1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* VM - page locking primitives
*/
#include <sys/param.h>
#include <sys/t_lock.h>
#include <sys/vtrace.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/bitmap.h>
#include <sys/lockstat.h>
#include <sys/sysmacros.h>
#include <sys/condvar_impl.h>
#include <vm/page.h>
#include <vm/seg_enum.h>
#include <vm/vm_dep.h>
#include <vm/seg_kmem.h>
/*
* This global mutex array is for logical page locking.
* The following fields in the page structure are protected
* by this lock:
*
* p_lckcnt
* p_cowcnt
*/
pad_mutex_t page_llocks[8 * NCPU_P2];
/*
* This is a global lock for the logical page free list. The
* logical free list, in this implementation, is maintained as two
* separate physical lists - the cache list and the free list.
*/
kmutex_t page_freelock;
/*
* The hash table, page_hash[], the p_selock fields, and the
* list of pages associated with vnodes are protected by arrays of mutexes.
*
* Unless the hashes are changed radically, the table sizes must be
* a power of two. Also, we typically need more mutexes for the
* vnodes since these locks are occasionally held for long periods.
* And since there seem to be two special vnodes (kvp and swapvp),
* we make room for private mutexes for them.
*
* The pse_mutex[] array holds the mutexes to protect the p_selock
* fields of all page_t structures.
*
* PAGE_SE_MUTEX(pp) returns the address of the appropriate mutex
* when given a pointer to a page_t.
*
* PIO_TABLE_SIZE must be a power of two. One could argue that we
* should go to the trouble of setting it up at run time and base it
* on memory size rather than the number of compile time CPUs.
*
* XX64 We should be using physmem size to calculate PIO_SHIFT.
*
* These might break in 64 bit world.
*/
#define PIO_SHIFT 7 /* log2(sizeof(page_t)) */
#define PIO_TABLE_SIZE 128 /* number of io mutexes to have */
pad_mutex_t ph_mutex[PH_TABLE_SIZE];
kmutex_t pio_mutex[PIO_TABLE_SIZE];
#define PAGE_IO_MUTEX(pp) \
&pio_mutex[(((uintptr_t)pp) >> PIO_SHIFT) & (PIO_TABLE_SIZE - 1)]
/*
* The pse_mutex[] array is allocated in the platform startup code
* based on the size of the machine at startup.
*/
extern pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
extern size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
extern int pse_shift; /* log2(pse_table_size) */
#define PAGE_SE_MUTEX(pp) &pse_mutex[ \
((((uintptr_t)(pp) >> pse_shift) ^ ((uintptr_t)(pp))) >> 7) & \
(pse_table_size - 1)].pad_mutex
#define PSZC_MTX_TABLE_SIZE 128
#define PSZC_MTX_TABLE_SHIFT 7
static pad_mutex_t pszc_mutex[PSZC_MTX_TABLE_SIZE];
#define PAGE_SZC_MUTEX(_pp) \
&pszc_mutex[((((uintptr_t)(_pp) >> PSZC_MTX_TABLE_SHIFT) ^ \
((uintptr_t)(_pp) >> (PSZC_MTX_TABLE_SHIFT << 1)) ^ \
((uintptr_t)(_pp) >> (3 * PSZC_MTX_TABLE_SHIFT))) & \
(PSZC_MTX_TABLE_SIZE - 1))].pad_mutex
/*
* The vph_mutex[] array holds the mutexes to protect the vnode chains,
* (i.e., the list of pages anchored by v_pages and connected via p_vpprev
* and p_vpnext).
*
* The page_vnode_mutex(vp) function returns the address of the appropriate
* mutex from this array given a pointer to a vnode. It is complicated
* by the fact that the kernel's vnode and the swapfs vnode are referenced
* frequently enough to warrent their own mutexes.
*
* The VP_HASH_FUNC returns the index into the vph_mutex array given
* an address of a vnode.
