summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/vm/seg_kmem.c
blob: 90e1b73b70ceb3bbf1ad9f81cf94973335f2faba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
 */

#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/tuneable.h>
#include <sys/systm.h>
#include <sys/vm.h>
#include <sys/kmem.h>
#include <sys/vmem.h>
#include <sys/mman.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/dumphdr.h>
#include <sys/bootconf.h>
#include <sys/lgrp.h>
#include <vm/seg_kmem.h>
#include <vm/hat.h>
#include <vm/page.h>
#include <vm/vm_dep.h>
#include <vm/faultcode.h>
#include <sys/promif.h>
#include <vm/seg_kp.h>
#include <sys/bitmap.h>
#include <sys/mem_cage.h>

#ifdef __sparc
#include <sys/ivintr.h>
#include <sys/panic.h>
#endif

/*
 * seg_kmem is the primary kernel memory segment driver.  It
 * maps the kernel heap [kernelheap, ekernelheap), module text,
 * and all memory which was allocated before the VM was initialized
 * into kas.
 *
 * Pages which belong to seg_kmem are hashed into &kvp vnode at
 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1.
 * They must never be paged out since segkmem_fault() is a no-op to
 * prevent recursive faults.
 *
 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on
 * __x86 and are unlocked (p_sharelock == 0) on __sparc.  Once __x86
 * supports relocation the #ifdef kludges can be removed.
 *
 * seg_kmem pages may be subject to relocation by page_relocate(),
 * provided that the HAT supports it; if this is so, segkmem_reloc
 * will be set to a nonzero value. All boot time allocated memory as
 * well as static memory is considered off limits to relocation.
 * Pages are "relocatable" if p_state does not have P_NORELOC set, so
 * we request P_NORELOC pages for memory that isn't safe to relocate.
 *
 * The kernel heap is logically divided up into four pieces:
 *
 *   heap32_arena is for allocations that require 32-bit absolute
 *   virtual addresses (e.g. code that uses 32-bit pointers/offsets).
 *
 *   heap_core is for allocations that require 2GB *relative*
 *   offsets; in other words all memory from heap_core is within
 *   2GB of all other memory from the same arena. This is a requirement
 *   of the addressing modes of some processors in supervisor code.
 *
 *   heap_arena is the general heap arena.
 *
 *   static_arena is the static memory arena.  Allocations from it
 *   are not subject to relocation so it is safe to use the memory
 *   physical address as well as the virtual address (e.g. the VA to
 *   PA translations are static).  Caches may import from static_arena;
 *   all other static memory allocations should use static_alloc_arena.
 *
 * On some platforms which have limited virtual address space, seg_kmem
 * may share [kernelheap, ekernelheap) with seg_kp; if this is so,
 * segkp_bitmap is non-NULL, and each bit represents a page of virtual
 * address space which is actually seg_kp mapped.
 */

extern ulong_t *segkp_bitmap;   /* Is set if segkp is from the kernel heap */

char *kernelheap;		/* start of primary kernel heap */
char *ekernelheap;		/* end of primary kernel heap */
struct seg kvseg;		/* primary kernel heap segment */
struct seg kvseg_core;		/* "core" kernel heap segment */
struct seg kzioseg;		/* Segment for zio mappings */
vmem_t *heap_arena;		/* primary kernel heap arena */
vmem_t *heap_core_arena;	/* core kernel heap arena */
char *heap_core_base;		/* start of core kernel heap arena */
char *heap_lp_base;		/* start of kernel large page heap arena */
char *heap_lp_end;		/* end of kernel large page heap arena */
vmem_t *hat_memload_arena;	/* HAT translation data */
struct seg kvseg32;		/* 32-bit kernel heap segment */
vmem_t *heap32_arena;		/* 32-bit kernel heap arena */
vmem_t *heaptext_arena;		/* heaptext arena */
struct as kas;			/* kernel address space */
int segkmem_reloc;		/* enable/disable relocatable segkmem pages */
vmem_t *static_arena;		/* arena for caches to import static memory */
vmem_t *static_alloc_arena;	/* arena for allocating static memory */
vmem_t *zio_arena = NULL;	/* arena for allocating zio memory */
vmem_t *zio_alloc_arena = NULL;	/* arena for allocating zio memory */

/*
 * seg_kmem driver can map part of the kernel heap with large pages.
 * Currently this functionality is implemented for sparc platforms only.
 *
 * The large page size "segkmem_lpsize" for kernel heap is selected in the
 * platform specific code. It can also be modified via /etc/system file.
 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large
 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to
 * match segkmem_lpsize.
 *
 * At boot time we carve from kernel heap arena a range of virtual addresses
 * that will be used for large page mappings. This range [heap_lp_base,
 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also
 * create "kmem_lp_arena" that caches memory already backed up by large
 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena.
 */

size_t	segkmem_lpsize;
static  uint_t	segkmem_lpshift = PAGESHIFT;
int	segkmem_lpszc = 0;

size_t  segkmem_kmemlp_quantum = 0x400000;	/* 4MB */
size_t  segkmem_heaplp_quantum;
vmem_t *heap_lp_arena;
static  vmem_t *kmem_lp_arena;
static  vmem_t *segkmem_ppa_arena;
static	segkmem_lpcb_t segkmem_lpcb;

/*
 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory
 * consumed by the large page heap. By default this parameter is set to 1/8 of
 * physmem but can be adjusted through /etc/system either directly or
 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem
 * we allow for large page heap.
 */
size_t  segkmem_kmemlp_max;
static  uint_t  segkmem_kmemlp_pcnt;

/*
 * Getting large pages for kernel heap could be problematic due to
 * physical memory fragmentation. That's why we allow to preallocate
 * "segkmem_kmemlp_min" bytes at boot time.
 */
static  size_t	segkmem_kmemlp_min;

/*
 * Throttling is used to avoid expensive tries to allocate large pages
 * for kernel heap when a lot of succesive attempts to do so fail.
 */
static  ulong_t segkmem_lpthrottle_max = 0x400000;
static  ulong_t segkmem_lpthrottle_start = 0x40;
static  ulong_t segkmem_use_lpthrottle = 1;

