1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* University Copyright- Copyright (c) 1982, 1986, 1988
* The Regents of the University of California
* All Rights Reserved
*
* University Acknowledgment- Portions of this document are derived from
* software developed by the University of California, Berkeley, and its
* contributors.
*/
#ifndef _VM_PAGE_H
#define _VM_PAGE_H
#include <vm/seg.h>
#ifdef __cplusplus
extern "C" {
#endif
#if defined(_KERNEL) || defined(_KMEMUSER)
/*
* Shared/Exclusive lock.
*/
/*
* Types of page locking supported by page_lock & friends.
*/
typedef enum {
SE_SHARED,
SE_EXCL /* exclusive lock (value == -1) */
} se_t;
/*
* For requesting that page_lock reclaim the page from the free list.
*/
typedef enum {
P_RECLAIM, /* reclaim page from free list */
P_NO_RECLAIM /* DON`T reclaim the page */
} reclaim_t;
/*
* Callers of page_try_reclaim_lock and page_lock_es can use this flag
* to get SE_EXCL access before reader/writers are given access.
*/
#define SE_EXCL_WANTED 0x02
/*
* All page_*lock() requests will be denied unless this flag is set in
* the 'es' parameter.
*/
#define SE_RETIRED 0x04
#endif /* _KERNEL | _KMEMUSER */
typedef int selock_t;
/*
* Define VM_STATS to turn on all sorts of statistic gathering about
* the VM layer. By default, it is only turned on when DEBUG is
* also defined.
*/
#ifdef DEBUG
#define VM_STATS
#endif /* DEBUG */
#ifdef VM_STATS
#define VM_STAT_ADD(stat) (stat)++
#define VM_STAT_COND_ADD(cond, stat) ((void) (!(cond) || (stat)++))
#else
#define VM_STAT_ADD(stat)
#define VM_STAT_COND_ADD(cond, stat)
#endif /* VM_STATS */
#ifdef _KERNEL
/*
* Macros to acquire and release the page logical lock.
*/
#define page_struct_lock(pp) mutex_enter(&page_llock)
#define page_struct_unlock(pp) mutex_exit(&page_llock)
#endif /* _KERNEL */
#include <sys/t_lock.h>
struct as;
/*
* Each physical page has a page structure, which is used to maintain
* these pages as a cache. A page can be found via a hashed lookup
* based on the [vp, offset]. If a page has an [vp, offset] identity,
* then it is entered on a doubly linked circular list off the
* vnode using the vpnext/vpprev pointers. If the p_free bit
* is on, then the page is also on a doubly linked circular free
* list using next/prev pointers. If the "p_selock" and "p_iolock"
* are held, then the page is currently being read in (exclusive p_selock)
* or written back (shared p_selock). In this case, the next/prev pointers
* are used to link the pages together for a consecutive i/o request. If
* the page is being brought in from its backing store, then other processes
* will wait for the i/o to complete before attaching to the page since it
* will have an "exclusive" lock.
*
* Each page structure has the locks described below along with
* the fields they protect:
*
* p_selock This is a per-page shared/exclusive lock that is
* used to implement the logical shared/exclusive
* lock for each page. The "shared" lock is normally
* used in most cases while the "exclusive" lock is
* required to destroy or retain exclusive access to
* a page (e.g., while reading in pages). The appropriate
* lock is always held whenever there is any reference
* to a page structure (e.g., during i/o).
* (Note that with the addition of the "writer-lock-wanted"
* semantics (via SE_EWANTED), threads must not acquire
* multiple reader locks or else a deadly embrace will
* occur in the following situation: thread 1 obtains a
* reader lock; next thread 2 fails to get a writer lock
* but specified SE_EWANTED so it will wait by either
* blocking (when using page_lock_es) or spinning while
* retrying (when using page_try_reclaim_lock) until the
* reader lock is released; then thread 1 attempts to
* get another reader lock but is denied due to
* SE_EWANTED being set, and now both threads are in a
* deadly embrace.)
*
* p_hash
* p_vnode
* p_offset
*
* p_free
* p_age
*
* p_iolock This is a binary semaphore lock that provides
* exclusive access to the i/o list links in each
* page structure. It is always held while the page
* is on an i/o list (i.e., involved in i/o). That is,
* even though a page may be only `shared' locked
* while it is doing a write, the following fields may
* change anyway. Normally, the page must be
* `exclusively' locked to change anything in it.
*
* p_next
* p_prev
*
* The following fields are protected by the global page_llock:
*
* p_lckcnt
* p_cowcnt
*
* The following lists are protected by the global page_freelock:
*
* page_cachelist
* page_freelist
*
* The following, for our purposes, are protected by
* the global freemem_lock:
*
* freemem
* freemem_wait
* freemem_cv
*
* The following fields are protected by hat layer lock(s). When a page
* structure is not mapped and is not associated with a vnode (after a call
* to page_hashout() for example) the p_nrm field may be modified with out
* holding the hat layer lock:
*
* p_nrm
* p_mapping
* p_share
*
* The following field is file system dependent. How it is used and
* the locking strategies applied are up to the individual file system
* implementation.
*
* p_fsdata
*
* The page structure is used to represent and control the system's
* physical pages. There is one instance of the structure for each
* page that is not permenately allocated. For example, the pages that
* hold the page structures are permanently held by the kernel
* and hence do not need page structures to track them. The array
* of page structures is allocated early on in the kernel's life and
* is based on the amount of available physical memory.
*
* Each page structure may simultaneously appear on several linked lists.
* The lists are: hash list, free or in i/o list, and a vnode's page list.
* Each type of list is protected by a different group of mutexes as described
* below:
*
* The hash list is used to quickly find a page when the page's vnode and
* offset within the vnode are known. Each page that is hashed is
* connected via the `p_hash' field. The anchor for each hash is in the
* array `page_hash'. An array of mutexes, `ph_mutex', protects the
* lists anchored by page_hash[]. To either search or modify a given hash
* list, the appropriate mutex in the ph_mutex array must be held.