*/
#if defined(_LP64)
#define VPH_TABLE_SIZE (8 * NCPU_P2)
#else /* 32 bits */
#define VPH_TABLE_SIZE (2 * NCPU_P2)
#endif
#define VP_HASH_FUNC(vp) \
((((uintptr_t)(vp) >> 6) + \
((uintptr_t)(vp) >> 8) + \
((uintptr_t)(vp) >> 10) + \
((uintptr_t)(vp) >> 12)) \
& (VPH_TABLE_SIZE - 1))
/*
* Two slots after VPH_TABLE_SIZE are reserved in vph_mutex for kernel vnodes.
* The lock for kvp is VPH_TABLE_SIZE + 0, and the lock for zvp is
* VPH_TABLE_SIZE + 1.
*/
kmutex_t vph_mutex[VPH_TABLE_SIZE + 2];
/*
* Initialize the locks used by the Virtual Memory Management system.
*/
void
page_lock_init()
{
}
/*
* Return a value for pse_shift based on npg (the number of physical pages)
* and ncpu (the maximum number of CPUs). This is called by platform startup
* code.
*
* Lockstat data from TPC-H runs showed that contention on the pse_mutex[]
* locks grew approximately as the square of the number of threads executing.
* So the primary scaling factor used is NCPU^2. The size of the machine in
* megabytes is used as an upper bound, particularly for sun4v machines which
* all claim to have 256 CPUs maximum, and the old value of PSE_TABLE_SIZE
* (128) is used as a minimum. Since the size of the table has to be a power
* of two, the calculated size is rounded up to the next power of two.
*/
/*ARGSUSED*/
int
size_pse_array(pgcnt_t npg, int ncpu)
{
size_t size;
pgcnt_t pp_per_mb = (1024 * 1024) / PAGESIZE;
size = MAX(128, MIN(npg / pp_per_mb, 2 * ncpu * ncpu));
size += (1 << (highbit(size) - 1)) - 1;
return (highbit(size) - 1);
}
/*
* At present we only use page ownership to aid debugging, so it's
* OK if the owner field isn't exact. In the 32-bit world two thread ids
* can map to the same owner because we just 'or' in 0x80000000 and
* then clear the second highest bit, so that (for example) 0x2faced00
* and 0xafaced00 both map to 0xafaced00.
* In the 64-bit world, p_selock may not be large enough to hold a full
* thread pointer. If we ever need precise ownership (e.g. if we implement
* priority inheritance for page locks) then p_selock should become a
* uintptr_t and SE_WRITER should be -((uintptr_t)curthread >> 2).
*/
#define SE_WRITER (((selock_t)(ulong_t)curthread | INT_MIN) & ~SE_EWANTED)
#define SE_READER 1
/*
* A page that is deleted must be marked as such using the
* page_lock_delete() function. The page must be exclusively locked.
* The SE_DELETED marker is put in p_selock when this function is called.
* SE_DELETED must be distinct from any SE_WRITER value.
*/
#define SE_DELETED (1 | INT_MIN)
#ifdef VM_STATS
uint_t vph_kvp_count;
uint_t vph_swapfsvp_count;
uint_t vph_other;
#endif /* VM_STATS */
#ifdef VM_STATS
uint_t page_lock_count;
uint_t page_lock_miss;
uint_t page_lock_miss_lock;
uint_t page_lock_reclaim;
uint_t page_lock_bad_reclaim;
uint_t page_lock_same_page;
uint_t page_lock_upgrade;
uint_t page_lock_retired;
uint_t page_lock_upgrade_failed;
uint_t page_lock_deleted;
uint_t page_trylock_locked;
uint_t page_trylock_failed;
uint_t page_trylock_missed;
uint_t page_try_reclaim_upgrade;
#endif /* VM_STATS */
/*
* Acquire the "shared/exclusive" lock on a page.
*
* Returns 1 on success and locks the page appropriately.
* 0 on failure and does not lock the page.
*
* If `lock' is non-NULL, it will be dropped and reacquired in the
* failure case. This routine can block, and if it does
* it will always return a failure since the page identity [vp, off]
* or state may have changed.