/*
 * Freed pages accumulate on a garbage list until segkmem is ready,
 * at which point we call segkmem_gc() to free it all.
 */
typedef struct segkmem_gc_list {
	struct segkmem_gc_list	*gc_next;
	vmem_t			*gc_arena;
	size_t			gc_size;
} segkmem_gc_list_t;

static segkmem_gc_list_t *segkmem_gc_list;

/*
 * Allocations from the hat_memload arena add VM_MEMLOAD to their
 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs
 * to take steps to prevent infinite recursion.  HAT allocations also
 * must be non-relocatable to prevent recursive page faults.
 */
static void *
hat_memload_alloc(vmem_t *vmp, size_t size, int flags)
{
	flags |= (VM_MEMLOAD | VM_NORELOC);
	return (segkmem_alloc(vmp, size, flags));
}

/*
 * Allocations from static_arena arena (or any other arena that uses
 * segkmem_alloc_permanent()) require non-relocatable (permanently
 * wired) memory pages, since these pages are referenced by physical
 * as well as virtual address.
 */
void *
segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags)
{
	return (segkmem_alloc(vmp, size, flags | VM_NORELOC));
}

/*
 * Initialize kernel heap boundaries.
 */
void
kernelheap_init(
	void *heap_start,
	void *heap_end,
	char *first_avail,
	void *core_start,
	void *core_end)
{
	uintptr_t textbase;
	size_t core_size;
	size_t heap_size;
	vmem_t *heaptext_parent;
	size_t	heap_lp_size = 0;
#ifdef __sparc
	size_t kmem64_sz = kmem64_aligned_end - kmem64_base;
#endif	/* __sparc */

	kernelheap = heap_start;
	ekernelheap = heap_end;

#ifdef __sparc
	heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4);
	/*
	 * Bias heap_lp start address by kmem64_sz to reduce collisions
	 * in 4M kernel TSB between kmem64 area and heap_lp
	 */
	kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M);
	if (kmem64_sz <= heap_lp_size / 2)
		heap_lp_size -= kmem64_sz;
	heap_lp_base = ekernelheap - heap_lp_size;
	heap_lp_end = heap_lp_base + heap_lp_size;
#endif	/* __sparc */

	/*
	 * If this platform has a 'core' heap area, then the space for
	 * overflow module text should be carved out of the end of that
	 * heap.  Otherwise, it gets carved out of the general purpose
	 * heap.
	 */
	core_size = (uintptr_t)core_end - (uintptr_t)core_start;
	if (core_size > 0) {
		ASSERT(core_size >= HEAPTEXT_SIZE);
		textbase = (uintptr_t)core_end - HEAPTEXT_SIZE;
		core_size -= HEAPTEXT_SIZE;
	}
#ifndef __sparc
	else {
		ekernelheap -= HEAPTEXT_SIZE;
		textbase = (uintptr_t)ekernelheap;
	}
#endif

	heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap;
	heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE,
	    segkmem_alloc, segkmem_free);

	if (core_size > 0) {
		heap_core_arena = vmem_create("heap_core", core_start,
		    core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
		heap_core_base = core_start;
	} else {
		heap_core_arena = heap_arena;
		heap_core_base = kernelheap;
	}

	/*
	 * reserve space for the large page heap. If large pages for kernel
	 * heap is enabled large page heap arean will be created later in the
	 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated
	 * range will be returned back to the heap_arena.
	 */
	if (heap_lp_size) {
		(void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0,
		    heap_lp_base, heap_lp_end,
		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
	}

	/*
	 * Remove the already-spoken-for memory range [kernelheap, first_avail).
	 */
	(void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE,
	    0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC);

#ifdef __sparc
	heap32_arena = vmem_create("heap32", (void *)SYSBASE32,
	    SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL,
	    NULL, NULL, 0, VM_SLEEP);
	/*
	 * Prom claims the physical and virtual resources used by panicbuf
	 * and inter_vec_table. So reserve space for panicbuf, intr_vec_table,
	 * reserved interrupt vector data structures from 32-bit heap.
	 */
	(void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0,
	    panicbuf, panicbuf + PANICBUFSIZE,
	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);

	(void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0,
	    intr_vec_table, (caddr_t)intr_vec_table + IVSIZE,
	    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);

	textbase = SYSLIMIT32 - HEAPTEXT_SIZE;
	heaptext_parent = NULL;
#else	/* __sparc */
	heap32_arena = heap_core_arena;
	heaptext_parent = heap_core_arena;
#endif	/* __sparc */

	heaptext_arena = vmem_create("heaptext", (void *)textbase,
	    HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP);

	/*
	 * Create a set of arenas for memory with static translations
	 * (e.g. VA -> PA translations cannot change).  Since using
	 * kernel pages by physical address implies it isn't safe to
	 * walk across page boundaries, the static_arena quantum must
	 * be PAGESIZE.  Any kmem caches that require static memory
	 * should source from static_arena, while direct allocations
	 * should only use static_alloc_arena.
	 */
	static_arena = vmem_create("static", NULL, 0, PAGESIZE,
	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
	static_alloc_arena = vmem_create("static_alloc", NULL, 0,
	    sizeof (uint64_t), vmem_alloc, vmem_free, static_arena,
	    0, VM_SLEEP);

	/*
	 * Create an arena for translation data (ptes, hmes, or hblks).
	 * We need an arena for this because hat_memload() is essential
	 * to vmem_populate() (see comments in common/os/vmem.c).
	 *
	 * Note: any kmem cache that allocates from hat_memload_arena
	 * must be created as a KMC_NOHASH cache (i.e. no external slab
	 * and bufctl structures to allocate) so that slab creation doesn't
	 * require anything more than a single vmem_alloc().
	 */
	hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE,
	    hat_memload_alloc, segkmem_free, heap_arena, 0,
	    VM_SLEEP | VMC_POPULATOR | VMC_DUMPSAFE);
}

void
boot_mapin(caddr_t addr, size_t size)
{
	caddr_t	 eaddr;
	page_t	*pp;
	pfn_t	 pfnum;

	if (page_resv(btop(size), KM_NOSLEEP) == 0)
		panic("boot_mapin: page_resv failed");