*
* The free list contains pages that are `free to be given away'. For
* efficiency reasons, pages on this list are placed in two catagories:
* pages that are still associated with a vnode, and pages that are not
* associated with a vnode. Free pages always have their `p_free' bit set,
* free pages that are still associated with a vnode also have their
* `p_age' bit set. Pages on the free list are connected via their
* `p_next' and `p_prev' fields. When a page is involved in some sort
* of i/o, it is not free and these fields may be used to link associated
* pages together. At the moment, the free list is protected by a
* single mutex `page_freelock'. The list of free pages still associated
* with a vnode is anchored by `page_cachelist' while other free pages
* are anchored in architecture dependent ways (to handle page coloring etc.).
*
* Pages associated with a given vnode appear on a list anchored in the
* vnode by the `v_pages' field. They are linked together with
* `p_vpnext' and `p_vpprev'. The field `p_offset' contains a page's
* offset within the vnode. The pages on this list are not kept in
* offset order. These lists, in a manner similar to the hash lists,
* are protected by an array of mutexes called `vph_hash'. Before
* searching or modifying this chain the appropriate mutex in the
* vph_hash[] array must be held.
*
* Again, each of the lists that a page can appear on is protected by a
* mutex. Before reading or writing any of the fields comprising the
* list, the appropriate lock must be held. These list locks should only
* be held for very short intervals.
*
* In addition to the list locks, each page structure contains a
* shared/exclusive lock that protects various fields within it.
* To modify one of these fields, the `p_selock' must be exclusively held.
* To read a field with a degree of certainty, the lock must be at least
* held shared.
*
* Removing a page structure from one of the lists requires holding
* the appropriate list lock and the page's p_selock. A page may be
* prevented from changing identity, being freed, or otherwise modified
* by acquiring p_selock shared.
*
* To avoid deadlocks, a strict locking protocol must be followed. Basically
* there are two cases: In the first case, the page structure in question
* is known ahead of time (e.g., when the page is to be added or removed
* from a list). In the second case, the page structure is not known and
* must be found by searching one of the lists.
*
* When adding or removing a known page to one of the lists, first the
* page must be exclusively locked (since at least one of its fields
* will be modified), second the lock protecting the list must be acquired,
* third the page inserted or deleted, and finally the list lock dropped.
*
* The more interesting case occures when the particular page structure
* is not known ahead of time. For example, when a call is made to
* page_lookup(), it is not known if a page with the desired (vnode and
* offset pair) identity exists. So the appropriate mutex in ph_mutex is
* acquired, the hash list searched, and if the desired page is found
* an attempt is made to lock it. The attempt to acquire p_selock must
* not block while the hash list lock is held. A deadlock could occure
* if some other process was trying to remove the page from the list.
* The removing process (following the above protocol) would have exclusively
* locked the page, and be spinning waiting to acquire the lock protecting
* the hash list. Since the searching process holds the hash list lock
* and is waiting to acquire the page lock, a deadlock occurs.
*
* The proper scheme to follow is: first, lock the appropriate list,
* search the list, and if the desired page is found either use
* page_trylock() (which will not block) or pass the address of the
* list lock to page_lock(). If page_lock() can not acquire the page's
* lock, it will drop the list lock before going to sleep. page_lock()
* returns a value to indicate if the list lock was dropped allowing the
* calling program to react appropriately (i.e., retry the operation).
*
* If the list lock was dropped before the attempt at locking the page
* was made, checks would have to be made to ensure that the page had
* not changed identity before its lock was obtained. This is because
* the interval between dropping the list lock and acquiring the page
* lock is indeterminate.
*
* In addition, when both a hash list lock (ph_mutex[]) and a vnode list
* lock (vph_mutex[]) are needed, the hash list lock must be acquired first.
* The routine page_hashin() is a good example of this sequence.
* This sequence is ASSERTed by checking that the vph_mutex[] is not held
* just before each acquisition of one of the mutexs in ph_mutex[].
*
* So, as a quick summary:
*
* pse_mutex[]'s protect the p_selock and p_cv fields.
*
* p_selock protects the p_free, p_age, p_vnode, p_offset and p_hash,
*
* ph_mutex[]'s protect the page_hash[] array and its chains.
*
* vph_mutex[]'s protect the v_pages field and the vp page chains.
*
* First lock the page, then the hash chain, then the vnode chain. When
* this is not possible `trylocks' must be used. Sleeping while holding
* any of these mutexes (p_selock is not a mutex) is not allowed.
*
*
* field reading writing ordering
* ======================================================================
* p_vnode p_selock(E,S) p_selock(E)
* p_offset
* p_free
* p_age
* =====================================================================
* p_hash p_selock(E,S) p_selock(E) && p_selock, ph_mutex
* ph_mutex[]
* =====================================================================
* p_vpnext p_selock(E,S) p_selock(E) && p_selock, vph_mutex
* p_vpprev vph_mutex[]
* =====================================================================
* When the p_free bit is set:
*
* p_next p_selock(E,S) p_selock(E) && p_selock,
* p_prev page_freelock page_freelock
*
* When the p_free bit is not set:
*
* p_next p_selock(E,S) p_selock(E) && p_selock, p_iolock
* p_prev p_iolock
* =====================================================================
* p_selock pse_mutex[] pse_mutex[] can`t acquire any
* p_cv other mutexes or
* sleep while holding
* this lock.
* =====================================================================
* p_lckcnt p_selock(E,S) p_selock(E) &&
* p_cowcnt page_llock
* =====================================================================
* p_nrm hat layer lock hat layer lock
* p_mapping
* p_pagenum
* =====================================================================
*
* where:
* E----> exclusive version of p_selock.
* S----> shared version of p_selock.
*
*
* Global data structures and variable:
*
* field reading writing ordering
* =====================================================================
* page_hash[] ph_mutex[] ph_mutex[] can hold this lock
* before acquiring
* a vph_mutex or
* pse_mutex.
* =====================================================================
* vp->v_pages vph_mutex[] vph_mutex[] can only acquire
* a pse_mutex while
* holding this lock.
