summaryrefslogtreecommitdiff
path: root/usr/src/uts/intel/io/amdzen/zen_umc.h
blob: 7c3cfc5fe8211adc516c8e496188421e1308156e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*
 * This file and its contents are supplied under the terms of the
 * Common Development and Distribution License ("CDDL"), version 1.0.
 * You may only use this file in accordance with the terms of version
 * 1.0 of the CDDL.
 *
 * A full copy of the text of the CDDL should have accompanied this
 * source.  A copy of the CDDL is also available via the Internet at
 * http://www.illumos.org/license/CDDL.
 */

/*
 * Copyright 2022 Oxide Computer Company
 */

#ifndef _ZEN_UMC_H
#define	_ZEN_UMC_H

/*
 * This file contains definitions that are used to manage and decode the Zen UMC
 * state.
 */

#ifdef __cplusplus
extern "C" {
#endif

#include <sys/stdint.h>
#include <sys/sunddi.h>
#include <sys/nvpair.h>
#include <sys/x86_archext.h>
#include <amdzen_client.h>

/*
 * This is the maximum number of DRAM rules that we expect any supported device
 * to have here. The actual number may be less. These are rules that come from a
 * DF CCM.
 */
#define	ZEN_UMC_MAX_DRAM_RULES	20

/*
 * This is the maximum number of rules that we expect any system to actually
 * have for each UMC.
 */
#define	ZEN_UMC_MAX_CS_RULES	4

/*
 * This is the maximum number of DFs that we expect to encounter in a given
 * platform. This number comes from the Naples generation, where there were up
 * to 4 per socket, 2 sockets per machine, so 8 total. In subsequent generations
 * there is only a single 1 per socket.
 */
#define	ZEN_UMC_MAX_DFS	8

/*
 * This indicates the maximum number of UMC DF nodes that we expect to
 * encounter.
 */
#define	ZEN_UMC_MAX_UMCS	12

/*
 * This indicates the maximum number of DRAM offset rules that can exist in a
 * platform. Note, this is directly tied to the maximum number of CS rules.
 */
#define	ZEN_UMC_MAX_DRAM_OFFSET	(ZEN_UMC_MAX_CS_RULES - 1)

/*
 * This indicates the maximum number of remap rule sets and corresponding
 * entries that can exist. Milan's max is smaller than the current overall DFv4
 * maximum.
 */
#define	ZEN_UMC_MAX_CS_REMAPS		4
#define	ZEN_UMC_MAX_REMAP_ENTS		16
#define	ZEN_UMC_MILAN_CS_NREMAPS	2
#define	ZEN_UMC_MILAN_REMAP_ENTS	12
#define	ZEN_UMC_REMAP_PER_REG		8

/*
 * DRAM Channel related maximums.
 */
#define	ZEN_UMC_MAX_DIMMS		2
#define	ZEN_UMC_MAX_CS_PER_DIMM		2
#define	ZEN_UMC_MAX_CS_BITS		2
#define	ZEN_UMC_MAX_CHAN_BASE		2
#define	ZEN_UMC_MAX_CHAN_MASK		2
#define	ZEN_UMC_MAX_BANK_BITS		5
#define	ZEN_UMC_MAX_COL_BITS		16
#define	ZEN_UMC_MAX_RM_BITS		4
#define	ZEN_UMC_MAX_COLSEL_PER_REG	8

#define	ZEN_UMC_DDR4_CHAN_NMASKS	1

/*
 * DRAM Channel hash maximums. Surprisingly enough, the DDR4 and DDR5 maximums
 * are the same; however, in exchange what hashes are actually implemented
 * varies.
 */
#define	ZEN_UMC_MAX_CHAN_BANK_HASH	5
#define	ZEN_UMC_MAX_CHAN_RM_HASH	3
#define	ZEN_UMC_MAX_CHAN_CS_HASH	2