	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
		pfnum = va_to_pfn(addr);
		if (pfnum == PFN_INVALID)
			continue;
		if ((pp = page_numtopp_nolock(pfnum)) == NULL)
			panic("boot_mapin(): No pp for pfnum = %lx", pfnum);

		/*
		 * must break up any large pages that may have constituent
		 * pages being utilized for BOP_ALLOC()'s before calling
		 * page_numtopp().The locking code (ie. page_reclaim())
		 * can't handle them
		 */
		if (pp->p_szc != 0)
			page_boot_demote(pp);

		pp = page_numtopp(pfnum, SE_EXCL);
		if (pp == NULL || PP_ISFREE(pp))
			panic("boot_alloc: pp is NULL or free");

		/*
		 * If the cage is on but doesn't yet contain this page,
		 * mark it as non-relocatable.
		 */
		if (kcage_on && !PP_ISNORELOC(pp)) {
			PP_SETNORELOC(pp);
			PLCNT_XFER_NORELOC(pp);
		}

		(void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL);
		pp->p_lckcnt = 1;
#if defined(__x86)
		page_downgrade(pp);
#else
		page_unlock(pp);
#endif
	}
}

/*
 * Get pages from boot and hash them into the kernel's vp.
 * Used after page structs have been allocated, but before segkmem is ready.
 */
void *
boot_alloc(void *inaddr, size_t size, uint_t align)
{
	caddr_t addr = inaddr;

	if (bootops == NULL)
		prom_panic("boot_alloc: attempt to allocate memory after "
		    "BOP_GONE");

	size = ptob(btopr(size));
#ifdef __sparc
	if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr)
		panic("boot_alloc: bop_alloc_chunk failed");
#else
	if (BOP_ALLOC(bootops, addr, size, align) != addr)
		panic("boot_alloc: BOP_ALLOC failed");
#endif
	boot_mapin((caddr_t)addr, size);
	return (addr);
}

static void
segkmem_badop()
{
	panic("segkmem_badop");
}

#define	SEGKMEM_BADOP(t)	(t(*)())segkmem_badop

/*ARGSUSED*/
static faultcode_t
segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size,
	enum fault_type type, enum seg_rw rw)
{
	pgcnt_t npages;
	spgcnt_t pg;
	page_t *pp;
	struct vnode *vp = seg->s_data;

	ASSERT(RW_READ_HELD(&seg->s_as->a_lock));

	if (seg->s_as != &kas || size > seg->s_size ||
	    addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
		panic("segkmem_fault: bad args");

	/*
	 * If it is one of segkp pages, call segkp_fault.
	 */
	if (segkp_bitmap && seg == &kvseg &&
	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
		return (SEGOP_FAULT(hat, segkp, addr, size, type, rw));

	if (rw != S_READ && rw != S_WRITE && rw != S_OTHER)
		return (FC_NOSUPPORT);

	npages = btopr(size);

	switch (type) {
	case F_SOFTLOCK:	/* lock down already-loaded translations */
		for (pg = 0; pg < npages; pg++) {
			pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
			    SE_SHARED);
			if (pp == NULL) {
				/*
				 * Hmm, no page. Does a kernel mapping
				 * exist for it?
				 */
				if (!hat_probe(kas.a_hat, addr)) {
					addr -= PAGESIZE;
					while (--pg >= 0) {
						pp = page_find(vp, (u_offset_t)
						    (uintptr_t)addr);
						if (pp)
							page_unlock(pp);
						addr -= PAGESIZE;
					}
					return (FC_NOMAP);
				}
			}
			addr += PAGESIZE;
		}
		if (rw == S_OTHER)
			hat_reserve(seg->s_as, addr, size);
		return (0);
	case F_SOFTUNLOCK:
		while (npages--) {
			pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
			if (pp)
				page_unlock(pp);
			addr += PAGESIZE;
		}
		return (0);
	default:
		return (FC_NOSUPPORT);
	}
	/*NOTREACHED*/
}

static int
segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
{
	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));

	if (seg->s_as != &kas || size > seg->s_size ||
	    addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
		panic("segkmem_setprot: bad args");

	/*
	 * If it is one of segkp pages, call segkp.
	 */
	if (segkp_bitmap && seg == &kvseg &&
	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
		return (SEGOP_SETPROT(segkp, addr, size, prot));

	if (prot == 0)
		hat_unload(kas.a_hat, addr, size, HAT_UNLOAD);
	else
		hat_chgprot(kas.a_hat, addr, size, prot);
	return (0);
}

/*
 * This is a dummy segkmem function overloaded to call segkp
 * when segkp is under the heap.
 */
/* ARGSUSED */
static int
segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
{
	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));

	if (seg->s_as != &kas)
		segkmem_badop();

	/*
	 * If it is one of segkp pages, call into segkp.
	 */
	if (segkp_bitmap && seg == &kvseg &&
	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
		return (SEGOP_CHECKPROT(segkp, addr, size, prot));

	segkmem_badop();
	return (0);
}

/*
 * This is a dummy segkmem function overloaded to call segkp
 * when segkp is under the heap.
 */
/* ARGSUSED */
static int
segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
{
	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));

	if (seg->s_as != &kas)
		segkmem_badop();