* =====================================================================
* page_cachelist page_freelock page_freelock can't acquire any
* page_freelist page_freelock page_freelock
* =====================================================================
* freemem freemem_lock freemem_lock can't acquire any
* freemem_wait other mutexes while
* freemem_cv holding this mutex.
* =====================================================================
*
* Page relocation, PG_NORELOC and P_NORELOC.
*
* Pages may be relocated using the page_relocate() interface. Relocation
* involves moving the contents and identity of a page to another, free page.
* To relocate a page, the SE_EXCL lock must be obtained. The way to prevent
* a page from being relocated is to hold the SE_SHARED lock (the SE_EXCL
* lock must not be held indefinitely). If the page is going to be held
* SE_SHARED indefinitely, then the PG_NORELOC hint should be passed
* to page_create_va so that pages that are prevented from being relocated
* can be managed differently by the platform specific layer.
*
* Pages locked in memory using page_pp_lock (p_lckcnt/p_cowcnt != 0)
* are guaranteed to be held in memory, but can still be relocated
* providing the SE_EXCL lock can be obtained.
*
* The P_NORELOC bit in the page_t.p_state field is provided for use by
* the platform specific code in managing pages when the PG_NORELOC
* hint is used.
*
* Memory delete and page locking.
*
* The set of all usable pages is managed using the global page list as
* implemented by the memseg structure defined below. When memory is added
* or deleted this list changes. Additions to this list guarantee that the
* list is never corrupt. In order to avoid the necessity of an additional
* lock to protect against failed accesses to the memseg being deleted and,
* more importantly, the page_ts, the memseg structure is never freed and the
* page_t virtual address space is remapped to a page (or pages) of
* zeros. If a page_t is manipulated while it is p_selock'd, or if it is
* locked indirectly via a hash or freelist lock, it is not possible for
* memory delete to collect the page and so that part of the page list is
* prevented from being deleted. If the page is referenced outside of one
* of these locks, it is possible for the page_t being referenced to be
* deleted. Examples of this are page_t pointers returned by
* page_numtopp_nolock, page_first and page_next. Providing the page_t
* is re-checked after taking the p_selock (for p_vnode != NULL), the
* remapping to the zero pages will be detected.
*
*
* Page size (p_szc field) and page locking.
*
* p_szc field of free pages is changed by free list manager under freelist
* locks and is of no concern to the rest of VM subsystem.
*
* p_szc changes of allocated anonymous (swapfs) can only be done only after
* exclusively locking all constituent pages and calling hat_pageunload() on
* each of them. To prevent p_szc changes of non free anonymous (swapfs) large
* pages it's enough to either lock SHARED any of constituent pages or prevent
* hat_pageunload() by holding hat level lock that protects mapping lists (this
* method is for hat code only)
*
* To increase (promote) p_szc of allocated non anonymous file system pages
* one has to first lock exclusively all involved constituent pages and call
* hat_pageunload() on each of them. To prevent p_szc promote it's enough to
* either lock SHARED any of constituent pages that will be needed to make a
* large page or prevent hat_pageunload() by holding hat level lock that
* protects mapping lists (this method is for hat code only).
*
* To decrease (demote) p_szc of an allocated non anonymous file system large
* page one can either use the same method as used for changeing p_szc of
* anonymous large pages or if it's not possible to lock all constituent pages
* exclusively a different method can be used. In the second method one only
* has to exclusively lock one of constituent pages but then one has to
* acquire further locks by calling page_szc_lock() and
* hat_page_demote(). hat_page_demote() acquires hat level locks and then
* demotes the page. This mechanism relies on the fact that any code that
* needs to prevent p_szc of a file system large page from changeing either
* locks all constituent large pages at least SHARED or locks some pages at
* least SHARED and calls page_szc_lock() or uses hat level page locks.
* Demotion using this method is implemented by page_demote_vp_pages().
* Please see comments in front of page_demote_vp_pages(), hat_page_demote()
* and page_szc_lock() for more details.
*
* Lock order: p_selock, page_szc_lock, ph_mutex/vph_mutex/freelist,
* hat level locks.
*/
typedef struct page {
u_offset_t p_offset; /* offset into vnode for this page */
struct vnode *p_vnode; /* vnode that this page is named by */
selock_t p_selock; /* shared/exclusive lock on the page */
#if defined(_LP64)
uint_t p_vpmref; /* vpm ref - index of the vpmap_t */
#endif
struct page *p_hash; /* hash by [vnode, offset] */
struct page *p_vpnext; /* next page in vnode list */
struct page *p_vpprev; /* prev page in vnode list */
struct page *p_next; /* next page in free/intrans lists */
struct page *p_prev; /* prev page in free/intrans lists */
ushort_t p_lckcnt; /* number of locks on page data */
ushort_t p_cowcnt; /* number of copy on write lock */
kcondvar_t p_cv; /* page struct's condition var */
kcondvar_t p_io_cv; /* for iolock */
uchar_t p_iolock_state; /* replaces p_iolock */
volatile uchar_t p_szc; /* page size code */
uchar_t p_fsdata; /* file system dependent byte */
uchar_t p_state; /* p_free, p_noreloc */
uchar_t p_nrm; /* non-cache, ref, mod readonly bits */
#if defined(__sparc)
uchar_t p_vcolor; /* virtual color */
#else
uchar_t p_embed; /* x86 - changes p_mapping & p_index */
#endif
uchar_t p_index; /* MPSS mapping info. Not used on x86 */
uchar_t p_toxic; /* page has an unrecoverable error */
void *p_mapping; /* hat specific translation info */
pfn_t p_pagenum; /* physical page number */
uint_t p_share; /* number of translations */
#if defined(_LP64)
uint_t p_sharepad; /* pad for growing p_share */
#endif
uint_t p_slckcnt; /* number of softlocks */
#if defined(__sparc)
uint_t p_kpmref; /* number of kpm mapping sharers */
struct kpme *p_kpmelist; /* kpm specific mapping info */
#else
/* index of entry in p_map when p_embed is set */
uint_t p_mlentry;
#endif
#if defined(_LP64)
kmutex_t p_ilock; /* protects p_vpmref */
#else
uint64_t p_msresv_2; /* page allocation debugging */
#endif
} page_t;
typedef page_t devpage_t;
#define devpage page
#define PAGE_LOCK_MAXIMUM \
((1 << (sizeof (((page_t *)0)->p_lckcnt) * NBBY)) - 1)
#define PAGE_SLOCK_MAXIMUM UINT_MAX
/*
* Page hash table is a power-of-two in size, externally chained
* through the hash field. PAGE_HASHAVELEN is the average length
* desired for this chain, from which the size of the page_hash
* table is derived at boot time and stored in the kernel variable
* page_hashsz. In the hash function it is given by PAGE_HASHSZ.
