpp->tp_link);
		tpp->tp_taskq = tq;

		mutex_enter(&taskq_cpupct_lock);
		list_insert_tail(&taskq_cpupct_list, tpp);
		/* reset our target, to avoid race conditions */
		tq->tq_nthreads_target = TASKQ_THREADS_PCT(ncpus_online,
		    tq->tq_threads_ncpus_pct);
		mutex_exit(&taskq_cpupct_lock);
	}

	mutex_enter(&tq->tq_lock);
	if (flags & TASKQ_PREPOPULATE) {
		while (minalloc-- > 0)
			taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
	}

	/* create the first thread; if more are needed, it'll create them */
	taskq_thread_create(tq);
	mutex_exit(&tq->tq_lock);

	if (flags & TASKQ_DYNAMIC) {
		taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) *
		    bsize, KM_SLEEP);
		int b_id;

		tq->tq_buckets = bucket;

		/* Initialize each bucket */
		for (b_id = 0; b_id < bsize; b_id++, bucket++) {
			mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT,
			    NULL);
			cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL);
			bucket->tqbucket_taskq = tq;
			bucket->tqbucket_freelist.tqent_next =
			    bucket->tqbucket_freelist.tqent_prev =
			    &bucket->tqbucket_freelist;
			if (flags & TASKQ_PREPOPULATE)
				taskq_bucket_extend(bucket);
		}
	}

	/*
	 * Install kstats.
	 * We have two cases:
	 *   1) Instance is provided to taskq_create_instance(). In this case it
	 * 	should be >= 0 and we use it.
	 *
	 *   2) Instance is not provided and is automatically generated
	 */
	if (flags & TASKQ_NOINSTANCE) {
		instance = tq->tq_instance =
		    (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP);
	}

	if (flags & TASKQ_DYNAMIC) {
		if ((tq->tq_kstat = kstat_create("unix", instance,
		    tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED,
		    sizeof (taskq_d_kstat) / sizeof (kstat_named_t),
		    KSTAT_FLAG_VIRTUAL)) != NULL) {
			tq->tq_kstat->ks_lock = &taskq_d_kstat_lock;
			tq->tq_kstat->ks_data = &taskq_d_kstat;
			tq->tq_kstat->ks_update = taskq_d_kstat_update;
			tq->tq_kstat->ks_private = tq;
			kstat_install(tq->tq_kstat);
		}
	} else {
		if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name,
		    "taskq", KSTAT_TYPE_NAMED,
		    sizeof (taskq_kstat) / sizeof (kstat_named_t),
		    KSTAT_FLAG_VIRTUAL)) != NULL) {
			tq->tq_kstat->ks_lock = &taskq_kstat_lock;
			tq->tq_kstat->ks_data = &taskq_kstat;
			tq->tq_kstat->ks_update = taskq_kstat_update;
			tq->tq_kstat->ks_private = tq;
			kstat_install(tq->tq_kstat);
		}
	}

	return (tq);
}

/*
 * taskq_destroy().
 *
 * Assumes: by the time taskq_destroy is called no one will use this task queue
 * in any way and no one will try to dispatch entries in it.
 */
void
taskq_destroy(taskq_t *tq)
{
	taskq_bucket_t *b = tq->tq_buckets;
	int bid = 0;

	ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));

	/*
	 * Destroy kstats.
	 */
	if (tq->tq_kstat != NULL) {
		kstat_delete(tq->tq_kstat);
		tq->tq_kstat = NULL;
	}

	/*
	 * Destroy instance if needed.
	 */
	if (tq->tq_flags & TASKQ_NOINSTANCE) {
		vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance),
		    1);
		tq->tq_instance = 0;
	}

