summaryrefslogtreecommitdiff
path: root/usr/src/uts/i86pc/os/hma.c
blob: 0e84030ac1898f079a88c9f03cc174ecde2d10b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/*
 * This file and its contents are supplied under the terms of the
 * Common Development and Distribution License ("CDDL"), version 1.0.
 * You may only use this file in accordance with the terms of version
 * 1.0 of the CDDL.
 *
 * A full copy of the text of the CDDL should have accompanied this
 * source.  A copy of the CDDL is also available via the Internet at
 * http://www.illumos.org/license/CDDL.
 */

/*
 * Copyright 2019 Joyent, Inc.
 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
 */

#include <sys/cpuvar.h>
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/machsystm.h>
#include <sys/controlregs.h>
#include <sys/x86_archext.h>
#include <sys/id_space.h>
#include <sys/hma.h>
#include <sys/cmn_err.h>
#include <vm/hat.h>
#include <vm/as.h>

struct hma_reg {
	const char	*hr_name;
	list_node_t	hr_node;
};

static kmutex_t hma_lock;
static list_t hma_registrations;
static boolean_t hma_exclusive = B_FALSE;
int hma_disable = 0;

static boolean_t hma_vmx_ready = B_FALSE;
static const char *hma_vmx_error = NULL;
static id_space_t *hma_vmx_vpid;

/*
 * The bulk of HMA state (VMX & SVM) is protected by cpu_lock, rather than a
 * mutex specific to the module.  It (cpu_lock) is already required for the
 * state needed to perform setup on all CPUs, so it was a natural fit to
 * protect this data too.
 */
typedef enum hma_cpu_state {
	HCS_UNINITIALIZED = 0,
	HCS_READY,
	HCS_ERROR
} hma_cpu_state_t;
static hma_cpu_state_t hma_cpu_status[NCPU];

/* HMA-internal tracking of optional VMX capabilities */
typedef enum {
	HVC_EPT		= (1 << 0),
	HVC_VPID	= (1 << 1),
	HVC_INVEPT_ONE	= (1 << 2),
	HVC_INVEPT_ALL	= (1 << 3),
} hma_vmx_capab_t;

static void *hma_vmx_vmxon_page[NCPU];
static uintptr_t hma_vmx_vmxon_pa[NCPU];
static uint32_t hma_vmx_revision;
static hma_vmx_capab_t hma_vmx_capabs = 0;

static boolean_t hma_svm_ready = B_FALSE;
static const char *hma_svm_error = NULL;
static uint32_t hma_svm_features;
static uint32_t hma_svm_max_asid;

static void *hma_svm_hsave_page[NCPU];
static uintptr_t hma_svm_hsave_pa[NCPU];

static hma_svm_asid_t hma_svm_cpu_asid[NCPU];


static int hma_vmx_init(void);
static int hma_svm_init(void);

/* Helpers from ml/hma_asm.s */
int hma_vmx_do_invept(int, uintptr_t);
int hma_vmx_vmxon(uintptr_t);

void
hma_init(void)
{
	mutex_init(&hma_lock, NULL, MUTEX_DEFAULT, NULL);
	list_create(&hma_registrations, sizeof (struct hma_reg),
	    offsetof(struct hma_reg, hr_node));

	if (hma_disable != 0) {
		cmn_err(CE_CONT, "?hma_init: disabled");
		return;
	}

	switch (cpuid_getvendor(CPU)) {
	case X86_VENDOR_Intel:
		(void) hma_vmx_init();
		break;
	case X86_VENDOR_AMD:
		(void) hma_svm_init();
		break;
	default:
		break;
	}
}

static hma_reg_t *
hma_register_backend(const char *name)
{
	struct hma_reg *reg;
	boolean_t is_ready;