*/
int
page_lock(page_t *pp, se_t se, kmutex_t *lock, reclaim_t reclaim)
{
return (page_lock_es(pp, se, lock, reclaim, 0));
}
/*
* With the addition of reader-writer lock semantics to page_lock_es,
* callers wanting an exclusive (writer) lock may prevent shared-lock
* (reader) starvation by setting the es parameter to SE_EXCL_WANTED.
* In this case, when an exclusive lock cannot be acquired, p_selock's
* SE_EWANTED bit is set. Shared-lock (reader) requests are also denied
* if the page is slated for retirement.
*
* The se and es parameters determine if the lock should be granted
* based on the following decision table:
*
* Lock wanted es flags p_selock/SE_EWANTED Action
* ----------- -------------- ------------------- ---------
* SE_EXCL any [1][2] unlocked/any grant lock, clear SE_EWANTED
* SE_EXCL SE_EWANTED any lock/any deny, set SE_EWANTED
* SE_EXCL none any lock/any deny
* SE_SHARED n/a [2] shared/0 grant
* SE_SHARED n/a [2] unlocked/0 grant
* SE_SHARED n/a shared/1 deny
* SE_SHARED n/a unlocked/1 deny
* SE_SHARED n/a excl/any deny
*
* Notes:
* [1] The code grants an exclusive lock to the caller and clears the bit
* SE_EWANTED whenever p_selock is unlocked, regardless of the SE_EWANTED
* bit's value. This was deemed acceptable as we are not concerned about
* exclusive-lock starvation. If this ever becomes an issue, a priority or
* fifo mechanism should also be implemented. Meantime, the thread that
* set SE_EWANTED should be prepared to catch this condition and reset it
*
* [2] Retired pages may not be locked at any time, regardless of the
* dispostion of se, unless the es parameter has SE_RETIRED flag set.
*
* Notes on values of "es":
*
* es & 1: page_lookup_create will attempt page relocation
* es & SE_EXCL_WANTED: caller wants SE_EWANTED set (eg. delete
* memory thread); this prevents reader-starvation of waiting
* writer thread(s) by giving priority to writers over readers.
* es & SE_RETIRED: caller wants to lock pages even if they are
* retired. Default is to deny the lock if the page is retired.
*
* And yes, we know, the semantics of this function are too complicated.
* It's on the list to be cleaned up.
*/
int
page_lock_es(page_t *pp, se_t se, kmutex_t *lock, reclaim_t reclaim, int es)
{
int retval;
kmutex_t *pse = PAGE_SE_MUTEX(pp);
int upgraded;
int reclaim_it;
ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1);
VM_STAT_ADD(page_lock_count);
upgraded = 0;
reclaim_it = 0;
mutex_enter(pse);
ASSERT(((es & SE_EXCL_WANTED) == 0) ||
((es & SE_EXCL_WANTED) && (se == SE_EXCL)));
if (PP_RETIRED(pp) && !(es & SE_RETIRED)) {
mutex_exit(pse);
VM_STAT_ADD(page_lock_retired);
return (0);
}
if (se == SE_SHARED && es == 1 && pp->p_selock == 0) {
se = SE_EXCL;
}
if ((reclaim == P_RECLAIM) && (PP_ISFREE(pp))) {
reclaim_it = 1;
if (se == SE_SHARED) {
/*
* This is an interesting situation.
*
* Remember that p_free can only change if
* p_selock < 0.
* p_free does not depend on our holding `pse'.
* And, since we hold `pse', p_selock can not change.
* So, if p_free changes on us, the page is already
* exclusively held, and we would fail to get p_selock
* regardless.
*
* We want to avoid getting the share
* lock on a free page that needs to be reclaimed.
* It is possible that some other thread has the share
* lock and has left the free page on the cache list.
* pvn_vplist_dirty() does this for brief periods.
* If the se_share is currently SE_EXCL, we will fail
* to acquire p_selock anyway. Blocking is the
* right thing to do.
* If we need to reclaim this page, we must get
* exclusive access to it, force the upgrade now.
* Again, we will fail to acquire p_selock if the
* page is not free and block.