/*
 * This is the logical set of different channel interleaving rules that we
 * support today in the driver. The actual values of the enumeration do not
 * overlap at all with hardware. Do not use these to try and marry up against
 * values from the DF itself.
 *
 * Note, these values are also encoded in the private mc decoder dumps that we
 * can produce. If these values change, please take care of ensuring
 * compatibility for others who may be consuming this. Appending to this list
 * should be OK.
 */
typedef enum df_chan_ileave {
	DF_CHAN_ILEAVE_1CH	= 0,
	DF_CHAN_ILEAVE_2CH,
	DF_CHAN_ILEAVE_4CH,
	DF_CHAN_ILEAVE_6CH,
	DF_CHAN_ILEAVE_8CH,
	DF_CHAN_ILEAVE_16CH,
	DF_CHAN_ILEAVE_32CH,
	DF_CHAN_ILEAVE_COD4_2CH,
	DF_CHAN_ILEAVE_COD2_4CH,
	DF_CHAN_ILEAVE_COD1_8CH,
	DF_CHAN_ILEAVE_NPS4_2CH,
	DF_CHAN_ILEAVE_NPS2_4CH,
	DF_CHAN_ILEAVE_NPS1_8CH,
	DF_CHAN_ILEAVE_NPS4_3CH,
	DF_CHAN_ILEAVE_NPS2_6CH,
	DF_CHAN_ILEAVE_NPS1_12CH,
	DF_CHAN_ILEAVE_NPS2_5CH,
	DF_CHAN_ILEAVE_NPS1_10CH
} df_chan_ileave_t;

/*
 * This is a collection of logical flags that we use to cover attributes of a
 * DRAM rule.
 */
typedef enum df_dram_flags {
	/*
	 * Used to indicate that the contents of the rule are actually valid and
	 * should be considered. Many rules can be unused in hardware.
	 */
	DF_DRAM_F_VALID		= 1 << 0,
	/*
	 * Indicates that the DRAM hole is active for this particular rule. If
	 * this flag is set and the hole is valid in the DF, then we need to
	 * take the actual DRAM hole into account.
	 */
	DF_DRAM_F_HOLE		= 1 << 1,
	/*
	 * These next three are used to indicate when hashing is going on, which
	 * bits to use. These are for 64K, 2M, and 1G parts of addresses
	 * respectively.
	 */
	DF_DRAM_F_HASH_16_18	= 1 << 2,
	DF_DRAM_F_HASH_21_23	= 1 << 3,
	DF_DRAM_F_HASH_30_32	= 1 << 4,
	/*
	 * Indicates that this rule should have remap processing and the remap
	 * target is valid. If the DF_DRAM_F_REMAP_SOCK flag is set, this
	 * indicates that the processing is based on socket versus a particular
	 * entry.
	 */
	DF_DRAM_F_REMAP_EN	= 1 << 5,
	DF_DRAM_F_REMAP_SOCK	= 1 << 6
} df_dram_flags_t;

/*
 * This represents a single offset value for a channel. This is used when
 * applying normalization.
 */
typedef struct chan_offset {
	uint32_t	cho_raw;
	boolean_t	cho_valid;
	uint64_t	cho_offset;
} chan_offset_t;

/*
 * This structure represents a single DRAM rule, no matter where it shows up.
 * This smooths over the differences between generations.
 */
typedef struct df_dram_rule {
	uint32_t		ddr_raw_base;
	uint32_t		ddr_raw_limit;
	uint32_t		ddr_raw_ctrl;
	uint32_t		ddr_raw_ileave;
	df_dram_flags_t		ddr_flags;
	uint64_t		ddr_base;
	uint64_t		ddr_limit;
	uint16_t		ddr_dest_fabid;
	uint8_t			ddr_sock_ileave_bits;
	uint8_t			ddr_die_ileave_bits;
	uint8_t			ddr_addr_start;
	uint8_t			ddr_remap_ent;
	df_chan_ileave_t	ddr_chan_ileave;
} df_dram_rule_t;

typedef struct umc_dimm_base {
	uint64_t	udb_base;
	boolean_t	udb_valid;
} umc_dimm_base_t;

typedef enum umc_dimm_type {
	UMC_DIMM_T_UNKNOWN,
	UMC_DIMM_T_DDR4,
	UMC_DIMM_T_LPDDR4,
	UMC_DIMM_T_DDR5,
	UMC_DIMM_T_LPDDR5
} umc_dimm_type_t;

typedef enum umc_dimm_width {
	UMC_DIMM_W_X4,
	UMC_DIMM_W_X8,
	UMC_DIMM_W_X16,
} umc_dimm_width_t;

typedef enum umc_dimm_kind {
	UMC_DIMM_K_UDIMM,
	UMC_DIMM_K_RDIMM,
	UMC_DIMM_K_LRDIMM,
	UMC_DIMM_K_3DS_RDIMM
} umc_dimm_kind_t;

typedef enum umc_dimm_flags {
	/*
	 * This flag indicates that this DIMM should be used for decoding
	 * purposes. It basically means that there is at least one chip-select
	 * decoding register that has been enabled. Unfortunately, we don't have
	 * a good way right now of distinguishing between a DIMM being present
	 * and being usable. This likely needs to be re-evaluated when we
	 * consider how we present things to topo. We may be able to pull this
	 * out of the clock disable logic.
	 */
	UMC_DIMM_F_VALID	= 1 << 0,
} umc_dimm_flags_t;