	ASSERT(MUTEX_HELD(&hma_lock));

	switch (cpuid_getvendor(CPU)) {
	case X86_VENDOR_Intel:
		is_ready = hma_vmx_ready;
		break;
	case X86_VENDOR_AMD:
		is_ready = hma_svm_ready;
		break;
	default:
		is_ready = B_FALSE;
		break;
	}

	if (!is_ready)
		return (NULL);

	reg = kmem_zalloc(sizeof (*reg), KM_SLEEP);
	reg->hr_name = name;
	list_insert_tail(&hma_registrations, reg);

	return (reg);
}

hma_reg_t *
hma_register(const char *name)
{
	struct hma_reg *reg = NULL;

	VERIFY(name != NULL);

	mutex_enter(&hma_lock);

	if (!hma_exclusive)
		reg = hma_register_backend(name);

	mutex_exit(&hma_lock);

	return (reg);
}

hma_reg_t *
hma_register_exclusive(const char *name)
{
	struct hma_reg *reg = NULL;

	VERIFY(name != NULL);

	mutex_enter(&hma_lock);

	if (list_is_empty(&hma_registrations)) {
		reg = hma_register_backend(name);
		if (reg != NULL)
			hma_exclusive = B_TRUE;
	}

	mutex_exit(&hma_lock);

	return (reg);
}

void
hma_unregister(hma_reg_t *reg)
{
	VERIFY(reg != NULL);
	VERIFY(!list_is_empty(&hma_registrations));

	mutex_enter(&hma_lock);
	list_remove(&hma_registrations, reg);
	if (hma_exclusive && list_is_empty(&hma_registrations))
		hma_exclusive = B_FALSE;
	mutex_exit(&hma_lock);
	kmem_free(reg, sizeof (*reg));
}

/*
 * VPID 0 is reserved for instances where VPID is disabled.  Some hypervisors
 * (read: bhyve) reserve lower-order VPIDs for use in fallback behavior if
 * unique VPIDs could not be allocated for all the vCPUs belonging to a VM.
 */
#define	HMA_VPID_RESERVED	NCPU

uint16_t
hma_vmx_vpid_alloc(void)
{
	id_t res;

	/* Do not bother if the CPU lacks support */
	if ((hma_vmx_capabs & HVC_VPID) == 0) {
		return (0);
	}

	res = id_alloc_nosleep(hma_vmx_vpid);
	if (res == -1) {
		return (0);
	} else {
		ASSERT(res > HMA_VPID_RESERVED && res <= UINT16_MAX);
		return (res);
	}
}

void
hma_vmx_vpid_free(uint16_t vpid)
{
	VERIFY(vpid > HMA_VPID_RESERVED);
	id_free(hma_vmx_vpid, (id_t)vpid);
}

#define	INVEPT_SINGLE_CONTEXT	1
#define	INVEPT_ALL_CONTEXTS	2

static int
hma_vmx_invept_xcall(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3 __unused)
{
	int flag = (int)arg1;
	uintptr_t eptp = (uintptr_t)arg2;

	ASSERT(flag == INVEPT_SINGLE_CONTEXT || flag == INVEPT_ALL_CONTEXTS);

	VERIFY0(hma_vmx_do_invept(flag, eptp));
	return (0);
}

void
hma_vmx_invept_allcpus(uintptr_t eptp)
{
	int flag = -1;
	cpuset_t set;

	if ((hma_vmx_capabs & HVC_INVEPT_ONE) != 0) {
		flag = INVEPT_SINGLE_CONTEXT;
	} else if ((hma_vmx_capabs & HVC_INVEPT_ALL) != 0) {
		flag = INVEPT_ALL_CONTEXTS;
		eptp = 0;
	} else {
		return;
	}

	cpuset_zero(&set);
	mutex_enter(&cpu_lock);

	cpuset_or(&set, &cpu_active_set);
	xc_call((xc_arg_t)flag, (xc_arg_t)eptp, 0, CPUSET2BV(set),
	    hma_vmx_invept_xcall);

	mutex_exit(&cpu_lock);
}

static int
hma_vmx_cpu_vmxon(xc_arg_t arg1 __unused, xc_arg_t arg2 __unused,
    xc_arg_t arg3 __unused)
{
	uint64_t fctrl;
	processorid_t id = CPU->cpu_seqid;
	void *vmxon_region = hma_vmx_vmxon_page[id];
	uintptr_t vmxon_pa = hma_vmx_vmxon_pa[id];