	/*
	 * If it is one of segkp pages, call into segkp.
	 */
	if (segkp_bitmap && seg == &kvseg &&
	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
		return (SEGOP_KLUSTER(segkp, addr, delta));

	segkmem_badop();
	return (0);
}

static void
segkmem_xdump_range(void *arg, void *start, size_t size)
{
	struct as *as = arg;
	caddr_t addr = start;
	caddr_t addr_end = addr + size;

	while (addr < addr_end) {
		pfn_t pfn = hat_getpfnum(kas.a_hat, addr);
		if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn))
			dump_addpage(as, addr, pfn);
		addr += PAGESIZE;
		dump_timeleft = dump_timeout;
	}
}

static void
segkmem_dump_range(void *arg, void *start, size_t size)
{
	caddr_t addr = start;
	caddr_t addr_end = addr + size;

	/*
	 * If we are about to start dumping the range of addresses we
	 * carved out of the kernel heap for the large page heap walk
	 * heap_lp_arena to find what segments are actually populated
	 */
	if (SEGKMEM_USE_LARGEPAGES &&
	    addr == heap_lp_base && addr_end == heap_lp_end &&
	    vmem_size(heap_lp_arena, VMEM_ALLOC) < size) {
		vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT,
		    segkmem_xdump_range, arg);
	} else {
		segkmem_xdump_range(arg, start, size);
	}
}

static void
segkmem_dump(struct seg *seg)
{
	/*
	 * The kernel's heap_arena (represented by kvseg) is a very large
	 * VA space, most of which is typically unused.  To speed up dumping
	 * we use vmem_walk() to quickly find the pieces of heap_arena that
	 * are actually in use.  We do the same for heap32_arena and
	 * heap_core.
	 *
	 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage()
	 * may ultimately need to allocate memory.  Reentrant walks are
	 * necessarily imperfect snapshots.  The kernel heap continues
	 * to change during a live crash dump, for example.  For a normal
	 * crash dump, however, we know that there won't be any other threads
	 * messing with the heap.  Therefore, at worst, we may fail to dump
	 * the pages that get allocated by the act of dumping; but we will
	 * always dump every page that was allocated when the walk began.
	 *
	 * The other segkmem segments are dense (fully populated), so there's
	 * no need to use this technique when dumping them.
	 *
	 * Note: when adding special dump handling for any new sparsely-
	 * populated segments, be sure to add similar handling to the ::kgrep
	 * code in mdb.
	 */
	if (seg == &kvseg) {
		vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT,
		    segkmem_dump_range, seg->s_as);
#ifndef __sparc
		vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
		    segkmem_dump_range, seg->s_as);
#endif
	} else if (seg == &kvseg_core) {
		vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT,
		    segkmem_dump_range, seg->s_as);
	} else if (seg == &kvseg32) {
		vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT,
		    segkmem_dump_range, seg->s_as);
		vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
		    segkmem_dump_range, seg->s_as);
	} else if (seg == &kzioseg) {
		/*
		 * We don't want to dump pages attached to kzioseg since they
		 * contain file data from ZFS.  If this page's segment is
		 * kzioseg return instead of writing it to the dump device.
		 */
		return;
	} else {
		segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size);
	}
}

/*
 * lock/unlock kmem pages over a given range [addr, addr+len).
 * Returns a shadow list of pages in ppp. If there are holes
 * in the range (e.g. some of the kernel mappings do not have
 * underlying page_ts) returns ENOTSUP so that as_pagelock()
 * will handle the range via as_fault(F_SOFTLOCK).
 */
/*ARGSUSED*/
static int
segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len,
	page_t ***ppp, enum lock_type type, enum seg_rw rw)
{
	page_t **pplist, *pp;
	pgcnt_t npages;
	spgcnt_t pg;
	size_t nb;
	struct vnode *vp = seg->s_data;

	ASSERT(ppp != NULL);

	/*
	 * If it is one of segkp pages, call into segkp.
	 */
	if (segkp_bitmap && seg == &kvseg &&
	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
		return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw));

	npages = btopr(len);
	nb = sizeof (page_t *) * npages;

	if (type == L_PAGEUNLOCK) {
		pplist = *ppp;
		ASSERT(pplist != NULL);

		for (pg = 0; pg < npages; pg++) {
			pp = pplist[pg];
			page_unlock(pp);
		}
		kmem_free(pplist, nb);
		return (0);
	}

	ASSERT(type == L_PAGELOCK);

	pplist = kmem_alloc(nb, KM_NOSLEEP);
	if (pplist == NULL) {
		*ppp = NULL;
		return (ENOTSUP);	/* take the slow path */
	}

	for (pg = 0; pg < npages; pg++) {
		pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED);
		if (pp == NULL) {
			while (--pg >= 0)
				page_unlock(pplist[pg]);
			kmem_free(pplist, nb);
			*ppp = NULL;
			return (ENOTSUP);
		}
		pplist[pg] = pp;
		addr += PAGESIZE;
	}

	*ppp = pplist;
	return (0);
}

/*
 * This is a dummy segkmem function overloaded to call segkp
 * when segkp is under the heap.
 */
/* ARGSUSED */
static int
segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
{
	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));

	if (seg->s_as != &kas)
		segkmem_badop();

	/*
	 * If it is one of segkp pages, call into segkp.
	 */
	if (segkp_bitmap && seg == &kvseg &&
	    BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base))))
		return (SEGOP_GETMEMID(segkp, addr, memidp));

	segkmem_badop();
	return (0);
}

/*ARGSUSED*/
static lgrp_mem_policy_info_t *
segkmem_getpolicy(struct seg *seg, caddr_t addr)
{
	return (NULL);
}

