1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
#pragma ident "%Z%%M% %I% %E% SMI" /* SVr4.0 1.8 */
#include <sys/types.h>
#include <sys/t_lock.h>
#include <sys/param.h>
#include <sys/cred.h>
#include <sys/debug.h>
#include <sys/inline.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/vmsystm.h>
#include <sys/vfs.h>
#include <sys/vnode.h>
#include <sys/pcb.h>
#include <sys/buf.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/cpuvar.h>
#include <sys/copyops.h>
#include <sys/watchpoint.h>
#include <sys/fault.h>
#include <sys/syscall.h>
#include <sys/procfs.h>
#include <sys/archsystm.h>
#include <sys/cmn_err.h>
#include <sys/stack.h>
#include <sys/machpcb.h>
#include <sys/simulate.h>
#include <sys/fpu/fpusystm.h>
#include <sys/pte.h>
#include <sys/vmem.h>
#include <sys/mman.h>
#include <sys/vmparam.h>
#include <vm/hat.h>
#include <vm/as.h>
#include <vm/seg.h>
#include <vm/seg_kmem.h>
#include <vm/seg_kp.h>
#include <vm/page.h>
#include <fs/proc/prdata.h>
#include <v9/sys/psr_compat.h>
int prnwatch = 10000; /* maximum number of watched areas */
/*
* Force a thread into the kernel if it is not already there.
* This is a no-op on uniprocessors.
*/
/* ARGSUSED */
void
prpokethread(kthread_t *t)
{
if (t->t_state == TS_ONPROC && t->t_cpu != CPU)
poke_cpu(t->t_cpu->cpu_id);
}
/*
* Return general registers.
*/
void
prgetprregs(klwp_t *lwp, prgregset_t prp)
{
gregset_t gr;
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
getgregs(lwp, gr);
bzero(prp, sizeof (prp));
/*
* Can't copy since prgregset_t and gregset_t
* use different defines.
*/
prp[R_G1] = gr[REG_G1];
prp[R_G2] = gr[REG_G2];
prp[R_G3] = gr[REG_G3];
prp[R_G4] = gr[REG_G4];
prp[R_G5] = gr[REG_G5];
prp[R_G6] = gr[REG_G6];
prp[R_G7] = gr[REG_G7];
prp[R_O0] = gr[REG_O0];
prp[R_O1] = gr[REG_O1];
prp[R_O2] = gr[REG_O2];
prp[R_O3] = gr[REG_O3];
prp[R_O4] = gr[REG_O4];
prp[R_O5] = gr[REG_O5];
prp[R_O6] = gr[REG_O6];
prp[R_O7] = gr[REG_O7];
if (lwp->lwp_pcb.pcb_xregstat != XREGNONE) {
prp[R_L0] = lwp->lwp_pcb.pcb_xregs.rw_local[0];
prp[R_L1] = lwp->lwp_pcb.pcb_xregs.rw_local[1];
prp[R_L2] = lwp->lwp_pcb.pcb_xregs.rw_local[2];
prp[R_L3] = lwp->lwp_pcb.pcb_xregs.rw_local[3];
prp[R_L4] = lwp->lwp_pcb.pcb_xregs.rw_local[4];
prp[R_L5] = lwp->lwp_pcb.pcb_xregs.rw_local[5];
prp[R_L6] = lwp->lwp_pcb.pcb_xregs.rw_local[6];
prp[R_L7] = lwp->lwp_pcb.pcb_xregs.rw_local[7];
prp[R_I0] = lwp->lwp_pcb.pcb_xregs.rw_in[0];
prp[R_I1] = lwp->lwp_pcb.pcb_xregs.rw_in[1];
prp[R_I2] = lwp->lwp_pcb.pcb_xregs.rw_in[2];
prp[R_I3] = lwp->lwp_pcb.pcb_xregs.rw_in[3];
prp[R_I4] = lwp->lwp_pcb.pcb_xregs.rw_in[4];
prp[R_I5] = lwp->lwp_pcb.pcb_xregs.rw_in[5];
prp[R_I6] = lwp->lwp_pcb.pcb_xregs.rw_in[6];
prp[R_I7] = lwp->lwp_pcb.pcb_xregs.rw_in[7];
}
prp[R_CCR] = gr[REG_CCR];
prp[R_ASI] = gr[REG_ASI];
prp[R_FPRS] = gr[REG_FPRS];
prp[R_PC] = gr[REG_PC];
prp[R_nPC] = gr[REG_nPC];
prp[R_Y] = gr[REG_Y];
}
/*
* Set general registers.