/*
 * A DIMM may have one or more ranks, which is an independent logical item that
 * is activated by a 'chip-select' signal on a DIMM (e.g. CS_L[1:0]). In a given
 * channel, AMD always has two instances of a 'chip-select' data structure.
 * While these have a 1:1 correspondence in the case of single and dual rank
 * DIMMs, in the case where there are more, then rank multiplication rules are
 * used to determine which of the additional chip and chip-select signals to
 * actually drive on the bus. But still, there are only up to two of these
 * structures. To match AMD terminology we call these a 'chip-select' or
 * 'umc_cs_t'.
 *
 * The amount of information that exists on a per-chip-select and per-DIMM basis
 * varies between the different memory controller generations. As such, we
 * normalize things such that a given chip-select always has all of the
 * information related to it, duplicating it in the DDR4 case.
 *
 * While DDR5 adds the notion of sub-channels, a single chip-select is used to
 * cover both sub-channels and instead a bit in the normalized address (and
 * hashing) is used to determine which sub-channel to active. So while hardware
 * actually has different chip-select lines for each sub-channel they are not
 * represented that way in the UMC.
 */
typedef struct umc_cs {
	umc_dimm_base_t		ucs_base;
	umc_dimm_base_t		ucs_sec;
	uint64_t		ucs_base_mask;
	uint64_t		ucs_sec_mask;
	uint8_t			ucs_nbanks;
	uint8_t			ucs_ncol;
	uint8_t			ucs_nrow_lo;
	uint8_t			ucs_nrow_hi;
	uint8_t			ucs_nrm;
	uint8_t			ucs_nbank_groups;
	uint8_t			ucs_cs_xor;
	uint8_t			ucs_row_hi_bit;
	uint8_t			ucs_row_low_bit;
	uint8_t			ucs_bank_bits[ZEN_UMC_MAX_BANK_BITS];
	uint8_t			ucs_col_bits[ZEN_UMC_MAX_COL_BITS];
	uint8_t			ucs_inv_msbs;
	uint8_t			ucs_rm_bits[ZEN_UMC_MAX_RM_BITS];
	uint8_t			ucs_inv_msbs_sec;
	uint8_t			ucs_rm_bits_sec[ZEN_UMC_MAX_RM_BITS];
	uint8_t			ucs_subchan;
} umc_cs_t;

/*
 * This structure represents information about a DIMM. Most of the interesting
 * stuff is on the umc_cs_t up above, which is the logical 'chip-select' that
 * AMD implements in the UMC.
 *
 * When we come back and add topo glue for the driver, we should consider adding
 * the following information here and in the channel:
 *
 *  o Configured DIMM speed
 *  o Channel capable speed
 *  o Calculated size
 *  o A way to map this DIMM to an SMBIOS / SPD style entry
 */
typedef struct umc_dimm {
	umc_dimm_flags_t	ud_flags;
	umc_dimm_width_t	ud_width;
	umc_dimm_type_t		ud_type;
	umc_dimm_kind_t		ud_kind;
	uint32_t		ud_dimmno;
	uint32_t		ud_dimmcfg_raw;
	umc_cs_t		ud_cs[ZEN_UMC_MAX_CS_PER_DIMM];
} umc_dimm_t;

typedef enum umc_chan_flags {
	/*
	 * Indicates that the channel has enabled ECC logic.
	 */
	UMC_CHAN_F_ECC_EN	= 1 << 0,
	/*
	 * We believe that this indicates some amount of the AMD SEV encryption
	 * is ongoing, leveraging some of the page-table control.
	 */
	UMC_CHAN_F_ENCR_EN	= 1 << 1,
	/*
	 * Indicates that the channel is employing data scrambling. This is
	 * basically what folks have called Transparent Shared Memory
	 * Encryption.
	 */
	UMC_CHAN_F_SCRAMBLE_EN	= 1 << 2
} umc_chan_flags_t;