*/
upgraded = 1;
se = SE_EXCL;
VM_STAT_ADD(page_lock_upgrade);
}
}
if (se == SE_EXCL) {
if (!(es & SE_EXCL_WANTED) && (pp->p_selock & SE_EWANTED)) {
/*
* if the caller wants a writer lock (but did not
* specify exclusive access), and there is a pending
* writer that wants exclusive access, return failure
*/
retval = 0;
} else if ((pp->p_selock & ~SE_EWANTED) == 0) {
/* no reader/writer lock held */
THREAD_KPRI_REQUEST();
/* this clears our setting of the SE_EWANTED bit */
pp->p_selock = SE_WRITER;
retval = 1;
} else {
/* page is locked */
if (es & SE_EXCL_WANTED) {
/* set the SE_EWANTED bit */
pp->p_selock |= SE_EWANTED;
}
retval = 0;
}
} else {
retval = 0;
if (pp->p_selock >= 0) {
if ((pp->p_selock & SE_EWANTED) == 0) {
pp->p_selock += SE_READER;
retval = 1;
}
}
}
if (retval == 0) {
if ((pp->p_selock & ~SE_EWANTED) == SE_DELETED) {
VM_STAT_ADD(page_lock_deleted);
mutex_exit(pse);
return (retval);
}
#ifdef VM_STATS
VM_STAT_ADD(page_lock_miss);
if (upgraded) {
VM_STAT_ADD(page_lock_upgrade_failed);
}
#endif
if (lock) {
VM_STAT_ADD(page_lock_miss_lock);
mutex_exit(lock);
}
/*
* Now, wait for the page to be unlocked and
* release the lock protecting p_cv and p_selock.
*/
cv_wait(&pp->p_cv, pse);
mutex_exit(pse);
/*
* The page identity may have changed while we were
* blocked. If we are willing to depend on "pp"
* still pointing to a valid page structure (i.e.,
* assuming page structures are not dynamically allocated
* or freed), we could try to lock the page if its
* identity hasn't changed.
*
* This needs to be measured, since we come back from
* cv_wait holding pse (the expensive part of this
* operation) we might as well try the cheap part.
* Though we would also have to confirm that dropping
* `lock' did not cause any grief to the callers.
*/
if (lock) {
mutex_enter(lock);
}
} else {
/*
* We have the page lock.
* If we needed to reclaim the page, and the page
* needed reclaiming (ie, it was free), then we
* have the page exclusively locked. We may need
* to downgrade the page.
*/
ASSERT((upgraded) ?
((PP_ISFREE(pp)) && PAGE_EXCL(pp)) : 1);
mutex_exit(pse);
/*
* We now hold this page's lock, either shared or
* exclusive. This will prevent its identity from changing.
* The page, however, may or may not be free. If the caller
* requested, and it is free, go reclaim it from the
* free list. If the page can't be reclaimed, return failure
* so that the caller can start all over again.
*
* NOTE:page_reclaim() releases the page lock (p_selock)
* if it can't be reclaimed.
*/
if (reclaim_it) {
if (!page_reclaim(pp, lock)) {
VM_STAT_ADD(page_lock_bad_reclaim);
retval = 0;
} else {
VM_STAT_ADD(page_lock_reclaim);
if (upgraded) {
page_downgrade(pp);
}
}
}
}
return (retval);
}
/*
* Clear the SE_EWANTED bit from p_selock. This function allows
* callers of page_lock_es and page_try_reclaim_lock to clear
* their setting of this bit if they decide they no longer wish
* to gain exclusive access to the page. Currently only
* delete_memory_thread uses this when the delete memory
* operation is cancelled.
*/
void
page_lock_clr_exclwanted(page_t *pp)
{
kmutex_t *pse = PAGE_SE_MUTEX(pp);
mutex_enter(pse);
pp->p_selock &= ~SE_EWANTED;
if (CV_HAS_WAITERS(&pp->p_cv))
cv_broadcast(&pp->p_cv);
mutex_exit(pse);
}
/*
* Read the comments inside of page_lock_es() carefully.