/*ARGSUSED*/
static int
segkmem_capable(struct seg *seg, segcapability_t capability)
{
	if (capability == S_CAPABILITY_NOMINFLT)
		return (1);
	return (0);
}

static struct seg_ops segkmem_ops = {
	SEGKMEM_BADOP(int),		/* dup */
	SEGKMEM_BADOP(int),		/* unmap */
	SEGKMEM_BADOP(void),		/* free */
	segkmem_fault,
	SEGKMEM_BADOP(faultcode_t),	/* faulta */
	segkmem_setprot,
	segkmem_checkprot,
	segkmem_kluster,
	SEGKMEM_BADOP(size_t),		/* swapout */
	SEGKMEM_BADOP(int),		/* sync */
	SEGKMEM_BADOP(size_t),		/* incore */
	SEGKMEM_BADOP(int),		/* lockop */
	SEGKMEM_BADOP(int),		/* getprot */
	SEGKMEM_BADOP(u_offset_t),	/* getoffset */
	SEGKMEM_BADOP(int),		/* gettype */
	SEGKMEM_BADOP(int),		/* getvp */
	SEGKMEM_BADOP(int),		/* advise */
	segkmem_dump,
	segkmem_pagelock,
	SEGKMEM_BADOP(int),		/* setpgsz */
	segkmem_getmemid,
	segkmem_getpolicy,		/* getpolicy */
	segkmem_capable,		/* capable */
	seg_inherit_notsup		/* inherit */
};

int
segkmem_zio_create(struct seg *seg)
{
	ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
	seg->s_ops = &segkmem_ops;
	seg->s_data = &zvp;
	kas.a_size += seg->s_size;
	return (0);
}

int
segkmem_create(struct seg *seg)
{
	ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
	seg->s_ops = &segkmem_ops;
	seg->s_data = &kvp;
	kas.a_size += seg->s_size;
	return (0);
}

/*ARGSUSED*/
page_t *
segkmem_page_create(void *addr, size_t size, int vmflag, void *arg)
{
	struct seg kseg;
	int pgflags;
	struct vnode *vp = arg;

	if (vp == NULL)
		vp = &kvp;

	kseg.s_as = &kas;
	pgflags = PG_EXCL;

	if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
		pgflags |= PG_NORELOC;
	if ((vmflag & VM_NOSLEEP) == 0)
		pgflags |= PG_WAIT;
	if (vmflag & VM_PANIC)
		pgflags |= PG_PANIC;
	if (vmflag & VM_PUSHPAGE)
		pgflags |= PG_PUSHPAGE;
	if (vmflag & VM_NORMALPRI) {
		ASSERT(vmflag & VM_NOSLEEP);
		pgflags |= PG_NORMALPRI;
	}

	return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size,
	    pgflags, &kseg, addr));
}

/*
 * Allocate pages to back the virtual address range [addr, addr + size).
 * If addr is NULL, allocate the virtual address space as well.
 */
void *
segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr,
	page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg)
{
	page_t *ppl;
	caddr_t addr = inaddr;
	pgcnt_t npages = btopr(size);
	int allocflag;

	if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
		return (NULL);

	ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);

	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
		if (inaddr == NULL)
			vmem_free(vmp, addr, size);
		return (NULL);
	}

	ppl = page_create_func(addr, size, vmflag, pcarg);
	if (ppl == NULL) {
		if (inaddr == NULL)
			vmem_free(vmp, addr, size);
		page_unresv(npages);
		return (NULL);
	}

	/*
	 * Under certain conditions, we need to let the HAT layer know
	 * that it cannot safely allocate memory.  Allocations from
	 * the hat_memload vmem arena always need this, to prevent
	 * infinite recursion.
	 *
	 * In addition, the x86 hat cannot safely do memory
	 * allocations while in vmem_populate(), because there
	 * is no simple bound on its usage.
	 */
	if (vmflag & VM_MEMLOAD)
		allocflag = HAT_NO_KALLOC;
#if defined(__x86)
	else if (vmem_is_populator())
		allocflag = HAT_NO_KALLOC;
#endif
	else
		allocflag = 0;

	while (ppl != NULL) {
		page_t *pp = ppl;
		page_sub(&ppl, pp);
		ASSERT(page_iolock_assert(pp));
		ASSERT(PAGE_EXCL(pp));
		page_io_unlock(pp);
		hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp,
		    (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
		    HAT_LOAD_LOCK | allocflag);
		pp->p_lckcnt = 1;
#if defined(__x86)
		page_downgrade(pp);
#else
		if (vmflag & SEGKMEM_SHARELOCKED)
			page_downgrade(pp);
		else
			page_unlock(pp);
#endif
	}

	return (addr);
}

static void *
segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp)
{
	void *addr;
	segkmem_gc_list_t *gcp, **prev_gcpp;

	ASSERT(vp != NULL);

	if (kvseg.s_base == NULL) {
#ifndef __sparc
		if (bootops->bsys_alloc == NULL)
			halt("Memory allocation between bop_alloc() and "
			    "kmem_alloc().\n");
#endif

		/*
		 * There's not a lot of memory to go around during boot,
		 * so recycle it if we can.
		 */
		for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL;
		    prev_gcpp = &gcp->gc_next) {
			if (gcp->gc_arena == vmp && gcp->gc_size == size) {
				*prev_gcpp = gcp->gc_next;
				return (gcp);
			}
		}

		addr = vmem_alloc(vmp, size, vmflag | VM_PANIC);
		if (boot_alloc(addr, size, BO_NO_ALIGN) != addr)
			panic("segkmem_alloc: boot_alloc failed");
		return (addr);
	}
	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
	    segkmem_page_create, vp));
}

void *
segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
{
	return (segkmem_alloc_vn(vmp, size, vmflag, &kvp));
}

void *
segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag)
{
	return (segkmem_alloc_vn(vmp, size, vmflag, &zvp));
}

/*
 * Any changes to this routine must also be carried over to
 * devmap_free_pages() in the seg_dev driver. This is because
 * we currently don't have a special kernel segment for non-paged
 * kernel memory that is exported by drivers to user space.
 */
static void
segkmem_free_vn(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp,
    void (*func)(page_t *))
{
	page_t *pp;
	caddr_t addr = inaddr;
	caddr_t eaddr;
	pgcnt_t npages = btopr(size);

	ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
	ASSERT(vp != NULL);

	if (kvseg.s_base == NULL) {
		segkmem_gc_list_t *gc = inaddr;
		gc->gc_arena = vmp;
		gc->gc_size = size;
		gc->gc_next = segkmem_gc_list;
		segkmem_gc_list = gc;
		return;
	}

	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);