*/
void
prsetprregs(klwp_t *lwp, prgregset_t prp, int initial)
{
gregset_t gr;
gr[REG_G1] = prp[R_G1];
gr[REG_G2] = prp[R_G2];
gr[REG_G3] = prp[R_G3];
gr[REG_G4] = prp[R_G4];
gr[REG_G5] = prp[R_G5];
gr[REG_G6] = prp[R_G6];
gr[REG_G7] = prp[R_G7];
gr[REG_O0] = prp[R_O0];
gr[REG_O1] = prp[R_O1];
gr[REG_O2] = prp[R_O2];
gr[REG_O3] = prp[R_O3];
gr[REG_O4] = prp[R_O4];
gr[REG_O5] = prp[R_O5];
gr[REG_O6] = prp[R_O6];
gr[REG_O7] = prp[R_O7];
lwp->lwp_pcb.pcb_xregs.rw_local[0] = prp[R_L0];
lwp->lwp_pcb.pcb_xregs.rw_local[1] = prp[R_L1];
lwp->lwp_pcb.pcb_xregs.rw_local[2] = prp[R_L2];
lwp->lwp_pcb.pcb_xregs.rw_local[3] = prp[R_L3];
lwp->lwp_pcb.pcb_xregs.rw_local[4] = prp[R_L4];
lwp->lwp_pcb.pcb_xregs.rw_local[5] = prp[R_L5];
lwp->lwp_pcb.pcb_xregs.rw_local[6] = prp[R_L6];
lwp->lwp_pcb.pcb_xregs.rw_local[7] = prp[R_L7];
lwp->lwp_pcb.pcb_xregs.rw_in[0] = prp[R_I0];
lwp->lwp_pcb.pcb_xregs.rw_in[1] = prp[R_I1];
lwp->lwp_pcb.pcb_xregs.rw_in[2] = prp[R_I2];
lwp->lwp_pcb.pcb_xregs.rw_in[3] = prp[R_I3];
lwp->lwp_pcb.pcb_xregs.rw_in[4] = prp[R_I4];
lwp->lwp_pcb.pcb_xregs.rw_in[5] = prp[R_I5];
lwp->lwp_pcb.pcb_xregs.rw_in[6] = prp[R_I6];
lwp->lwp_pcb.pcb_xregs.rw_in[7] = prp[R_I7];
lwp->lwp_pcb.pcb_xregstat = XREGMODIFIED;
lwptot(lwp)->t_post_sys = 1;
/*
* setgregs will only allow the condition codes to be set.
*/
gr[REG_CCR] = prp[R_CCR];
gr[REG_ASI] = prp[R_ASI];
gr[REG_FPRS] = prp[R_FPRS];
gr[REG_PC] = prp[R_PC];
gr[REG_nPC] = prp[R_nPC];
gr[REG_Y] = prp[R_Y];
if (initial) { /* set initial values */
if (lwptoproc(lwp)->p_model == DATAMODEL_LP64)
lwptoregs(lwp)->r_tstate = TSTATE_USER64;
else
lwptoregs(lwp)->r_tstate = TSTATE_USER32;
if (!fpu_exists)
lwptoregs(lwp)->r_tstate &= ~TSTATE_PEF;
}
setgregs(lwp, gr);
}
#ifdef _SYSCALL32_IMPL
/*
* modify the lower 32bits of a uint64_t
*/
#define SET_LOWER_32(all, lower) \
(((uint64_t)(all) & 0xffffffff00000000) | (uint32_t)(lower))
/*
* Convert prgregset32 to native prgregset.