*
* SE_EXCL callers specifying es == SE_EXCL_WANTED will cause the
* SE_EWANTED bit of p_selock to be set when the lock cannot be obtained.
* This is used by threads subject to reader-starvation (eg. memory delete).
*
* When a thread using SE_EXCL_WANTED does not obtain the SE_EXCL lock,
* it is expected that it will retry at a later time. Threads that will
* not retry the lock *must* call page_lock_clr_exclwanted to clear the
* SE_EWANTED bit. (When a thread using SE_EXCL_WANTED obtains the lock,
* the bit is cleared.)
*/
int
page_try_reclaim_lock(page_t *pp, se_t se, int es)
{
kmutex_t *pse = PAGE_SE_MUTEX(pp);
selock_t old;
mutex_enter(pse);
old = pp->p_selock;
ASSERT(((es & SE_EXCL_WANTED) == 0) ||
((es & SE_EXCL_WANTED) && (se == SE_EXCL)));
if (PP_RETIRED(pp) && !(es & SE_RETIRED)) {
mutex_exit(pse);
VM_STAT_ADD(page_trylock_failed);
return (0);
}
if (se == SE_SHARED && es == 1 && old == 0) {
se = SE_EXCL;
}
if (se == SE_SHARED) {
if (!PP_ISFREE(pp)) {
if (old >= 0) {
/*
* Readers are not allowed when excl wanted
*/
if ((old & SE_EWANTED) == 0) {
pp->p_selock = old + SE_READER;
mutex_exit(pse);
return (1);
}
}
mutex_exit(pse);
return (0);
}
/*
* The page is free, so we really want SE_EXCL (below)
*/
VM_STAT_ADD(page_try_reclaim_upgrade);
}
/*
* The caller wants a writer lock. We try for it only if
* SE_EWANTED is not set, or if the caller specified
* SE_EXCL_WANTED.
*/
if (!(old & SE_EWANTED) || (es & SE_EXCL_WANTED)) {
if ((old & ~SE_EWANTED) == 0) {
/* no reader/writer lock held */
THREAD_KPRI_REQUEST();
/* this clears out our setting of the SE_EWANTED bit */
pp->p_selock = SE_WRITER;
mutex_exit(pse);
return (1);
}
}
if (es & SE_EXCL_WANTED) {
/* page is locked, set the SE_EWANTED bit */
pp->p_selock |= SE_EWANTED;
}
mutex_exit(pse);
return (0);
}
/*
* Acquire a page's "shared/exclusive" lock, but never block.
* Returns 1 on success, 0 on failure.
*/
int
page_trylock(page_t *pp, se_t se)
{
kmutex_t *pse = PAGE_SE_MUTEX(pp);
mutex_enter(pse);
if (pp->p_selock & SE_EWANTED || PP_RETIRED(pp) ||
(se == SE_SHARED && PP_PR_NOSHARE(pp))) {
/*
* Fail if a thread wants exclusive access and page is
* retired, if the page is slated for retirement, or a
* share lock is requested.
*/
mutex_exit(pse);
VM_STAT_ADD(page_trylock_failed);
return (0);
}
if (se == SE_EXCL) {
if (pp->p_selock == 0) {
THREAD_KPRI_REQUEST();
pp->p_selock = SE_WRITER;
mutex_exit(pse);
return (1);
}
} else {
if (pp->p_selock >= 0) {
pp->p_selock += SE_READER;
mutex_exit(pse);
return (1);
}
}
mutex_exit(pse);
return (0);
}
/*
* Variant of page_unlock() specifically for the page freelist
* code. The mere existence of this code is a vile hack that
* has resulted due to the backwards locking order of the page
* freelist manager; please don't call it.