	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
#if defined(__x86)
		pp = page_find(vp, (u_offset_t)(uintptr_t)addr);
		if (pp == NULL)
			panic("segkmem_free: page not found");
		if (!page_tryupgrade(pp)) {
			/*
			 * Some other thread has a sharelock. Wait for
			 * it to drop the lock so we can free this page.
			 */
			page_unlock(pp);
			pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr,
			    SE_EXCL);
		}
#else
		pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
#endif
		if (pp == NULL)
			panic("segkmem_free: page not found");
		/* Clear p_lckcnt so page_destroy() doesn't update availrmem */
		pp->p_lckcnt = 0;
		if (func)
			func(pp);
		else
			page_destroy(pp, 0);
	}
	if (func == NULL)
		page_unresv(npages);

	if (vmp != NULL)
		vmem_free(vmp, inaddr, size);

}

void
segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, void (*func)(page_t *))
{
	segkmem_free_vn(vmp, inaddr, size, &kvp, func);
}

void
segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
{
	segkmem_free_vn(vmp, inaddr, size, &kvp, NULL);
}

void
segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size)
{
	segkmem_free_vn(vmp, inaddr, size, &zvp, NULL);
}

void
segkmem_gc(void)
{
	ASSERT(kvseg.s_base != NULL);
	while (segkmem_gc_list != NULL) {
		segkmem_gc_list_t *gc = segkmem_gc_list;
		segkmem_gc_list = gc->gc_next;
		segkmem_free(gc->gc_arena, gc, gc->gc_size);
	}
}

/*
 * Legacy entry points from here to end of file.
 */
void
segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot,
    pfn_t pfn, uint_t flags)
{
	hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
	hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot,
	    flags | HAT_LOAD_LOCK);
}

void
segkmem_mapout(struct seg *seg, void *addr, size_t size)
{
	hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
}

void *
kmem_getpages(pgcnt_t npages, int kmflag)
{
	return (kmem_alloc(ptob(npages), kmflag));
}

void
kmem_freepages(void *addr, pgcnt_t npages)
{
	kmem_free(addr, ptob(npages));
}

/*
 * segkmem_page_create_large() allocates a large page to be used for the kmem
 * caches. If kpr is enabled we ask for a relocatable page unless requested
 * otherwise. If kpr is disabled we have to ask for a non-reloc page
 */
static page_t *
segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg)
{
	int pgflags;

	pgflags = PG_EXCL;

	if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
		pgflags |= PG_NORELOC;
	if (!(vmflag & VM_NOSLEEP))
		pgflags |= PG_WAIT;
	if (vmflag & VM_PUSHPAGE)
		pgflags |= PG_PUSHPAGE;
	if (vmflag & VM_NORMALPRI)
		pgflags |= PG_NORMALPRI;

	return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
	    pgflags, &kvseg, addr, arg));
}

/*
 * Allocate a large page to back the virtual address range
 * [addr, addr + size).  If addr is NULL, allocate the virtual address
 * space as well.
 */
static void *
segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
    uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
    void *pcarg)
{
	caddr_t addr = inaddr, pa;
	size_t  lpsize = segkmem_lpsize;
	pgcnt_t npages = btopr(size);
	pgcnt_t nbpages = btop(lpsize);
	pgcnt_t nlpages = size >> segkmem_lpshift;
	size_t  ppasize = nbpages * sizeof (page_t *);
	page_t *pp, *rootpp, **ppa, *pplist = NULL;
	int i;

	vmflag |= VM_NOSLEEP;

	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
		return (NULL);
	}

	/*
	 * allocate an array we need for hat_memload_array.
	 * we use a separate arena to avoid recursion.
	 * we will not need this array when hat_memload_array learns pp++
	 */
	if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) {
		goto fail_array_alloc;
	}

	if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
		goto fail_vmem_alloc;

	ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0);

	/* create all the pages */
	for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) {
		if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL)
			goto fail_page_create;
		page_list_concat(&pplist, &pp);
	}

	/* at this point we have all the resource to complete the request */
	while ((rootpp = pplist) != NULL) {
		for (i = 0; i < nbpages; i++) {
			ASSERT(pplist != NULL);
			pp = pplist;
			page_sub(&pplist, pp);
			ASSERT(page_iolock_assert(pp));
			page_io_unlock(pp);
			ppa[i] = pp;
		}
		/*
		 * Load the locked entry. It's OK to preload the entry into the
		 * TSB since we now support large mappings in the kernel TSB.
		 */
		hat_memload_array(kas.a_hat,
		    (caddr_t)(uintptr_t)rootpp->p_offset, lpsize,
		    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
		    HAT_LOAD_LOCK);

		for (--i; i >= 0; --i) {
			ppa[i]->p_lckcnt = 1;
			page_unlock(ppa[i]);
		}
	}

	vmem_free(segkmem_ppa_arena, ppa, ppasize);
	return (addr);

fail_page_create:
	while ((rootpp = pplist) != NULL) {
		for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) {
			ASSERT(pp != NULL);
			page_sub(&pplist, pp);
			ASSERT(page_iolock_assert(pp));
			page_io_unlock(pp);
		}
		page_destroy_pages(rootpp);
	}

	if (inaddr == NULL)
		vmem_free(vmp, addr, size);

fail_vmem_alloc:
	vmem_free(segkmem_ppa_arena, ppa, ppasize);

fail_array_alloc:
	page_unresv(npages);

	return (NULL);
}

static void
segkmem_free_one_lp(caddr_t addr, size_t size)
{
	page_t		*pp, *rootpp = NULL;
	pgcnt_t 	pgs_left = btopr(size);

	ASSERT(size == segkmem_lpsize);

	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);

	for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) {
		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
		if (pp == NULL)
			panic("segkmem_free_one_lp: page not found");
		ASSERT(PAGE_EXCL(pp));
		pp->p_lckcnt = 0;
		if (rootpp == NULL)
			rootpp = pp;
	}
	ASSERT(rootpp != NULL);
	page_destroy_pages(rootpp);