*/
void
prgregset_32ton(klwp_t *lwp, prgregset32_t src, prgregset_t dest)
{
struct regs *r = lwptoregs(lwp);
dest[R_G0] = SET_LOWER_32(0, src[R_G0]);
dest[R_G1] = SET_LOWER_32(r->r_g1, src[R_G1]);
dest[R_G2] = SET_LOWER_32(r->r_g2, src[R_G2]);
dest[R_G3] = SET_LOWER_32(r->r_g3, src[R_G3]);
dest[R_G4] = SET_LOWER_32(r->r_g4, src[R_G4]);
dest[R_G5] = SET_LOWER_32(r->r_g5, src[R_G5]);
dest[R_G6] = SET_LOWER_32(r->r_g6, src[R_G6]);
dest[R_G7] = SET_LOWER_32(r->r_g7, src[R_G7]);
dest[R_O0] = SET_LOWER_32(r->r_o0, src[R_O0]);
dest[R_O1] = SET_LOWER_32(r->r_o1, src[R_O1]);
dest[R_O2] = SET_LOWER_32(r->r_o2, src[R_O2]);
dest[R_O3] = SET_LOWER_32(r->r_o3, src[R_O3]);
dest[R_O4] = SET_LOWER_32(r->r_o4, src[R_O4]);
dest[R_O5] = SET_LOWER_32(r->r_o5, src[R_O5]);
dest[R_O6] = SET_LOWER_32(r->r_o6, src[R_O6]);
dest[R_O7] = SET_LOWER_32(r->r_o7, src[R_O7]);
if (lwp->lwp_pcb.pcb_xregstat != XREGNONE) {
struct rwindow *rw = &lwp->lwp_pcb.pcb_xregs;
dest[R_L0] = SET_LOWER_32(rw->rw_local[0], src[R_L0]);
dest[R_L1] = SET_LOWER_32(rw->rw_local[1], src[R_L1]);
dest[R_L2] = SET_LOWER_32(rw->rw_local[2], src[R_L2]);
dest[R_L3] = SET_LOWER_32(rw->rw_local[3], src[R_L3]);
dest[R_L4] = SET_LOWER_32(rw->rw_local[4], src[R_L4]);
dest[R_L5] = SET_LOWER_32(rw->rw_local[5], src[R_L5]);
dest[R_L6] = SET_LOWER_32(rw->rw_local[6], src[R_L6]);
dest[R_L7] = SET_LOWER_32(rw->rw_local[7], src[R_L7]);
dest[R_I0] = SET_LOWER_32(rw->rw_in[0], src[R_I0]);
dest[R_I1] = SET_LOWER_32(rw->rw_in[1], src[R_I1]);
dest[R_I2] = SET_LOWER_32(rw->rw_in[2], src[R_I2]);
dest[R_I3] = SET_LOWER_32(rw->rw_in[3], src[R_I3]);
dest[R_I4] = SET_LOWER_32(rw->rw_in[4], src[R_I4]);
dest[R_I5] = SET_LOWER_32(rw->rw_in[5], src[R_I5]);
dest[R_I6] = SET_LOWER_32(rw->rw_in[6], src[R_I6]);
dest[R_I7] = SET_LOWER_32(rw->rw_in[7], src[R_I7]);
} else {
dest[R_L0] = (uint32_t)src[R_L0];
dest[R_L1] = (uint32_t)src[R_L1];
dest[R_L2] = (uint32_t)src[R_L2];
dest[R_L3] = (uint32_t)src[R_L3];
dest[R_L4] = (uint32_t)src[R_L4];
dest[R_L5] = (uint32_t)src[R_L5];
dest[R_L6] = (uint32_t)src[R_L6];
dest[R_L7] = (uint32_t)src[R_L7];
dest[R_I0] = (uint32_t)src[R_I0];
dest[R_I1] = (uint32_t)src[R_I1];
dest[R_I2] = (uint32_t)src[R_I2];
dest[R_I3] = (uint32_t)src[R_I3];
dest[R_I4] = (uint32_t)src[R_I4];
dest[R_I5] = (uint32_t)src[R_I5];
dest[R_I6] = (uint32_t)src[R_I6];
dest[R_I7] = (uint32_t)src[R_I7];
}
dest[R_CCR] = ((r->r_tstate >> TSTATE_CCR_SHIFT) & CCR_XCC) |
((src[R_PSR] >> (TSTATE_CCR_SHIFT-PSR_TSTATE_CC_SHIFT)) & CCR_ICC);
dest[R_PC] = SET_LOWER_32(r->r_pc, src[R_PC]);
dest[R_nPC] = SET_LOWER_32(r->r_npc, src[R_nPC]);
dest[R_Y] = (uint32_t)src[R_Y];
dest[R_ASI] = (r->r_tstate >> TSTATE_ASI_SHIFT) & TSTATE_ASI_MASK;
dest[R_FPRS] = lwptofpu(lwp)->fpu_fprs;
}
/*
* Return 32-bit general registers.
*/
/* conversion from 64-bit register to 32-bit register */
#define R32(r) (prgreg32_t)(uint32_t)(r)
void
prgetprregs32(klwp_t *lwp, prgregset32_t prp)
{
gregset32_t gr;
extern void getgregs32(klwp_t *, gregset32_t);
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
getgregs32(lwp, gr);
bzero(prp, sizeof (prp));
/*
* Can't copy since prgregset_t and gregset_t
* use different defines.