*/
void
page_unlock_nocapture(page_t *pp)
{
kmutex_t *pse = PAGE_SE_MUTEX(pp);
selock_t old;
mutex_enter(pse);
old = pp->p_selock;
if ((old & ~SE_EWANTED) == SE_READER) {
pp->p_selock = old & ~SE_READER;
if (CV_HAS_WAITERS(&pp->p_cv))
cv_broadcast(&pp->p_cv);
} else if ((old & ~SE_EWANTED) == SE_DELETED) {
panic("page_unlock_nocapture: page %p is deleted", (void *)pp);
} else if (old < 0) {
THREAD_KPRI_RELEASE();
pp->p_selock &= SE_EWANTED;
if (CV_HAS_WAITERS(&pp->p_cv))
cv_broadcast(&pp->p_cv);
} else if ((old & ~SE_EWANTED) > SE_READER) {
pp->p_selock = old - SE_READER;
} else {
panic("page_unlock_nocapture: page %p is not locked",
(void *)pp);
}
mutex_exit(pse);
}
/*
* Release the page's "shared/exclusive" lock and wake up anyone
* who might be waiting for it.
*/
void
page_unlock(page_t *pp)
{
kmutex_t *pse = PAGE_SE_MUTEX(pp);
selock_t old;
mutex_enter(pse);
old = pp->p_selock;
if ((old & ~SE_EWANTED) == SE_READER) {
pp->p_selock = old & ~SE_READER;
if (CV_HAS_WAITERS(&pp->p_cv))
cv_broadcast(&pp->p_cv);
} else if ((old & ~SE_EWANTED) == SE_DELETED) {
panic("page_unlock: page %p is deleted", (void *)pp);
} else if (old < 0) {
THREAD_KPRI_RELEASE();
pp->p_selock &= SE_EWANTED;
if (CV_HAS_WAITERS(&pp->p_cv))
cv_broadcast(&pp->p_cv);
} else if ((old & ~SE_EWANTED) > SE_READER) {
pp->p_selock = old - SE_READER;
} else {
panic("page_unlock: page %p is not locked", (void *)pp);
}
if (pp->p_selock == 0) {
/*
* If the T_CAPTURING bit is set, that means that we should
* not try and capture the page again as we could recurse
* which could lead to a stack overflow panic or spending a
* relatively long time in the kernel making no progress.
*/
if ((pp->p_toxic & PR_CAPTURE) &&
!(curthread->t_flag & T_CAPTURING) &&
!PP_RETIRED(pp)) {
THREAD_KPRI_REQUEST();
pp->p_selock = SE_WRITER;
mutex_exit(pse);
page_unlock_capture(pp);
} else {
mutex_exit(pse);
}
} else {
mutex_exit(pse);
}
}
/*
* Try to upgrade the lock on the page from a "shared" to an
* "exclusive" lock. Since this upgrade operation is done while
* holding the mutex protecting this page, no one else can acquire this page's
* lock and change the page. Thus, it is safe to drop the "shared"
* lock and attempt to acquire the "exclusive" lock.
*
* Returns 1 on success, 0 on failure.
*/
int
page_tryupgrade(page_t *pp)
{
kmutex_t *pse = PAGE_SE_MUTEX(pp);
mutex_enter(pse);
if (!(pp->p_selock & SE_EWANTED)) {
/* no threads want exclusive access, try upgrade */
if (pp->p_selock == SE_READER) {
THREAD_KPRI_REQUEST();
/* convert to exclusive lock */
pp->p_selock = SE_WRITER;
mutex_exit(pse);
return (1);
}
}
mutex_exit(pse);
return (0);
}
/*
* Downgrade the "exclusive" lock on the page to a "shared" lock
* while holding the mutex protecting this page's p_selock field.