	VERIFY(vmxon_region != NULL && vmxon_pa != 0);

	/*
	 * Ensure that the VMX support and lock bits are enabled in the
	 * feature-control MSR.
	 */
	fctrl = rdmsr(MSR_IA32_FEAT_CTRL);
	if ((fctrl & IA32_FEAT_CTRL_LOCK) == 0 ||
	    (fctrl & IA32_FEAT_CTRL_VMX_EN) == 0) {
		fctrl = fctrl | IA32_FEAT_CTRL_VMX_EN | IA32_FEAT_CTRL_LOCK;
		wrmsr(MSR_IA32_FEAT_CTRL, fctrl);
	}

	setcr4(getcr4() | CR4_VMXE);

	if (hma_vmx_vmxon(vmxon_pa) == 0) {
		hma_cpu_status[id] = HCS_READY;
	} else {
		hma_cpu_status[id] = HCS_ERROR;

		/*
		 * If VMX has already been marked active and available for the
		 * system, then failure to perform VMXON on a newly-onlined CPU
		 * represents a fatal problem.  Continuing on would mean
		 * failure for any hypervisor thread which landed here.
		 */
		if (hma_vmx_ready) {
			panic("VMXON failure after VMX marked ready");
		}
	}
	return (0);
}

static int
hma_vmx_cpu_setup(cpu_setup_t what, int id, void *arg __unused)
{
	hma_cpu_state_t state;

	ASSERT(MUTEX_HELD(&cpu_lock));
	ASSERT(id >= 0 && id < NCPU);

	if (what != CPU_ON) {
		/*
		 * For the purposes of VMX setup, only the CPU_ON event is of
		 * interest.  Letting VMX state linger on an offline CPU should
		 * not cause any harm.
		 *
		 * This logic assumes that any offlining activity is strictly
		 * administrative in nature and will not alter any existing
		 * configuration (such as %cr4 bits previously set).
		 */
		return (0);
	}

	state = hma_cpu_status[id];
	if (state == HCS_ERROR) {
		return (-1);
	}

	/* Allocate the VMXON page for this CPU, if not already done */
	if (hma_vmx_vmxon_page[id] == NULL) {
		caddr_t va;
		pfn_t pfn;

		va = kmem_alloc(PAGESIZE, KM_SLEEP);
		VERIFY0((uintptr_t)va & PAGEOFFSET);
		hma_vmx_vmxon_page[id] = va;

		/* Initialize the VMX revision field as expected */
		bcopy(&hma_vmx_revision, va, sizeof (hma_vmx_revision));

		/*
		 * Cache the physical address of the VMXON page rather than
		 * looking it up later when the potential blocking of
		 * hat_getpfnum would be less acceptable.
		 */
		pfn = hat_getpfnum(kas.a_hat, va);
		hma_vmx_vmxon_pa[id] = (pfn << PAGESHIFT);
	} else {
		VERIFY(hma_vmx_vmxon_pa[id] != 0);
	}

	if (state == HCS_UNINITIALIZED) {
		cpuset_t set;

		/* Activate VMX on this CPU */
		cpuset_zero(&set);
		cpuset_add(&set, id);
		xc_call(0, 0, 0, CPUSET2BV(set), hma_vmx_cpu_vmxon);
	} else {
		VERIFY3U(state, ==, HCS_READY);

		/*
		 * If an already-initialized CPU is going back online, perform
		 * an all-contexts invept to eliminate the possibility of
		 * cached EPT state causing issues.
		 */
		if ((hma_vmx_capabs & HVC_INVEPT_ALL) != 0) {
			cpuset_t set;

			cpuset_zero(&set);
			cpuset_add(&set, id);
			xc_call((xc_arg_t)INVEPT_ALL_CONTEXTS, 0, 0,
			    CPUSET2BV(set), hma_vmx_invept_xcall);
		}
	}