*
* PAGE_HASH_FUNC returns an index into the page_hash[] array. This
* index is also used to derive the mutex that protects the chain.
*
* In constructing the hash function, first we dispose of unimportant bits
* (page offset from "off" and the low 3 bits of "vp" which are zero for
* struct alignment). Then shift and sum the remaining bits a couple times
* in order to get as many source bits from the two source values into the
* resulting hashed value. Note that this will perform quickly, since the
* shifting/summing are fast register to register operations with no additional
* memory references).
*/
#if defined(_LP64)
#if NCPU < 4
#define PH_TABLE_SIZE 128
#define VP_SHIFT 7
#else
#define PH_TABLE_SIZE 1024
#define VP_SHIFT 9
#endif
#else /* 32 bits */
#if NCPU < 4
#define PH_TABLE_SIZE 16
#define VP_SHIFT 7
#else
#define PH_TABLE_SIZE 128
#define VP_SHIFT 9
#endif
#endif /* _LP64 */
/*
* The amount to use for the successive shifts in the hash function below.
* The actual value is LOG2(PH_TABLE_SIZE), so that as many bits as
* possible will filter thru PAGE_HASH_FUNC() and PAGE_HASH_MUTEX().
*/
#define PH_SHIFT_SIZE (7)
#define PAGE_HASHSZ page_hashsz
#define PAGE_HASHAVELEN 4
#define PAGE_HASH_FUNC(vp, off) \
((((uintptr_t)(off) >> PAGESHIFT) + \
((uintptr_t)(off) >> (PAGESHIFT + PH_SHIFT_SIZE)) + \
((uintptr_t)(vp) >> 3) + \
((uintptr_t)(vp) >> (3 + PH_SHIFT_SIZE)) + \
((uintptr_t)(vp) >> (3 + 2 * PH_SHIFT_SIZE))) & \
(PAGE_HASHSZ - 1))
#ifdef _KERNEL
/*
* The page hash value is re-hashed to an index for the ph_mutex array.
*
* For 64 bit kernels, the mutex array is padded out to prevent false
* sharing of cache sub-blocks (64 bytes) of adjacent mutexes.
*
* For 32 bit kernels, we don't want to waste kernel address space with
* padding, so instead we rely on the hash function to introduce skew of
* adjacent vnode/offset indexes (the left shift part of the hash function).
* Since sizeof (kmutex_t) is 8, we shift an additional 3 to skew to a different
* 64 byte sub-block.
*/
typedef struct pad_mutex {
kmutex_t pad_mutex;
#ifdef _LP64
char pad_pad[64 - sizeof (kmutex_t)];
#endif
} pad_mutex_t;
extern pad_mutex_t ph_mutex[];
#define PAGE_HASH_MUTEX(x) \
&(ph_mutex[((x) + ((x) >> VP_SHIFT) + ((x) << 3)) & \
(PH_TABLE_SIZE - 1)].pad_mutex)
/*
* Flags used while creating pages.
*/
#define PG_EXCL 0x0001
#define PG_WAIT 0x0002
#define PG_PHYSCONTIG 0x0004 /* NOT SUPPORTED */
#define PG_MATCH_COLOR 0x0008 /* SUPPORTED by free list routines */
#define PG_NORELOC 0x0010 /* Non-relocatable alloc hint. */
/* Page must be PP_ISNORELOC */
#define PG_PANIC 0x0020 /* system will panic if alloc fails */
#define PG_PUSHPAGE 0x0040 /* alloc may use reserve */
#define PG_LOCAL 0x0080 /* alloc from given lgrp only */
/*
* When p_selock has the SE_EWANTED bit set, threads waiting for SE_EXCL
* access are given priority over all other waiting threads.
*/
#define SE_EWANTED 0x40000000
#define PAGE_LOCKED(pp) (((pp)->p_selock & ~SE_EWANTED) != 0)
#define PAGE_SHARED(pp) (((pp)->p_selock & ~SE_EWANTED) > 0)
#define PAGE_EXCL(pp) ((pp)->p_selock < 0)
#define PAGE_LOCKED_SE(pp, se) \
((se) == SE_EXCL ? PAGE_EXCL(pp) : PAGE_SHARED(pp))
extern long page_hashsz;
extern page_t **page_hash;
extern kmutex_t page_llock; /* page logical lock mutex */
extern kmutex_t freemem_lock; /* freemem lock */
extern pgcnt_t total_pages; /* total pages in the system */
/*
* Variables controlling locking of physical memory.
*/
extern pgcnt_t pages_pp_maximum; /* tuning: lock + claim <= max */
extern void init_pages_pp_maximum(void);
struct lgrp;
/* page_list_{add,sub} flags */
/* which list */
#define PG_FREE_LIST 0x0001
#define PG_CACHE_LIST 0x0002
/* where on list */
#define PG_LIST_TAIL 0x0010
#define PG_LIST_HEAD 0x0020
/* called from */
#define PG_LIST_ISINIT 0x1000
/*
* Page frame operations.