typedef struct umc_bank_hash {
	uint32_t	ubh_row_xor;
	uint32_t	ubh_col_xor;
	boolean_t	ubh_en;
} umc_bank_hash_t;

typedef struct umc_addr_hash {
	uint64_t	uah_addr_xor;
	boolean_t	uah_en;
} umc_addr_hash_t;

typedef struct umc_pc_hash {
	uint32_t	uph_row_xor;
	uint32_t	uph_col_xor;
	uint8_t		uph_bank_xor;
	boolean_t	uph_en;
} umc_pc_hash_t;

typedef enum umc_chan_hash_flags {
	UMC_CHAN_HASH_F_BANK	= 1 << 0,
	UMC_CHAN_HASH_F_RM	= 1 << 1,
	UMC_CHAN_HASH_F_PC	= 1 << 2,
	UMC_CHAN_HASH_F_CS	= 1 << 3,
} umc_chan_hash_flags_t;

typedef struct umc_chan_hash {
	umc_chan_hash_flags_t	uch_flags;
	umc_bank_hash_t		uch_bank_hashes[ZEN_UMC_MAX_CHAN_BANK_HASH];
	umc_addr_hash_t		uch_rm_hashes[ZEN_UMC_MAX_CHAN_RM_HASH];
	umc_addr_hash_t		uch_cs_hashes[ZEN_UMC_MAX_CHAN_CS_HASH];
	umc_pc_hash_t		uch_pc_hash;
} umc_chan_hash_t;

/*
 * This structure represents the overall memory channel. There is a 1:1
 * relationship between these structures and discover UMC hardware entities on
 * the data fabric. Note, these always exist regardless of whether the channels
 * are actually implemented on a PCB or not.
 */
typedef struct zen_umc_chan {
	umc_chan_flags_t	chan_flags;
	uint32_t		chan_fabid;
	uint32_t		chan_instid;
	uint32_t		chan_logid;
	uint32_t		chan_nrules;
	uint32_t		chan_umccfg_raw;
	uint32_t		chan_datactl_raw;
	uint32_t		chan_eccctl_raw;
	uint32_t		chan_umccap_raw;
	uint32_t		chan_umccap_hi_raw;
	uint32_t		chan_np2_raw;
	uint32_t		chan_np2_space0;
	df_dram_rule_t		chan_rules[ZEN_UMC_MAX_CS_RULES];
	chan_offset_t		chan_offsets[ZEN_UMC_MAX_DRAM_OFFSET];
	umc_dimm_t		chan_dimms[ZEN_UMC_MAX_DIMMS];
	umc_chan_hash_t		chan_hash;
} zen_umc_chan_t;

typedef struct zen_umc_cs_remap {
	uint_t		csr_nremaps;
	uint16_t	csr_remaps[ZEN_UMC_MAX_REMAP_ENTS];
} zen_umc_cs_remap_t;

typedef enum zen_umc_df_flags {
	/*
	 * Indicates that the DRAM Hole is valid and in use.
	 */
	ZEN_UMC_DF_F_HOLE_VALID	= 1 << 0,
	/*
	 * These next three are used to indicate when hashing is going on, which
	 * bits to use. These are for 64K, 2M, and 1G parts of addresses
	 * respectively.
	 */
	ZEN_UMC_DF_F_HASH_16_18	= 1 << 1,
	ZEN_UMC_DF_F_HASH_21_23	= 1 << 2,
	ZEN_UMC_DF_F_HASH_30_32	= 1 << 3
} zen_umc_df_flags_t;

typedef struct zen_umc_df {
	zen_umc_df_flags_t	zud_flags;
	uint_t			zud_dfno;
	uint_t			zud_ccm_inst;
	uint_t			zud_dram_nrules;
	uint_t			zud_nchan;
	uint_t			zud_cs_nremap;
	uint32_t		zud_hole_raw;
	uint32_t		zud_glob_ctl_raw;
	uint64_t		zud_hole_base;
	df_dram_rule_t		zud_rules[ZEN_UMC_MAX_DRAM_RULES];
	zen_umc_cs_remap_t	zud_remap[ZEN_UMC_MAX_CS_REMAPS];
	zen_umc_chan_t		zud_chan[ZEN_UMC_MAX_UMCS];
} zen_umc_df_t;