	return (hma_cpu_status[id] != HCS_READY);
}

/*
 * Determining the availability of VM execution controls is somewhat different
 * from conventional means, where one simply checks for asserted bits in the
 * MSR value.  Instead, these execution control MSRs are split into two halves:
 * the lower 32-bits indicating capabilities which can be zeroed in the VMCS
 * field and the upper 32-bits indicating capabilities which can be set to one.
 *
 * It is described in detail in Appendix A.3 of SDM volume 3.
 */
#define	VMX_CTL_ONE_SETTING(val, flag)	\
	(((val) & ((uint64_t)(flag) << 32)) != 0)

static const char *
hma_vmx_query_details(void)
{
	boolean_t query_true_ctl = B_FALSE;
	uint64_t msr;

	/* The basic INS/OUTS functionality is cited as a necessary prereq */
	msr = rdmsr(MSR_IA32_VMX_BASIC);
	if ((msr & IA32_VMX_BASIC_INS_OUTS) == 0) {
		return ("VMX does not support INS/OUTS");
	}

	/* Record the VMX revision for later VMXON usage */
	hma_vmx_revision = (uint32_t)msr;

	/*
	 * Bit 55 in the VMX_BASIC MSR determines how VMX control information
	 * can be queried.
	 */
	query_true_ctl = (msr & IA32_VMX_BASIC_TRUE_CTRLS) != 0;

	/* Check for EPT and VPID support */
	msr = rdmsr(query_true_ctl ?
	    MSR_IA32_VMX_TRUE_PROCBASED_CTLS : MSR_IA32_VMX_PROCBASED_CTLS);
	if (VMX_CTL_ONE_SETTING(msr, IA32_VMX_PROCBASED_2ND_CTLS)) {
		msr = rdmsr(MSR_IA32_VMX_PROCBASED2_CTLS);
		if (VMX_CTL_ONE_SETTING(msr, IA32_VMX_PROCBASED2_EPT)) {
			hma_vmx_capabs |= HVC_EPT;
		}
		if (VMX_CTL_ONE_SETTING(msr, IA32_VMX_PROCBASED2_VPID)) {
			hma_vmx_capabs |= HVC_VPID;
		}
	}

	/* Check for INVEPT support */
	if ((hma_vmx_capabs & HVC_EPT) != 0) {
		msr = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
		if ((msr & IA32_VMX_EPT_VPID_INVEPT) != 0) {
			if ((msr & IA32_VMX_EPT_VPID_INVEPT_SINGLE) != 0) {
				hma_vmx_capabs |= HVC_INVEPT_ONE;
			}
			if ((msr & IA32_VMX_EPT_VPID_INVEPT_ALL) != 0) {
				hma_vmx_capabs |= HVC_INVEPT_ALL;
			}
		}
	}

	return (NULL);
}

static int
hma_vmx_init(void)
{
	cpu_t *cp;
	uint64_t msr;
	int err = 0;
	const char *msg = NULL;

	if (!is_x86_feature(x86_featureset, X86FSET_VMX)) {
		msg = "CPU does not support VMX";
		goto bail;
	}

	/* Has the BIOS set the feature-control lock bit without VMX enabled? */
	msr = rdmsr(MSR_IA32_FEAT_CTRL);
	if ((msr & IA32_FEAT_CTRL_LOCK) != 0 &&
	    (msr & IA32_FEAT_CTRL_VMX_EN) == 0) {
		msg = "VMX support disabled by BIOS";
		goto bail;
	}

	msg = hma_vmx_query_details();
	if (msg != NULL) {
		goto bail;
	}

	mutex_enter(&cpu_lock);
	/* Perform VMX configuration for already-online CPUs. */
	cp = cpu_active;
	do {
		err = hma_vmx_cpu_setup(CPU_ON, cp->cpu_seqid, NULL);
		if (err != 0) {
			msg = "failure during VMXON setup";
			mutex_exit(&cpu_lock);
			goto bail;
		}
	} while ((cp = cp->cpu_next_onln) != cpu_active);