	/* page_unresv() is done by the caller */
}

/*
 * This function is called to import new spans into the vmem arenas like
 * kmem_default_arena and kmem_oversize_arena. It first tries to import
 * spans from large page arena - kmem_lp_arena. In order to do this it might
 * have to "upgrade the requested size" to kmem_lp_arena quantum. If
 * it was not able to satisfy the upgraded request it then calls regular
 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena
 */
/*ARGSUSED*/
void *
segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
{
	size_t size;
	kthread_t *t = curthread;
	segkmem_lpcb_t *lpcb = &segkmem_lpcb;

	ASSERT(sizep != NULL);

	size = *sizep;

	if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) &&
	    !(vmflag & SEGKMEM_SHARELOCKED)) {

		size_t kmemlp_qnt = segkmem_kmemlp_quantum;
		size_t asize = P2ROUNDUP(size, kmemlp_qnt);
		void  *addr = NULL;
		ulong_t *lpthrtp = &lpcb->lp_throttle;
		ulong_t lpthrt = *lpthrtp;
		int	dowakeup = 0;
		int	doalloc = 1;

		ASSERT(kmem_lp_arena != NULL);
		ASSERT(asize >= size);

		if (lpthrt != 0) {
			/* try to update the throttle value */
			lpthrt = atomic_inc_ulong_nv(lpthrtp);
			if (lpthrt >= segkmem_lpthrottle_max) {
				lpthrt = atomic_cas_ulong(lpthrtp, lpthrt,
				    segkmem_lpthrottle_max / 4);
			}

			/*
			 * when we get above throttle start do an exponential
			 * backoff at trying large pages and reaping
			 */
			if (lpthrt > segkmem_lpthrottle_start &&
			    !ISP2(lpthrt)) {
				lpcb->allocs_throttled++;
				lpthrt--;
				if (ISP2(lpthrt))
					kmem_reap();
				return (segkmem_alloc(vmp, size, vmflag));
			}
		}

		if (!(vmflag & VM_NOSLEEP) &&
		    segkmem_heaplp_quantum >= (8 * kmemlp_qnt) &&
		    vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt &&
		    asize < (segkmem_heaplp_quantum - kmemlp_qnt)) {

			/*
			 * we are low on free memory in kmem_lp_arena
			 * we let only one guy to allocate heap_lp
			 * quantum size chunk that everybody is going to
			 * share
			 */
			mutex_enter(&lpcb->lp_lock);

			if (lpcb->lp_wait) {

				/* we are not the first one - wait */
				cv_wait(&lpcb->lp_cv, &lpcb->lp_lock);
				if (vmem_size(kmem_lp_arena, VMEM_FREE) <
				    kmemlp_qnt)  {
					doalloc = 0;
				}
			} else if (vmem_size(kmem_lp_arena, VMEM_FREE) <=
			    kmemlp_qnt) {

				/*
				 * we are the first one, make sure we import
				 * a large page
				 */
				if (asize == kmemlp_qnt)
					asize += kmemlp_qnt;
				dowakeup = 1;
				lpcb->lp_wait = 1;
			}

			mutex_exit(&lpcb->lp_lock);
		}

		/*
		 * VM_ABORT flag prevents sleeps in vmem_xalloc when
		 * large pages are not available. In that case this allocation
		 * attempt will fail and we will retry allocation with small
		 * pages. We also do not want to panic if this allocation fails
		 * because we are going to retry.
		 */
		if (doalloc) {
			addr = vmem_alloc(kmem_lp_arena, asize,
			    (vmflag | VM_ABORT) & ~VM_PANIC);

			if (dowakeup) {
				mutex_enter(&lpcb->lp_lock);
				ASSERT(lpcb->lp_wait != 0);
				lpcb->lp_wait = 0;
				cv_broadcast(&lpcb->lp_cv);
				mutex_exit(&lpcb->lp_lock);
			}
		}

		if (addr != NULL) {
			*sizep = asize;
			*lpthrtp = 0;
			return (addr);
		}

		if (vmflag & VM_NOSLEEP)
			lpcb->nosleep_allocs_failed++;
		else
			lpcb->sleep_allocs_failed++;
		lpcb->alloc_bytes_failed += size;

		/* if large page throttling is not started yet do it */
		if (segkmem_use_lpthrottle && lpthrt == 0) {
			lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1);
		}
	}
	return (segkmem_alloc(vmp, size, vmflag));
}

void
segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size)
{
	if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) {
		segkmem_free(vmp, inaddr, size);
	} else {
		vmem_free(kmem_lp_arena, inaddr, size);
	}
}

/*
 * segkmem_alloc_lpi() imports virtual memory from large page heap arena
 * into kmem_lp arena. In the process it maps the imported segment with
 * large pages
 */
static void *
segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag)
{
	segkmem_lpcb_t *lpcb = &segkmem_lpcb;
	void  *addr;

	ASSERT(size != 0);
	ASSERT(vmp == heap_lp_arena);

	/* do not allow large page heap grow beyound limits */
	if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) {
		lpcb->allocs_limited++;
		return (NULL);
	}

	addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0,
	    segkmem_page_create_large, NULL);
	return (addr);
}

/*
 * segkmem_free_lpi() returns virtual memory back into large page heap arena
 * from kmem_lp arena. Beore doing this it unmaps the segment and frees
 * large pages used to map it.
 */
static void
segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size)
{
	pgcnt_t		nlpages = size >> segkmem_lpshift;
	size_t		lpsize = segkmem_lpsize;
	caddr_t		addr = inaddr;
	pgcnt_t 	npages = btopr(size);
	int		i;