*/
page_t *page_lookup(struct vnode *, u_offset_t, se_t);
page_t *page_lookup_create(struct vnode *, u_offset_t, se_t, page_t *,
spgcnt_t *, int);
page_t *page_lookup_nowait(struct vnode *, u_offset_t, se_t);
page_t *page_find(struct vnode *, u_offset_t);
page_t *page_exists(struct vnode *, u_offset_t);
int page_exists_physcontig(vnode_t *, u_offset_t, uint_t, page_t *[]);
int page_exists_forreal(struct vnode *, u_offset_t, uint_t *);
void page_needfree(spgcnt_t);
page_t *page_create(struct vnode *, u_offset_t, size_t, uint_t);
int page_alloc_pages(struct vnode *, struct seg *, caddr_t, page_t **,
page_t **, uint_t, int, int);
page_t *page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes,
uint_t flags, struct seg *seg, caddr_t vaddr, void *arg);
page_t *page_create_va(struct vnode *, u_offset_t, size_t, uint_t,
struct seg *, caddr_t);
int page_create_wait(pgcnt_t npages, uint_t flags);
void page_create_putback(spgcnt_t npages);
void page_free(page_t *, int);
void page_free_at_startup(page_t *);
void page_free_pages(page_t *);
void free_vp_pages(struct vnode *, u_offset_t, size_t);
int page_reclaim(page_t *, kmutex_t *);
int page_reclaim_pages(page_t *, kmutex_t *, uint_t);
void page_destroy(page_t *, int);
void page_destroy_pages(page_t *);
void page_destroy_free(page_t *);
void page_rename(page_t *, struct vnode *, u_offset_t);
int page_hashin(page_t *, struct vnode *, u_offset_t, kmutex_t *);
void page_hashout(page_t *, kmutex_t *);
int page_num_hashin(pfn_t, struct vnode *, u_offset_t);
void page_add(page_t **, page_t *);
void page_add_common(page_t **, page_t *);
void page_sub(page_t **, page_t *);
void page_sub_common(page_t **, page_t *);
page_t *page_get_freelist(struct vnode *, u_offset_t, struct seg *,
caddr_t, size_t, uint_t, struct lgrp *);
page_t *page_get_cachelist(struct vnode *, u_offset_t, struct seg *,
caddr_t, uint_t, struct lgrp *);
#if defined(__i386) || defined(__amd64)
int page_chk_freelist(uint_t);
#endif
void page_list_add(page_t *, int);
void page_boot_demote(page_t *);
void page_promote_size(page_t *, uint_t);
void page_list_add_pages(page_t *, int);
void page_list_sub(page_t *, int);
void page_list_sub_pages(page_t *, uint_t);
void page_list_xfer(page_t *, int, int);
void page_list_break(page_t **, page_t **, size_t);
void page_list_concat(page_t **, page_t **);
void page_vpadd(page_t **, page_t *);
void page_vpsub(page_t **, page_t *);
int page_lock(page_t *, se_t, kmutex_t *, reclaim_t);
int page_lock_es(page_t *, se_t, kmutex_t *, reclaim_t, int);
void page_lock_clr_exclwanted(page_t *);
int page_trylock(page_t *, se_t);
int page_try_reclaim_lock(page_t *, se_t, int);
int page_tryupgrade(page_t *);
void page_downgrade(page_t *);
void page_unlock(page_t *);
void page_unlock_nocapture(page_t *);
void page_lock_delete(page_t *);
int page_deleted(page_t *);
int page_pp_lock(page_t *, int, int);
void page_pp_unlock(page_t *, int, int);
int page_resv(pgcnt_t, uint_t);
void page_unresv(pgcnt_t);
void page_pp_useclaim(page_t *, page_t *, uint_t);
int page_addclaim(page_t *);
int page_subclaim(page_t *);
int page_addclaim_pages(page_t **);
int page_subclaim_pages(page_t **);
pfn_t page_pptonum(page_t *);
page_t *page_numtopp(pfn_t, se_t);
page_t *page_numtopp_noreclaim(pfn_t, se_t);
page_t *page_numtopp_nolock(pfn_t);
page_t *page_numtopp_nowait(pfn_t, se_t);
page_t *page_first();
page_t *page_next(page_t *);
page_t *page_list_next(page_t *);
page_t *page_nextn(page_t *, ulong_t);
page_t *page_next_scan_init(void **);
page_t *page_next_scan_large(page_t *, ulong_t *, void **);
void prefetch_page_r(void *);
int ppcopy(page_t *, page_t *);
void page_relocate_hash(page_t *, page_t *);
void pagezero(page_t *, uint_t, uint_t);
void pagescrub(page_t *, uint_t, uint_t);
void page_io_lock(page_t *);
void page_io_unlock(page_t *);
int page_io_trylock(page_t *);
int page_iolock_assert(page_t *);
void page_iolock_init(page_t *);
void page_io_wait(page_t *);
int page_io_locked(page_t *);
pgcnt_t page_busy(int);
void page_lock_init(void);
ulong_t page_share_cnt(page_t *);
int page_isshared(page_t *);
int page_isfree(page_t *);
int page_isref(page_t *);
int page_ismod(page_t *);
int page_release(page_t *, int);
void page_retire_init(void);
int page_retire(uint64_t, uchar_t);
int page_retire_check(uint64_t, uint64_t *);
int page_unretire(uint64_t);
int page_unretire_pp(page_t *, int);
void page_tryretire(page_t *);
void page_retire_mdboot();
uint64_t page_retire_pend_count(void);
uint64_t page_retire_pend_kas_count(void);
void page_retire_incr_pend_count(void *);
void page_retire_decr_pend_count(void *);
void page_clrtoxic(page_t *, uchar_t);
void page_settoxic(page_t *, uchar_t);
int page_mem_avail(pgcnt_t);
int page_reclaim_mem(pgcnt_t, pgcnt_t, int);
void page_set_props(page_t *, uint_t);
void page_clr_all_props(page_t *);
int page_clear_lck_cow(page_t *, int);
kmutex_t *page_vnode_mutex(struct vnode *);
kmutex_t *page_se_mutex(struct page *);
kmutex_t *page_szc_lock(struct page *);
int page_szc_lock_assert(struct page *pp);
/*
* Page relocation interfaces. page_relocate() is generic.