	/*
	 * Register callback for later-onlined CPUs and perform other remaining
	 * resource allocation.
	 */
	register_cpu_setup_func(hma_vmx_cpu_setup, NULL);
	mutex_exit(&cpu_lock);

	hma_vmx_vpid = id_space_create("hma_vmx_vpid", HMA_VPID_RESERVED + 1,
	    UINT16_MAX);
	hma_vmx_ready = B_TRUE;

	return (0);

bail:
	hma_vmx_error = msg;
	cmn_err(CE_NOTE, "hma_vmx_init: %s", msg);
	return (-1);
}

#define	VMCB_FLUSH_NOTHING	0x0
#define	VMCB_FLUSH_ALL		0x1
#define	VMCB_FLUSH_ASID		0x3

void
hma_svm_asid_init(hma_svm_asid_t *vcp)
{
	/*
	 * Initialize the generation to 0, forcing an ASID allocation on first
	 * entry.  Leave the ASID at 0, so if the host forgoes the call to
	 * hma_svm_asid_update(), SVM will bail on the invalid vcpu state.
	 */
	vcp->hsa_gen = 0;
	vcp->hsa_asid = 0;
}

uint8_t
hma_svm_asid_update(hma_svm_asid_t *vcp, boolean_t flush_by_asid,
    boolean_t npt_flush)
{
	hma_svm_asid_t *hcp = &hma_svm_cpu_asid[CPU->cpu_seqid];

	ASSERT(curthread->t_preempt != 0);

	/*
	 * If NPT changes dictate a TLB flush and by-ASID flushing is not
	 * supported/used, force a fresh ASID allocation.
	 */
	if (npt_flush && !flush_by_asid) {
		vcp->hsa_gen = 0;
	}

	if (vcp->hsa_gen != hcp->hsa_gen) {
		hcp->hsa_asid++;

		if (hcp->hsa_asid >= hma_svm_max_asid) {
			/* Keep the ASID properly constrained */
			hcp->hsa_asid = 1;
			hcp->hsa_gen++;
			if (hcp->hsa_gen == 0) {
				/*
				 * Stay clear of the '0' sentinel value for
				 * generation, if wrapping around.
				 */
				hcp->hsa_gen = 1;
			}
		}
		vcp->hsa_gen = hcp->hsa_gen;
		vcp->hsa_asid = hcp->hsa_asid;

		ASSERT(vcp->hsa_asid != 0);
		ASSERT3U(vcp->hsa_asid, <, hma_svm_max_asid);

		if (flush_by_asid) {
			return (VMCB_FLUSH_ASID);
		}
		return (VMCB_FLUSH_ALL);
	} else if (npt_flush) {
		ASSERT(flush_by_asid);
		return (VMCB_FLUSH_ASID);
	}
	return (VMCB_FLUSH_NOTHING);
}

static int
hma_svm_cpu_activate(xc_arg_t arg1 __unused, xc_arg_t arg2 __unused,
    xc_arg_t arg3 __unused)
{
	const processorid_t id = CPU->cpu_seqid;
	const uintptr_t hsave_pa = hma_svm_hsave_pa[id];
	uint64_t efer;

	VERIFY(hsave_pa != 0);

	/* Enable SVM via EFER */
	efer = rdmsr(MSR_AMD_EFER);
	efer |= AMD_EFER_SVME;
	wrmsr(MSR_AMD_EFER, efer);

	/* Setup hsave area */
	wrmsr(MSR_AMD_VM_HSAVE_PA, hsave_pa);

	hma_cpu_status[id] = HCS_READY;
	return (0);
}

static int
hma_svm_cpu_setup(cpu_setup_t what, int id, void *arg __unused)
{
	ASSERT(MUTEX_HELD(&cpu_lock));
	ASSERT(id >= 0 && id < NCPU);

	switch (what) {
	case CPU_CONFIG:
	case CPU_ON:
	case CPU_INIT:
		break;
	default:
		/*
		 * Other events, such as CPU offlining, are of no interest.
		 * Letting the SVM state linger should not cause any harm.
		 *
		 * This logic assumes that any offlining activity is strictly
		 * administrative in nature and will not alter any existing
		 * configuration (such as EFER bits previously set).
		 */
		return (0);
	}