*/
void
page_downgrade(page_t *pp)
{
kmutex_t *pse = PAGE_SE_MUTEX(pp);
int excl_waiting;
ASSERT((pp->p_selock & ~SE_EWANTED) != SE_DELETED);
ASSERT(PAGE_EXCL(pp));
mutex_enter(pse);
excl_waiting = pp->p_selock & SE_EWANTED;
THREAD_KPRI_RELEASE();
pp->p_selock = SE_READER | excl_waiting;
if (CV_HAS_WAITERS(&pp->p_cv))
cv_broadcast(&pp->p_cv);
mutex_exit(pse);
}
void
page_lock_delete(page_t *pp)
{
kmutex_t *pse = PAGE_SE_MUTEX(pp);
ASSERT(PAGE_EXCL(pp));
ASSERT(pp->p_vnode == NULL);
ASSERT(pp->p_offset == (u_offset_t)-1);
ASSERT(!PP_ISFREE(pp));
mutex_enter(pse);
THREAD_KPRI_RELEASE();
pp->p_selock = SE_DELETED;
if (CV_HAS_WAITERS(&pp->p_cv))
cv_broadcast(&pp->p_cv);
mutex_exit(pse);
}
int
page_deleted(page_t *pp)
{
return (pp->p_selock == SE_DELETED);
}
/*
* Implement the io lock for pages
*/
void
page_iolock_init(page_t *pp)
{
pp->p_iolock_state = 0;
cv_init(&pp->p_io_cv, NULL, CV_DEFAULT, NULL);
}
/*
* Acquire the i/o lock on a page.
*/
void
page_io_lock(page_t *pp)
{
kmutex_t *pio;
pio = PAGE_IO_MUTEX(pp);
mutex_enter(pio);
while (pp->p_iolock_state & PAGE_IO_INUSE) {
cv_wait(&(pp->p_io_cv), pio);
}
pp->p_iolock_state |= PAGE_IO_INUSE;
mutex_exit(pio);
}
/*
* Release the i/o lock on a page.
*/
void
page_io_unlock(page_t *pp)
{
kmutex_t *pio;
pio = PAGE_IO_MUTEX(pp);
mutex_enter(pio);
cv_broadcast(&pp->p_io_cv);
pp->p_iolock_state &= ~PAGE_IO_INUSE;
mutex_exit(pio);
}
/*
* Try to acquire the i/o lock on a page without blocking.
* Returns 1 on success, 0 on failure.
*/
int
page_io_trylock(page_t *pp)
{
kmutex_t *pio;
if (pp->p_iolock_state & PAGE_IO_INUSE)
return (0);
pio = PAGE_IO_MUTEX(pp);
mutex_enter(pio);
if (pp->p_iolock_state & PAGE_IO_INUSE) {
mutex_exit(pio);
return (0);
}
pp->p_iolock_state |= PAGE_IO_INUSE;
mutex_exit(pio);
return (1);
}
/*
* Wait until the i/o lock is not held.
*/
void
page_io_wait(page_t *pp)
{
kmutex_t *pio;
pio = PAGE_IO_MUTEX(pp);
mutex_enter(pio);
while (pp->p_iolock_state & PAGE_IO_INUSE) {
cv_wait(&(pp->p_io_cv), pio);
}
mutex_exit(pio);
}
/*
* Returns 1 on success, 0 on failure.
*/
int
page_io_locked(page_t *pp)
{
return (pp->p_iolock_state & PAGE_IO_INUSE);
}
/*
* Assert that the i/o lock on a page is held.
* Returns 1 on success, 0 on failure.
*/
int
page_iolock_assert(page_t *pp)
{
return (page_io_locked(pp));
}
/*
* Wrapper exported to kernel routines that are built
* platform-independent (the macro is platform-dependent;
* the size of vph_mutex[] is based on NCPU).
*
* Note that you can do stress testing on this by setting the
* variable page_vnode_mutex_stress to something other than
* zero in a DEBUG kernel in a debugger after loading the kernel.
* Setting it after the kernel is running may not work correctly.
*/
#ifdef DEBUG
static int page_vnode_mutex_stress = 0;
#endif
kmutex_t *
page_vnode_mutex(vnode_t *vp)
{
if (vp == &kvp)
return (&vph_mutex[VPH_TABLE_SIZE + 0]);
if (vp == &zvp)
return (&vph_mutex[VPH_TABLE_SIZE + 1]);
#ifdef DEBUG
if (page_vnode_mutex_stress != 0)
return (&vph_mutex[0]);
#endif
return (&vph_mutex[VP_HASH_FUNC(vp)]);
}
kmutex_t *
page_se_mutex(page_t *pp)
{
return (PAGE_SE_MUTEX(pp));
}
#ifdef VM_STATS
uint_t pszclck_stat[4];
#endif
/*
* Find, take and return a mutex held by hat_page_demote().