* page_get_replacement_page() is provided by the PSM.
* page_free_replacement_page() is generic.
*/
int group_page_trylock(page_t *, se_t);
void group_page_unlock(page_t *);
int page_relocate(page_t **, page_t **, int, int, spgcnt_t *, struct lgrp *);
int do_page_relocate(page_t **, page_t **, int, spgcnt_t *, struct lgrp *);
page_t *page_get_replacement_page(page_t *, struct lgrp *, uint_t);
void page_free_replacement_page(page_t *);
int page_relocate_cage(page_t **, page_t **);
int page_try_demote_pages(page_t *);
int page_try_demote_free_pages(page_t *);
void page_demote_free_pages(page_t *);
struct anon_map;
void page_mark_migrate(struct seg *, caddr_t, size_t, struct anon_map *,
ulong_t, vnode_t *, u_offset_t, int);
void page_migrate(struct seg *, caddr_t, page_t **, pgcnt_t);
/*
* Tell the PIM we are adding physical memory
*/
void add_physmem(page_t *, size_t, pfn_t);
void add_physmem_cb(page_t *, pfn_t); /* callback for page_t part */
/*
* hw_page_array[] is configured with hardware supported page sizes by
* platform specific code.
*/
typedef struct {
size_t hp_size;
uint_t hp_shift;
uint_t hp_colors;
pgcnt_t hp_pgcnt; /* base pagesize cnt */
} hw_pagesize_t;
extern hw_pagesize_t hw_page_array[];
extern uint_t page_coloring_shift;
extern uint_t page_colors_mask;
extern int cpu_page_colors;
extern uint_t colorequiv;
extern uchar_t colorequivszc[];
uint_t page_num_pagesizes(void);
uint_t page_num_user_pagesizes(int);
size_t page_get_pagesize(uint_t);
size_t page_get_user_pagesize(uint_t n);
pgcnt_t page_get_pagecnt(uint_t);
uint_t page_get_shift(uint_t);
int page_szc(size_t);
int page_szc_user_filtered(size_t);
/* page_get_replacement page flags */
#define PGR_SAMESZC 0x1 /* only look for page size same as orig */
#define PGR_NORELOC 0x2 /* allocate a P_NORELOC page */
/*
* macros for "masked arithmetic"
* The purpose is to step through all combinations of a set of bits while
* keeping some other bits fixed. Fixed bits need not be contiguous. The
* variable bits need not be contiguous either, or even right aligned. The
* trick is to set all fixed bits to 1, then increment, then restore the
* fixed bits. If incrementing causes a carry from a low bit position, the
* carry propagates thru the fixed bits, because they are temporarily set to 1.
* v is the value
* i is the increment
* eq_mask defines the fixed bits
* mask limits the size of the result
*/
#define ADD_MASKED(v, i, eq_mask, mask) \
(((((v) | (eq_mask)) + (i)) & (mask) & ~(eq_mask)) | ((v) & (eq_mask)))
/*
* convenience macro which increments by 1
*/
#define INC_MASKED(v, eq_mask, mask) ADD_MASKED(v, 1, eq_mask, mask)
#endif /* _KERNEL */
/*
* Constants used for the p_iolock_state
*/
#define PAGE_IO_INUSE 0x1
#define PAGE_IO_WANTED 0x2
/*
* Constants used for page_release status
*/
#define PGREL_NOTREL 0x1
#define PGREL_CLEAN 0x2
#define PGREL_MOD 0x3
/*
* The p_state field holds what used to be the p_age and p_free
* bits. These fields are protected by p_selock (see above).
*/
#define P_FREE 0x80 /* Page on free list */
#define P_NORELOC 0x40 /* Page is non-relocatable */
#define P_MIGRATE 0x20 /* Migrate page on next touch */
#define P_SWAP 0x10 /* belongs to vnode that is V_ISSWAP */
#define P_BOOTPAGES 0x08 /* member of bootpages list */
#define PP_ISFREE(pp) ((pp)->p_state & P_FREE)
#define PP_ISAGED(pp) (((pp)->p_state & P_FREE) && \
((pp)->p_vnode == NULL))
#define PP_ISNORELOC(pp) ((pp)->p_state & P_NORELOC)
#define PP_ISKAS(pp) (((pp)->p_vnode == &kvp) || \
((pp)->p_vnode == &zvp))
#define PP_ISNORELOCKERNEL(pp) (PP_ISNORELOC(pp) && PP_ISKAS(pp))
#define PP_ISMIGRATE(pp) ((pp)->p_state & P_MIGRATE)
#define PP_ISSWAP(pp) ((pp)->p_state & P_SWAP)
#define PP_ISBOOTPAGES(pp) ((pp)->p_state & P_BOOTPAGES)
#define PP_SETFREE(pp) ((pp)->p_state = ((pp)->p_state & ~P_MIGRATE) \
| P_FREE)
#define PP_SETAGED(pp) ASSERT(PP_ISAGED(pp))
#define PP_SETNORELOC(pp) ((pp)->p_state |= P_NORELOC)
#define PP_SETMIGRATE(pp) ((pp)->p_state |= P_MIGRATE)
#define PP_SETSWAP(pp) ((pp)->p_state |= P_SWAP)
#define PP_SETBOOTPAGES(pp) ((pp)->p_state |= P_BOOTPAGES)
#define PP_CLRFREE(pp) ((pp)->p_state &= ~P_FREE)
#define PP_CLRAGED(pp) ASSERT(!PP_ISAGED(pp))
#define PP_CLRNORELOC(pp) ((pp)->p_state &= ~P_NORELOC)
#define PP_CLRMIGRATE(pp) ((pp)->p_state &= ~P_MIGRATE)
#define PP_CLRSWAP(pp) ((pp)->p_state &= ~P_SWAP)
#define PP_CLRBOOTPAGES(pp) ((pp)->p_state &= ~P_BOOTPAGES)
/*
* Flags for page_t p_toxic, for tracking memory hardware errors.