	/*
	 * Unregister from the cpupct list.
	 */
	if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
		taskq_cpupct_ent_t *tpp;

		mutex_enter(&taskq_cpupct_lock);
		for (tpp = list_head(&taskq_cpupct_list); tpp != NULL;
		    tpp = list_next(&taskq_cpupct_list, tpp)) {
			if (tpp->tp_taskq == tq)
				break;
		}
		ASSERT3P(tpp, !=, NULL);

		list_remove(&taskq_cpupct_list, tpp);
		mutex_exit(&taskq_cpupct_lock);

		kmem_free(tpp, sizeof (*tpp));
	}

	/*
	 * Wait for any pending entries to complete.
	 */
	taskq_wait(tq);

	mutex_enter(&tq->tq_lock);
	ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
	    (tq->tq_active == 0));

	/* notify all the threads that they need to exit */
	tq->tq_nthreads_target = 0;

	tq->tq_flags |= TASKQ_CHANGING;
	cv_broadcast(&tq->tq_dispatch_cv);
	cv_broadcast(&tq->tq_exit_cv);

	while (tq->tq_nthreads != 0)
		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);

	if (tq->tq_nthreads_max != 1)
		kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
		    tq->tq_nthreads_max);

	tq->tq_minalloc = 0;
	while (tq->tq_nalloc != 0)
		taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));

	mutex_exit(&tq->tq_lock);

	/*
	 * Mark each bucket as closing and wakeup all sleeping threads.
	 */
	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
		taskq_ent_t *tqe;

		mutex_enter(&b->tqbucket_lock);

		b->tqbucket_flags |= TQBUCKET_CLOSE;
		/* Wakeup all sleeping threads */

		for (tqe = b->tqbucket_freelist.tqent_next;
		    tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
			cv_signal(&tqe->tqent_cv);

		ASSERT(b->tqbucket_nalloc == 0);

		/*
		 * At this point we waited for all pending jobs to complete (in
		 * both the task queue and the bucket and no new jobs should
		 * arrive. Wait for all threads to die.
		 */
		while (b->tqbucket_nfree > 0)
			cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
		mutex_exit(&b->tqbucket_lock);
		mutex_destroy(&b->tqbucket_lock);
		cv_destroy(&b->tqbucket_cv);
	}

	if (tq->tq_buckets != NULL) {
		ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
		kmem_free(tq->tq_buckets,
		    sizeof (taskq_bucket_t) * tq->tq_nbuckets);

		/* Cleanup fields before returning tq to the cache */
		tq->tq_buckets = NULL;
		tq->tq_tcreates = 0;
		tq->tq_tdeaths = 0;
	} else {
		ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
	}

	tq->tq_threads_ncpus_pct = 0;
	tq->tq_totaltime = 0;
	tq->tq_tasks = 0;
	tq->tq_maxtasks = 0;
	tq->tq_executed = 0;
	kmem_cache_free(taskq_cache, tq);
}

/*
 * Extend a bucket with a new entry on the free list and attach a worker thread
 * to it.
 *
 * Argument: pointer to the bucket.
 *
 * This function may quietly fail. It is only used by taskq_dispatch() which
 * handles such failures properly.
 */
static void
taskq_bucket_extend(void *arg)
{
	taskq_ent_t *tqe;
	taskq_bucket_t *b = (taskq_bucket_t *)arg;
	taskq_t *tq = b->tqbucket_taskq;
	int nthreads;

	if (! ENOUGH_MEMORY()) {
		TQ_STAT(b, tqs_nomem);
		return;
	}

	mutex_enter(&tq->tq_lock);

	/*
	 * Observe global taskq limits on the number of threads.
	 */
	if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) {
		tq->tq_tcreates--;
		mutex_exit(&tq->tq_lock);
		return;
	}
	mutex_exit(&tq->tq_lock);

	tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP);

	if (tqe == NULL) {
		mutex_enter(&tq->tq_lock);
		TQ_STAT(b, tqs_nomem);
		tq->tq_tcreates--;
		mutex_exit(&tq->tq_lock);
		return;
	}

	ASSERT(tqe->tqent_thread == NULL);

	tqe->tqent_bucket = b;