* Called by page_demote_vp_pages() before hat_page_demote() call and by
* routines that want to block hat_page_demote() but can't do it
* via locking all constituent pages.
*
* Return NULL if p_szc is 0.
*
* It should only be used for pages that can be demoted by hat_page_demote()
* i.e. non swapfs file system pages. The logic here is lifted from
* sfmmu_mlspl_enter() except there's no need to worry about p_szc increase
* since the page is locked and not free.
*
* Hash of the root page is used to find the lock.
* To find the root in the presense of hat_page_demote() chageing the location
* of the root this routine relies on the fact that hat_page_demote() changes
* root last.
*
* If NULL is returned pp's p_szc is guaranteed to be 0. If non NULL is
* returned pp's p_szc may be any value.
*/
kmutex_t *
page_szc_lock(page_t *pp)
{
kmutex_t *mtx;
page_t *rootpp;
uint_t szc;
uint_t rszc;
uint_t pszc = pp->p_szc;
ASSERT(pp != NULL);
ASSERT(PAGE_LOCKED(pp));
ASSERT(!PP_ISFREE(pp));
ASSERT(pp->p_vnode != NULL);
ASSERT(!IS_SWAPFSVP(pp->p_vnode));
ASSERT(!PP_ISKAS(pp));
again:
if (pszc == 0) {
VM_STAT_ADD(pszclck_stat[0]);
return (NULL);
}
/* The lock lives in the root page */
rootpp = PP_GROUPLEADER(pp, pszc);
mtx = PAGE_SZC_MUTEX(rootpp);
mutex_enter(mtx);
/*
* since p_szc can only decrease if pp == rootpp
* rootpp will be always the same i.e we have the right root
* regardless of rootpp->p_szc.
* If location of pp's root didn't change after we took
* the lock we have the right root. return mutex hashed off it.
*/
if (pp == rootpp || (rszc = rootpp->p_szc) == pszc) {
VM_STAT_ADD(pszclck_stat[1]);
return (mtx);
}
/*
* root location changed because page got demoted.
* locate the new root.
*/
if (rszc < pszc) {
szc = pp->p_szc;
ASSERT(szc < pszc);
mutex_exit(mtx);
pszc = szc;
VM_STAT_ADD(pszclck_stat[2]);
goto again;
}
VM_STAT_ADD(pszclck_stat[3]);
/*
* current hat_page_demote not done yet.
* wait for it to finish.
*/
mutex_exit(mtx);
rootpp = PP_GROUPLEADER(rootpp, rszc);
mtx = PAGE_SZC_MUTEX(rootpp);
mutex_enter(mtx);
mutex_exit(mtx);
ASSERT(rootpp->p_szc < rszc);
goto again;
}
int
page_szc_lock_assert(page_t *pp)
{
page_t *rootpp = PP_PAGEROOT(pp);
kmutex_t *mtx = PAGE_SZC_MUTEX(rootpp);
return (MUTEX_HELD(mtx));
}
/*
* memseg locking
*/
static krwlock_t memsegslock;
/*
* memlist (phys_install, phys_avail) locking.
*/
static krwlock_t memlists_lock;
int
memsegs_trylock(int writer)
{
return (rw_tryenter(&memsegslock, writer ? RW_WRITER : RW_READER));
}
void
memsegs_lock(int writer)
{
rw_enter(&memsegslock, writer ? RW_WRITER : RW_READER);
}
/*ARGSUSED*/
void
memsegs_unlock(int writer)
{
rw_exit(&memsegslock);
}
int
memsegs_lock_held(void)
{
return (RW_LOCK_HELD(&memsegslock));
}
void
memlist_read_lock(void)
{
rw_enter(&memlists_lock, RW_READER);
}
void
memlist_read_unlock(void)
{
rw_exit(&memlists_lock);
}
void
memlist_write_lock(void)
{
rw_enter(&memlists_lock, RW_WRITER);
}
void
memlist_write_unlock(void)
{
rw_exit(&memlists_lock);
}
|