typedef enum zen_umc_umc_style {
	ZEN_UMC_UMC_S_DDR4,
	ZEN_UMC_UMC_S_DDR4_APU,
	ZEN_UMC_UMC_S_DDR5,
	ZEN_UMC_UMC_S_DDR5_APU
} zen_umc_umc_style_t;

typedef enum zen_umc_fam_flags {
	/*
	 * Indicates that there's an indirection table for the destinations of
	 * target rules.
	 */
	ZEN_UMC_FAM_F_TARG_REMAP	= 1 << 0,
	/*
	 * Indicates that non-power of two interleave rules are supported and
	 * that we need additional register configuration.
	 */
	ZEN_UMC_FAM_F_NP2		= 1 << 1,
	/*
	 * Indicates that the DF hashing rules to configure COD hashes need to
	 * be checked.
	 */
	ZEN_UMC_FAM_F_NORM_HASH		= 1 << 2,
	/*
	 * In DDR4 this indicates presence of the HashRM and in DDR5 the
	 * AddrHash.
	 */
	ZEN_UMC_FAM_F_UMC_HASH		= 1 << 3,
	/*
	 * Indicates support for extended UMC registers for larger addresses.
	 * Generally on Server parts.
	 */
	ZEN_UMC_FAM_F_UMC_EADDR		= 1 << 4,
	/*
	 * Indicates that CS decoder supports an XOR function.
	 */
	ZEN_UMC_FAM_F_CS_XOR		= 1 << 5
} zen_umc_fam_flags_t;

/*
 * This structure is meant to contain per SoC family (not CPUID family)
 * information. This is stuff that we basically need to encode about the
 * processor itself and relates to its limits, the style it operates in, the
 * way it works, etc.
 */
typedef struct zen_umc_fam_data {
	x86_processor_family_t	zufd_family;
	zen_umc_fam_flags_t	zufd_flags;
	uint8_t			zufd_dram_nrules;
	uint8_t			zufd_cs_nrules;
	zen_umc_umc_style_t	zufd_umc_style;
	umc_chan_hash_flags_t	zufd_chan_hash;
} zen_umc_fam_data_t;

/*
 * The top-level data structure for the system. This is a single structure that
 * represents everything that could possibly exist and is filled in with what we
 * actually discover.
 */
typedef struct zen_umc {
	uint64_t umc_tom;
	uint64_t umc_tom2;
	dev_info_t *umc_dip;
	x86_processor_family_t umc_family;
	df_rev_t umc_df_rev;
	const zen_umc_fam_data_t *umc_fdata;
	df_fabric_decomp_t umc_decomp;
	uint_t umc_ndfs;
	zen_umc_df_t umc_dfs[ZEN_UMC_MAX_DFS];
	/*
	 * This lock protects the data underneath here.
	 */
	kmutex_t umc_nvl_lock;
	nvlist_t *umc_decoder_nvl;
	char *umc_decoder_buf;
	size_t umc_decoder_len;
} zen_umc_t;