	/* Perform initialization if it has not been previously attempted. */
	if (hma_cpu_status[id] != HCS_UNINITIALIZED) {
		return ((hma_cpu_status[id] == HCS_READY) ? 0 : -1);
	}

	/* Allocate the hsave page for this CPU */
	if (hma_svm_hsave_page[id] == NULL) {
		caddr_t va;
		pfn_t pfn;

		va = kmem_alloc(PAGESIZE, KM_SLEEP);
		VERIFY0((uintptr_t)va & PAGEOFFSET);
		hma_svm_hsave_page[id] = va;

		/*
		 * Cache the physical address of the hsave page rather than
		 * looking it up later when the potential blocking of
		 * hat_getpfnum would be less acceptable.
		 */
		pfn = hat_getpfnum(kas.a_hat, va);
		hma_svm_hsave_pa[id] = (pfn << PAGESHIFT);
	} else {
		VERIFY(hma_svm_hsave_pa[id] != 0);
	}

	kpreempt_disable();
	if (CPU->cpu_seqid == id) {
		/* Perform svm setup directly if this CPU is the target */
		(void) hma_svm_cpu_activate(0, 0, 0);
		kpreempt_enable();
	} else {
		cpuset_t set;

		/* Use a cross-call if a remote CPU is the target */
		kpreempt_enable();
		cpuset_zero(&set);
		cpuset_add(&set, id);
		xc_call(0, 0, 0, CPUSET2BV(set), hma_svm_cpu_activate);
	}

	return (hma_cpu_status[id] != HCS_READY);
}

static int
hma_svm_init(void)
{
	uint64_t msr;
	const char *msg = NULL;
	struct cpuid_regs regs;
	cpu_t *cp;

	if (!is_x86_feature(x86_featureset, X86FSET_SVM)) {
		msg = "CPU does not support SVM";
		goto bail;
	}

	msr = rdmsr(MSR_AMD_VM_CR);
	if ((msr & AMD_VM_CR_SVMDIS) != 0) {
		msg = "SVM disabled by BIOS";
		goto bail;
	}

	regs.cp_eax = 0x8000000a;
	(void) cpuid_insn(NULL, &regs);
	const uint32_t nasid = regs.cp_ebx;
	const uint32_t feat = regs.cp_edx;

	if (nasid == 0) {
		msg = "Not enough ASIDs for guests";
		goto bail;
	}
	if ((feat & CPUID_AMD_EDX_NESTED_PAGING) == 0) {
		msg = "CPU does not support nested paging";
		goto bail;
	}
	if ((feat & CPUID_AMD_EDX_NRIPS) == 0) {
		msg = "CPU does not support NRIP save";
		goto bail;
	}

	hma_svm_features = feat;
	hma_svm_max_asid = nasid;

	mutex_enter(&cpu_lock);
	/* Perform SVM configuration for already-online CPUs. */
	cp = cpu_active;
	do {
		int err = hma_svm_cpu_setup(CPU_ON, cp->cpu_seqid, NULL);
		if (err != 0) {
			msg = "failure during SVM setup";
			mutex_exit(&cpu_lock);
			goto bail;
		}
	} while ((cp = cp->cpu_next_onln) != cpu_active);

	/*
	 * Register callback for later-onlined CPUs and perform other remaining
	 * resource allocation.
	 */
	register_cpu_setup_func(hma_svm_cpu_setup, NULL);
	mutex_exit(&cpu_lock);

	/* Initialize per-CPU ASID state. */
	for (uint_t i = 0; i < NCPU; i++) {
		/*
		 * Skip past sentinel 0 value for generation.  Doing so for
		 * ASID is unneeded, since it will be incremented during the
		 * first allocation.
		 */
		hma_svm_cpu_asid[i].hsa_gen = 1;
		hma_svm_cpu_asid[i].hsa_asid = 0;
	}

	hma_svm_ready = B_TRUE;
	return (0);

bail:
	hma_svm_error = msg;
	cmn_err(CE_NOTE, "hma_svm_init: %s", msg);
	return (-1);
}