*
* These flags are OR'ed into p_toxic with page_settoxic() to track which
* error(s) have occurred on a given page. The flags are cleared with
* page_clrtoxic(). Both page_settoxic() and page_cleartoxic use atomic
* primitives to manipulate the p_toxic field so no other locking is needed.
*
* When an error occurs on a page, p_toxic is set to record the error. The
* error could be a memory error or something else (i.e. a datapath). The Page
* Retire mechanism does not try to determine the exact cause of the error;
* Page Retire rightly leaves that sort of determination to FMA's Diagnostic
* Engine (DE).
*
* Note that, while p_toxic bits can be set without holding any locks, they
* should only be cleared while holding the page exclusively locked.
* There is one exception to this, the PR_CAPTURE bit is protected by a mutex
* within the page capture logic and thus to set or clear the bit, that mutex
* needs to be held. The page does not need to be locked but the page_clrtoxic
* function must be used as we need an atomic operation.
* Also note that there is what amounts to a hack to prevent recursion with
* large pages such that if we are unlocking a page and the PR_CAPTURE bit is
* set, we will only try to capture the page if the current threads T_CAPTURING
* flag is not set. If the flag is set, the unlock will not try to capture
* the page even though the PR_CAPTURE bit is set.
*
* Pages with PR_UE or PR_FMA flags are retired unconditionally, while pages
* with PR_MCE are retired if the system has not retired too many of them.
*
* A page must be exclusively locked to be retired. Pages can be retired if
* they are mapped, modified, or both, as long as they are not marked PR_UE,
* since pages with uncorrectable errors cannot be relocated in memory.
* Once a page has been successfully retired it is zeroed, attached to the
* retired_pages vnode and, finally, PR_RETIRED is set in p_toxic. The other
* p_toxic bits are NOT cleared. Pages are not left locked after retiring them
* to avoid special case code throughout the kernel; rather, page_*lock() will
* fail to lock the page, unless SE_RETIRED is passed as an argument.
*
* While we have your attention, go take a look at the comments at the
* beginning of page_retire.c too.
*/
#define PR_OK 0x00 /* no problem */
#define PR_MCE 0x01 /* page has seen two or more CEs */
#define PR_UE 0x02 /* page has an unhandled UE */
#define PR_UE_SCRUBBED 0x04 /* page has seen a UE but was cleaned */
#define PR_FMA 0x08 /* A DE wants this page retired */
#define PR_CAPTURE 0x10 /* Generic page capture flag */
#define PR_RESV 0x20 /* Reserved for future use */
#define PR_MSG 0x40 /* message(s) already printed for this page */
#define PR_RETIRED 0x80 /* This page has been retired */
#define PR_REASONS (PR_UE | PR_MCE | PR_FMA)
#define PR_TOXIC (PR_UE)
#define PR_ERRMASK (PR_UE | PR_UE_SCRUBBED | PR_MCE | PR_FMA)
#define PR_TOXICFLAGS (0xCF)
#define PP_RETIRED(pp) ((pp)->p_toxic & PR_RETIRED)
#define PP_TOXIC(pp) ((pp)->p_toxic & PR_TOXIC)
#define PP_PR_REQ(pp) (((pp)->p_toxic & PR_REASONS) && !PP_RETIRED(pp))
#define PP_PR_NOSHARE(pp) \
((((pp)->p_toxic & (PR_RETIRED | PR_FMA | PR_UE)) == PR_FMA) && \
!PP_ISKAS(pp))
/*
* Flags for page_unretire_pp
*/
#define PR_UNR_FREE 0x1
#define PR_UNR_CLEAN 0x2
#define PR_UNR_TEMP 0x4
/*
* kpm large page description.
* The virtual address range of segkpm is divided into chunks of
* kpm_pgsz. Each chunk is controlled by a kpm_page_t. The ushort
* is sufficient for 2^^15 * PAGESIZE, so e.g. the maximum kpm_pgsz
* for 8K is 256M and 2G for 64K pages. It it kept as small as
* possible to save physical memory space.
*
* There are 2 segkpm mapping windows within in the virtual address
* space when we have to prevent VAC alias conflicts. The so called
* Alias window (mappings are always by PAGESIZE) is controlled by
* kp_refcnta. The regular window is controlled by kp_refcnt for the
* normal operation, which is to use the largest available pagesize.
* When VAC alias conflicts are present within a chunk in the regular
* window the large page mapping is broken up into smaller PAGESIZE
* mappings. kp_refcntc is used to control the pages that are invoked
* in the conflict and kp_refcnts holds the active mappings done
* with the small page size. In non vac conflict mode kp_refcntc is
* also used as "go" indication (-1) for the trap level tsbmiss
* handler.
*/
typedef struct kpm_page {
short kp_refcnt; /* pages mapped large */
short kp_refcnta; /* pages mapped in Alias window */
short kp_refcntc; /* TL-tsbmiss flag; #vac alias conflict pages */
short kp_refcnts; /* vac alias: pages mapped small */
} kpm_page_t;
/*
* Note: khl_lock offset changes must be reflected in sfmmu_asm.s
*/
typedef struct kpm_hlk {
kmutex_t khl_mutex; /* kpm_page mutex */
uint_t khl_lock; /* trap level tsbmiss handling */
} kpm_hlk_t;
/*
* kpm small page description.
* When kpm_pgsz is equal to PAGESIZE a smaller representation is used
* to save memory space. Alias range mappings and regular segkpm
* mappings are done in units of PAGESIZE and can share the mapping
* information and the mappings are always distinguishable by their
* virtual address. Other information needed for VAC conflict prevention
* is already available on a per page basis.
*
* The state about how a kpm page is mapped and whether it is ready to go
* is indicated by the following 1 byte kpm_spage structure. This byte is
* split into two 4-bit parts - kp_mapped and kp_mapped_go.
* - kp_mapped == 1 the page is mapped cacheable
* - kp_mapped == 2 the page is mapped non-cacheable
* - kp_mapped_go == 1 the mapping is ready to be dropped in
* - kp_mapped_go == 0 the mapping is not ready to be dropped in.