typedef enum zen_umc_decode_failure {
	ZEN_UMC_DECODE_F_NONE = 0,
	/*
	 * Indicates that the address was not contained within the TOM and TOM2
	 * regions that indicate DRAM (or was in a reserved hole).
	 */
	ZEN_UMC_DECODE_F_OUTSIDE_DRAM,
	/*
	 * Indicates that we could not find a DF rule in the CCM rule that
	 * claims to honor this address.
	 */
	ZEN_UMC_DECODE_F_NO_DF_RULE,
	/*
	 * Indicates that trying to construct the interleave address to use
	 * would have led to an underflow somehow.
	 */
	ZEN_UMC_DECODE_F_ILEAVE_UNDERFLOW,
	/*
	 * Indicates that we do not currently support decoding the indicated
	 * channel interleave type.
	 */
	ZEN_UMC_DECODE_F_CHAN_ILEAVE_NOTSUP,
	/*
	 * Indicates that we found a COD hash rule that had a non-zero socket or
	 * die interleave, which isn't supported and we don't know how to
	 * decode.
	 */
	ZEN_UMC_DECODE_F_COD_BAD_ILEAVE,
	/*
	 * This is similar to the above, but indicates that we hit a bad NPS
	 * interleave rule instead of a COD.
	 */
	ZEN_UMC_DECODE_F_NPS_BAD_ILEAVE,
	/*
	 * Indicates that somehow we thought we should use a remap rule set that
	 * was beyond our capabilities.
	 */
	ZEN_UMC_DECODE_F_BAD_REMAP_SET,
	/*
	 * Indicates that we tried to find an index for the remap rules;
	 * however, the logical component ID was outside the range of the number
	 * of entries that we have.
	 */
	ZEN_UMC_DECODE_F_BAD_REMAP_ENTRY,
	/*
	 * Indicates that the remap rule had an invalid component bit set in its
	 * mask.
	 */
	ZEN_UMC_DECODE_F_REMAP_HAS_BAD_COMP,
	/*
	 * Indicates that we could not find a UMC with the fabric ID we thought
	 * we should have.
	 */
	ZEN_UMC_DECODE_F_CANNOT_MAP_FABID,
	/*
	 * Indicates that somehow the UMC we found did not actually contain a
	 * DRAM rule that covered our original PA.
	 */
	ZEN_UMC_DECODE_F_UMC_DOESNT_HAVE_PA,
	/*
	 * Indicates that we would have somehow underflowed the address
	 * calculations normalizing the system address.
	 */
	ZEN_UMC_DECODE_F_CALC_NORM_UNDERFLOW,
	/*
	 * Indicates that none of the UMC's chip-selects actually matched a base
	 * or secondary.
	 */
	ZEN_UMC_DECODE_F_NO_CS_BASE_MATCH
} zen_umc_decode_failure_t;

/*
 * This struct accumulates all of our decoding logic and states and we use it so
 * it's easier for us to look at what's going on and the decisions that we made
 * along the way.
 */
typedef struct zen_umc_decoder {
	zen_umc_decode_failure_t	dec_fail;
	uint64_t			dec_fail_data;
	uint64_t			dec_pa;
	const zen_umc_df_t		*dec_df_rulesrc;
	uint32_t			dec_df_ruleno;
	const df_dram_rule_t		*dec_df_rule;
	uint64_t			dec_ilv_pa;
	/*
	 * These three values represent the IDs that we extract from the
	 * interleave address.
	 */
	uint32_t			dec_ilv_sock;
	uint32_t			dec_ilv_die;
	uint32_t			dec_ilv_chan;
	uint32_t			dec_ilv_fabid;
	uint32_t			dec_log_fabid;
	uint32_t			dec_remap_comp;
	uint32_t			dec_targ_fabid;
	const zen_umc_chan_t		*dec_umc_chan;
	uint32_t			dec_umc_ruleno;
	uint64_t			dec_norm_addr;
	const umc_dimm_t		*dec_dimm;
	const umc_cs_t			*dec_cs;
	boolean_t			dec_cs_sec;
	uint32_t			dec_dimm_col;
	uint32_t			dec_dimm_row;
	uint8_t				dec_log_csno;
	uint8_t				dec_dimm_bank;
	uint8_t				dec_dimm_bank_group;
	uint8_t				dec_dimm_subchan;
	uint8_t				dec_dimm_rm;
	uint8_t				dec_chan_csno;
	uint8_t				dec_dimm_no;
	uint8_t				dec_dimm_csno;
} zen_umc_decoder_t;

/*
 * Decoding and normalization routines.
 */
extern boolean_t zen_umc_decode_pa(const zen_umc_t *, const uint64_t,
    zen_umc_decoder_t *);

/*
 * Fabric ID utilities
 */
extern boolean_t zen_fabric_id_valid_fabid(const df_fabric_decomp_t *,
    const uint32_t);
extern boolean_t zen_fabric_id_valid_parts(const df_fabric_decomp_t *,
    const uint32_t, const uint32_t, const uint32_t);
extern void zen_fabric_id_decompose(const df_fabric_decomp_t *, const uint32_t,
    uint32_t *, uint32_t *, uint32_t *);
extern void zen_fabric_id_compose(const df_fabric_decomp_t *, const uint32_t,
    const uint32_t, const uint32_t, uint32_t *);

/*
 * Encoding and decoding
 */
extern nvlist_t *zen_umc_dump_decoder(zen_umc_t *);
extern boolean_t zen_umc_restore_decoder(nvlist_t *, zen_umc_t *);

#ifdef __cplusplus
}
#endif

#endif /* _ZEN_UMC_H */