	/*
	 * Create a thread in a TS_STOPPED state first. If it is successfully
	 * created, place the entry on the free list and start the thread.
	 */
	tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe,
	    0, &p0, TS_STOPPED, tq->tq_pri);

	/*
	 * Once the entry is ready, link it to the the bucket free list.
	 */
	mutex_enter(&b->tqbucket_lock);
	tqe->tqent_func = NULL;
	TQ_APPEND(b->tqbucket_freelist, tqe);
	b->tqbucket_nfree++;
	TQ_STAT(b, tqs_tcreates);

#if TASKQ_STATISTIC
	nthreads = b->tqbucket_stat.tqs_tcreates -
	    b->tqbucket_stat.tqs_tdeaths;
	b->tqbucket_stat.tqs_maxthreads = MAX(nthreads,
	    b->tqbucket_stat.tqs_maxthreads);
#endif

	mutex_exit(&b->tqbucket_lock);
	/*
	 * Start the stopped thread.
	 */
	thread_lock(tqe->tqent_thread);
	tqe->tqent_thread->t_taskq = tq;
	tqe->tqent_thread->t_schedflag |= TS_ALLSTART;
	setrun_locked(tqe->tqent_thread);
	thread_unlock(tqe->tqent_thread);
}

static int
taskq_kstat_update(kstat_t *ksp, int rw)
{
	struct taskq_kstat *tqsp = &taskq_kstat;
	taskq_t *tq = ksp->ks_private;

	if (rw == KSTAT_WRITE)
		return (EACCES);

	tqsp->tq_tasks.value.ui64 = tq->tq_tasks;
	tqsp->tq_executed.value.ui64 = tq->tq_executed;
	tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks;
	tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime;
	tqsp->tq_nactive.value.ui64 = tq->tq_active;
	tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc;
	tqsp->tq_pri.value.ui64 = tq->tq_pri;
	tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads;
	return (0);
}

static int
taskq_d_kstat_update(kstat_t *ksp, int rw)
{
	struct taskq_d_kstat *tqsp = &taskq_d_kstat;
	taskq_t *tq = ksp->ks_private;
	taskq_bucket_t *b = tq->tq_buckets;
	int bid = 0;

	if (rw == KSTAT_WRITE)
		return (EACCES);

	ASSERT(tq->tq_flags & TASKQ_DYNAMIC);

	tqsp->tqd_btasks.value.ui64 = tq->tq_tasks;
	tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed;
	tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks;
	tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc;
	tqsp->tqd_bnactive.value.ui64 = tq->tq_active;
	tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime;
	tqsp->tqd_pri.value.ui64 = tq->tq_pri;

	tqsp->tqd_hits.value.ui64 = 0;
	tqsp->tqd_misses.value.ui64 = 0;
	tqsp->tqd_overflows.value.ui64 = 0;
	tqsp->tqd_tcreates.value.ui64 = 0;
	tqsp->tqd_tdeaths.value.ui64 = 0;
	tqsp->tqd_maxthreads.value.ui64 = 0;
	tqsp->tqd_nomem.value.ui64 = 0;
	tqsp->tqd_disptcreates.value.ui64 = 0;
	tqsp->tqd_totaltime.value.ui64 = 0;
	tqsp->tqd_nalloc.value.ui64 = 0;
	tqsp->tqd_nfree.value.ui64 = 0;

	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
		tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits;
		tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses;
		tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow;
		tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates;
		tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths;
		tqsp->tqd_maxthreads.value.ui64 +=
		    b->tqbucket_stat.tqs_maxthreads;
		tqsp->tqd_nomem.value.ui64 += b->tqbucket_stat.tqs_nomem;
		tqsp->tqd_disptcreates.value.ui64 +=
		    b->tqbucket_stat.tqs_disptcreates;
		tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime;
		tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc;
		tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree;
	}
	return (0);
}