*/
prp[R_G1] = gr[REG_G1];
prp[R_G2] = gr[REG_G2];
prp[R_G3] = gr[REG_G3];
prp[R_G4] = gr[REG_G4];
prp[R_G5] = gr[REG_G5];
prp[R_G6] = gr[REG_G6];
prp[R_G7] = gr[REG_G7];
prp[R_O0] = gr[REG_O0];
prp[R_O1] = gr[REG_O1];
prp[R_O2] = gr[REG_O2];
prp[R_O3] = gr[REG_O3];
prp[R_O4] = gr[REG_O4];
prp[R_O5] = gr[REG_O5];
prp[R_O6] = gr[REG_O6];
prp[R_O7] = gr[REG_O7];
if (lwp->lwp_pcb.pcb_xregstat != XREGNONE) {
prp[R_L0] = R32(lwp->lwp_pcb.pcb_xregs.rw_local[0]);
prp[R_L1] = R32(lwp->lwp_pcb.pcb_xregs.rw_local[1]);
prp[R_L2] = R32(lwp->lwp_pcb.pcb_xregs.rw_local[2]);
prp[R_L3] = R32(lwp->lwp_pcb.pcb_xregs.rw_local[3]);
prp[R_L4] = R32(lwp->lwp_pcb.pcb_xregs.rw_local[4]);
prp[R_L5] = R32(lwp->lwp_pcb.pcb_xregs.rw_local[5]);
prp[R_L6] = R32(lwp->lwp_pcb.pcb_xregs.rw_local[6]);
prp[R_L7] = R32(lwp->lwp_pcb.pcb_xregs.rw_local[7]);
prp[R_I0] = R32(lwp->lwp_pcb.pcb_xregs.rw_in[0]);
prp[R_I1] = R32(lwp->lwp_pcb.pcb_xregs.rw_in[1]);
prp[R_I2] = R32(lwp->lwp_pcb.pcb_xregs.rw_in[2]);
prp[R_I3] = R32(lwp->lwp_pcb.pcb_xregs.rw_in[3]);
prp[R_I4] = R32(lwp->lwp_pcb.pcb_xregs.rw_in[4]);
prp[R_I5] = R32(lwp->lwp_pcb.pcb_xregs.rw_in[5]);
prp[R_I6] = R32(lwp->lwp_pcb.pcb_xregs.rw_in[6]);
prp[R_I7] = R32(lwp->lwp_pcb.pcb_xregs.rw_in[7]);
}
prp[R_PSR] = gr[REG_PSR];
prp[R_PC] = gr[REG_PC];
prp[R_nPC] = gr[REG_nPC];
prp[R_Y] = gr[REG_Y];
}
#endif /* _SYSCALL32_IMPL */
/*
* Get the syscall return values for the lwp.
*/
int
prgetrvals(klwp_t *lwp, long *rval1, long *rval2)
{
struct regs *r = lwptoregs(lwp);
if (r->r_tstate & TSTATE_IC)
return ((int)r->r_o0);
if (lwp->lwp_eosys == JUSTRETURN) {
*rval1 = 0;
*rval2 = 0;
} else if (lwptoproc(lwp)->p_model == DATAMODEL_ILP32) {
*rval1 = r->r_o0 & (uint32_t)0xffffffffU;
*rval2 = r->r_o1 & (uint32_t)0xffffffffU;
} else {
*rval1 = r->r_o0;
*rval2 = r->r_o1;
}
return (0);
}
/*
* Does the system support floating-point, either through hardware
* or by trapping and emulating floating-point machine instructions?
*/
int
prhasfp(void)
{
/*
* SunOS5.0 emulates floating-point if FP hardware is not present.
*/
return (1);
}
/*
* Get floating-point registers.
*/
void
prgetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
{
bzero(pfp, sizeof (*pfp));
/*
* This works only because prfpregset_t is intentionally
* constructed to be identical to fpregset_t, with additional
* space for the floating-point queue at the end.
*/
getfpregs(lwp, (fpregset_t *)pfp);
/*
* This is supposed to be a pointer to the floating point queue.
* We can't provide such a thing through the /proc interface.
*/
pfp->pr_filler = NULL;
/*
* XXX: to be done: fetch the FP queue if it is non-empty.
*/
}
#ifdef _SYSCALL32_IMPL
void
prgetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
{
bzero(pfp, sizeof (*pfp));
/*
* This works only because prfpregset32_t is intentionally
* constructed to be identical to fpregset32_t, with additional
* space for the floating-point queue at the end.