	ASSERT(vmp == heap_lp_arena);
	ASSERT(IS_KMEM_VA_LARGEPAGE(addr));
	ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0);

	for (i = 0; i < nlpages; i++) {
		segkmem_free_one_lp(addr, lpsize);
		addr += lpsize;
	}

	page_unresv(npages);

	vmem_free(vmp, inaddr, size);
}

/*
 * This function is called at system boot time by kmem_init right after
 * /etc/system file has been read. It checks based on hardware configuration
 * and /etc/system settings if system is going to use large pages. The
 * initialiazation necessary to actually start using large pages
 * happens later in the process after segkmem_heap_lp_init() is called.
 */
int
segkmem_lpsetup()
{
	int use_large_pages = 0;

#ifdef __sparc

	size_t memtotal = physmem * PAGESIZE;

	if (heap_lp_base == NULL) {
		segkmem_lpsize = PAGESIZE;
		return (0);
	}

	/* get a platform dependent value of large page size for kernel heap */
	segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize);

	if (segkmem_lpsize <= PAGESIZE) {
		/*
		 * put virtual space reserved for the large page kernel
		 * back to the regular heap
		 */
		vmem_xfree(heap_arena, heap_lp_base,
		    heap_lp_end - heap_lp_base);
		heap_lp_base = NULL;
		heap_lp_end = NULL;
		segkmem_lpsize = PAGESIZE;
		return (0);
	}

	/* set heap_lp quantum if necessary */
	if (segkmem_heaplp_quantum == 0 || !ISP2(segkmem_heaplp_quantum) ||
	    P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) {
		segkmem_heaplp_quantum = segkmem_lpsize;
	}

	/* set kmem_lp quantum if necessary */
	if (segkmem_kmemlp_quantum == 0 || !ISP2(segkmem_kmemlp_quantum) ||
	    segkmem_kmemlp_quantum > segkmem_heaplp_quantum) {
		segkmem_kmemlp_quantum = segkmem_heaplp_quantum;
	}

	/* set total amount of memory allowed for large page kernel heap */
	if (segkmem_kmemlp_max == 0) {
		if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100)
			segkmem_kmemlp_pcnt = 12;
		segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100;
	}
	segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max,
	    segkmem_heaplp_quantum);

	/* fix lp kmem preallocation request if necesssary */
	if (segkmem_kmemlp_min) {
		segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min,
		    segkmem_heaplp_quantum);
		if (segkmem_kmemlp_min > segkmem_kmemlp_max)
			segkmem_kmemlp_min = segkmem_kmemlp_max;
	}

	use_large_pages = 1;
	segkmem_lpszc = page_szc(segkmem_lpsize);
	segkmem_lpshift = page_get_shift(segkmem_lpszc);

#endif
	return (use_large_pages);
}

void
segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size)
{
	ASSERT(zio_mem_base != NULL);
	ASSERT(zio_mem_size != 0);

	/*
	 * To reduce VA space fragmentation, we set up quantum caches for the
	 * smaller sizes;  we chose 32k because that translates to 128k VA
	 * slabs, which matches nicely with the common 128k zio_data bufs.
	 */
	zio_arena = vmem_create("zfs_file_data", zio_mem_base, zio_mem_size,
	    PAGESIZE, NULL, NULL, NULL, 32 * 1024, VM_SLEEP);

	zio_alloc_arena = vmem_create("zfs_file_data_buf", NULL, 0, PAGESIZE,
	    segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP);

	ASSERT(zio_arena != NULL);
	ASSERT(zio_alloc_arena != NULL);
}

#ifdef __sparc


static void *
segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag)
{
	size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
	void   *addr;

	if (ppaquantum <= PAGESIZE)
		return (segkmem_alloc(vmp, size, vmflag));

	ASSERT((size & (ppaquantum - 1)) == 0);

	addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag);
	if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0,
	    segkmem_page_create, NULL) == NULL) {
		vmem_xfree(vmp, addr, size);
		addr = NULL;
	}

	return (addr);
}

static void
segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size)
{
	size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);

	ASSERT(addr != NULL);

	if (ppaquantum <= PAGESIZE) {
		segkmem_free(vmp, addr, size);
	} else {
		segkmem_free(NULL, addr, size);
		vmem_xfree(vmp, addr, size);
	}
}

void
segkmem_heap_lp_init()
{
	segkmem_lpcb_t *lpcb = &segkmem_lpcb;
	size_t heap_lp_size = heap_lp_end - heap_lp_base;
	size_t lpsize = segkmem_lpsize;
	size_t ppaquantum;
	void   *addr;

	if (segkmem_lpsize <= PAGESIZE) {
		ASSERT(heap_lp_base == NULL);
		ASSERT(heap_lp_end == NULL);
		return;
	}

	ASSERT(segkmem_heaplp_quantum >= lpsize);
	ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0);
	ASSERT(lpcb->lp_uselp == 0);
	ASSERT(heap_lp_base != NULL);
	ASSERT(heap_lp_end != NULL);
	ASSERT(heap_lp_base < heap_lp_end);
	ASSERT(heap_lp_arena == NULL);
	ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0);
	ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0);

	/* create large page heap arena */
	heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size,
	    segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP);

	ASSERT(heap_lp_arena != NULL);

	/* This arena caches memory already mapped by large pages */
	kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum,
	    segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP);

	ASSERT(kmem_lp_arena != NULL);

	mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL);

	/*
	 * this arena is used for the array of page_t pointers necessary
	 * to call hat_mem_load_array
	 */
	ppaquantum = btopr(lpsize) * sizeof (page_t *);
	segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum,
	    segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum,
	    VM_SLEEP);

	ASSERT(segkmem_ppa_arena != NULL);

	/* prealloacate some memory for the lp kernel heap */
	if (segkmem_kmemlp_min) {

		ASSERT(P2PHASE(segkmem_kmemlp_min,
		    segkmem_heaplp_quantum) == 0);

		if ((addr = segkmem_alloc_lpi(heap_lp_arena,
		    segkmem_kmemlp_min, VM_SLEEP)) != NULL) {

			addr = vmem_add(kmem_lp_arena, addr,
			    segkmem_kmemlp_min, VM_SLEEP);
			ASSERT(addr != NULL);
		}
	}

	lpcb->lp_uselp = 1;
}

#endif