* When kp_mapped_go == 0, we will have C handler resolve the VAC conflict.
* Otherwise, the assembly tsb miss handler can simply drop in the mapping
* when a tsb miss occurs.
*/
typedef union kpm_spage {
struct {
#ifdef _BIG_ENDIAN
uchar_t mapped_go: 4; /* go or nogo flag */
uchar_t mapped: 4; /* page mapped small */
#else
uchar_t mapped: 4; /* page mapped small */
uchar_t mapped_go: 4; /* go or nogo flag */
#endif
} kpm_spage_un;
uchar_t kp_mapped_flag;
} kpm_spage_t;
#define kp_mapped kpm_spage_un.mapped
#define kp_mapped_go kpm_spage_un.mapped_go
/*
* Note: kshl_lock offset changes must be reflected in sfmmu_asm.s
*/
typedef struct kpm_shlk {
uint_t kshl_lock; /* trap level tsbmiss handling */
} kpm_shlk_t;
/*
* Each segment of physical memory is described by a memseg struct.
* Within a segment, memory is considered contiguous. The members
* can be categorized as follows:
* . Platform independent:
* pages, epages, pages_base, pages_end, next, lnext.
* . 64bit only but platform independent:
* kpm_pbase, kpm_nkpmpgs, kpm_pages, kpm_spages.
* . Really platform or mmu specific:
* pagespa, epagespa, nextpa, kpm_pagespa.
* . Mixed:
* msegflags.
*/
struct memseg {
page_t *pages, *epages; /* [from, to] in page array */
pfn_t pages_base, pages_end; /* [from, to] in page numbers */
struct memseg *next; /* next segment in list */
#if defined(__sparc)
struct memseg *lnext; /* next segment in deleted list */
uint64_t pagespa, epagespa; /* [from, to] page array physical */
uint64_t nextpa; /* physical next pointer */
pfn_t kpm_pbase; /* start of kpm range */
pgcnt_t kpm_nkpmpgs; /* # of kpm_pgsz pages */
union _mseg_un {
kpm_page_t *kpm_lpgs; /* ptr to kpm_page array */
kpm_spage_t *kpm_spgs; /* ptr to kpm_spage array */
} mseg_un;
uint64_t kpm_pagespa; /* physical ptr to kpm (s)pages array */
uint_t msegflags; /* memseg flags */
#endif /* __sparc */
};
/* memseg union aliases */
#define kpm_pages mseg_un.kpm_lpgs
#define kpm_spages mseg_un.kpm_spgs
/* msegflags */
#define MEMSEG_DYNAMIC 0x1 /* DR: memory was added dynamically */
#define MEMSEG_META_INCL 0x2 /* DR: memseg includes it's metadata */
#define MEMSEG_META_ALLOC 0x4 /* DR: memseg allocated it's metadata */
/* memseg support macros */
#define MSEG_NPAGES(SEG) ((SEG)->pages_end - (SEG)->pages_base)
/* memseg hash */
#define MEM_HASH_SHIFT 0x9
#define N_MEM_SLOTS 0x200 /* must be a power of 2 */
#define MEMSEG_PFN_HASH(pfn) (((pfn)/mhash_per_slot) & (N_MEM_SLOTS - 1))
/* memseg externals */
extern struct memseg *memsegs; /* list of memory segments */
extern ulong_t mhash_per_slot;
extern uint64_t memsegspa; /* memsegs as physical address */
void build_pfn_hash();
extern struct memseg *page_numtomemseg_nolock(pfn_t pfnum);
/*
* page capture related info:
* The page capture routines allow us to asynchronously capture given pages
* for the explicit use of the requestor. New requestors can be added by
* explicitly adding themselves to the PC_* flags below and incrementing
* PC_NUM_CALLBACKS as necessary.
*
* Subsystems using page capture must register a callback before attempting
* to capture a page. A duration of -1 will indicate that we will never give
* up while trying to capture a page and will only stop trying to capture the
* given page once we have successfully captured it. Thus the user needs to be
* aware of the behavior of all callers who have a duration of -1.
*
* For now, only /dev/physmem and page retire use the page capture interface
* and only a single request can be outstanding for a given page. Thus, if
* /dev/phsymem wants a page and page retire also wants the same page, only
* the page retire request will be honored until the point in time that the
* page is actually retired, at which point in time, subsequent requests by
* /dev/physmem will succeed if the CAPTURE_GET_RETIRED flag was set.
*/
#define PC_RETIRE (0)
#define PC_PHYSMEM (1)
#define PC_NUM_CALLBACKS (2)
#define PC_MASK ((1 << PC_NUM_CALLBACKS) - 1)
#define CAPTURE_RETIRE (1 << PC_RETIRE)
#define CAPTURE_PHYSMEM (1 << PC_PHYSMEM)
#define CAPTURE_ASYNC (0x0200)
#define CAPTURE_GET_RETIRED (0x1000)
#define CAPTURE_GET_CAGE (0x2000)
struct page_capture_callback {
int cb_active; /* 1 means active, 0 means inactive */
clock_t duration; /* the length in time that we'll attempt to */
/* capture this page asynchronously. (in HZ) */
krwlock_t cb_rwlock;
int (*cb_func)(page_t *, void *, uint_t); /* callback function */
};
extern kcondvar_t pc_cv;
void page_capture_register_callback(uint_t index, clock_t duration,
int (*cb_func)(page_t *, void *, uint_t));
void page_capture_unregister_callback(uint_t index);
int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap);
void page_unlock_capture(page_t *pp);
int page_capture_unretire_pp(page_t *);
extern void memsegs_lock(int);
extern void memsegs_unlock(int);
extern int memsegs_lock_held(void);
extern void memlist_read_lock(void);
extern void memlist_read_unlock(void);
extern void memlist_write_lock(void);
extern void memlist_write_unlock(void);
#ifdef __cplusplus
}
#endif
#endif /* _VM_PAGE_H */
|