*/
getfpregs32(lwp, (fpregset32_t *)pfp);
/*
* This is supposed to be a pointer to the floating point queue.
* We can't provide such a thing through the /proc interface.
*/
pfp->pr_filler = NULL;
/*
* XXX: to be done: fetch the FP queue if it is non-empty.
*/
}
#endif /* _SYSCALL32_IMPL */
/*
* Set floating-point registers.
*/
void
prsetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
{
/*
* XXX: to be done: store the FP queue if it is non-empty.
*/
pfp->pr_qcnt = 0;
/*
* We set fpu_en before calling setfpregs() in order to
* retain the semantics of this operation from older
* versions of the system. SunOS 5.4 and prior never
* queried fpu_en; they just set the registers. The
* proper operation if fpu_en is zero is to disable
* floating point in the target process, but this can
* only change after a proper end-of-life period for
* the old semantics.
*/
pfp->pr_en = 1;
/*
* This works only because prfpregset_t is intentionally
* constructed to be identical to fpregset_t, with additional
* space for the floating-point queue at the end.
*/
setfpregs(lwp, (fpregset_t *)pfp);
}
#ifdef _SYSCALL32_IMPL
void
prsetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
{
/*
* XXX: to be done: store the FP queue if it is non-empty.
*/
pfp->pr_qcnt = 0;
/*
* We set fpu_en before calling setfpregs() in order to
* retain the semantics of this operation from older
* versions of the system. SunOS 5.4 and prior never
* queried fpu_en; they just set the registers. The
* proper operation if fpu_en is zero is to disable
* floating point in the target process, but this can
* only change after a proper end-of-life period for
* the old semantics.
*/
pfp->pr_en = 1;
/*
* This works only because prfpregset32_t is intentionally
* constructed to be identical to fpregset32_t, with additional
* space for the floating-point queue at the end.
*/
setfpregs32(lwp, (fpregset32_t *)pfp);
}
#endif /* _SYSCALL32_IMPL */
/*
* Does the system support extra register state?
* In a kernel that supports both an _LP64 and an _ILP32 data model,
* the answer depends on the data model of the process.
* An _LP64 process does not have extra registers.
*/
int
prhasx(proc_t *p)
{
extern int xregs_exists;
if (p->p_model == DATAMODEL_LP64)
return (0);
else
return (xregs_exists);
}
/*
* Get the size of the extra registers.
*/
int
prgetprxregsize(proc_t *p)
{
return (xregs_getsize(p));
}
/*
* Get extra registers.
*/
void
prgetprxregs(klwp_t *lwp, caddr_t prx)
{
extern void xregs_get(struct _klwp *, caddr_t);
(void) xregs_get(lwp, prx);
}
/*
* Set extra registers.
*/
void
prsetprxregs(klwp_t *lwp, caddr_t prx)
{
extern void xregs_set(struct _klwp *, caddr_t);
(void) xregs_set(lwp, prx);
}
/*
* Get the ancillary state registers.
*/
void
prgetasregs(klwp_t *lwp, asrset_t asrset)
{
bzero(asrset, sizeof (asrset_t));
getasrs(lwp, asrset);
getfpasrs(lwp, asrset);
}
/*
* Set the ancillary state registers.
*/
void
prsetasregs(klwp_t *lwp, asrset_t asrset)
{
setasrs(lwp, asrset);
setfpasrs(lwp, asrset);
}
/*
* Return the base (lower limit) of the process stack.
*/
caddr_t
prgetstackbase(proc_t *p)
{
return (p->p_usrstack - p->p_stksize);
}
/*
* Return the "addr" field for pr_addr in prpsinfo_t.
* This is a vestige of the past, so whatever we return is OK.
*/
caddr_t
prgetpsaddr(proc_t *p)
{
return ((caddr_t)p);
}
/*
* Arrange to single-step the lwp.
*/
void
prstep(klwp_t *lwp, int watchstep)
{
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
lwp->lwp_pcb.pcb_step = STEP_REQUESTED;
lwp->lwp_pcb.pcb_tracepc = NULL;
if (watchstep)
lwp->lwp_pcb.pcb_flags |= WATCH_STEP;
else
lwp->lwp_pcb.pcb_flags |= NORMAL_STEP;
}
/*
* Undo prstep().
*/
void
prnostep(klwp_t *lwp)
{
ASSERT(ttolwp(curthread) == lwp ||
MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
lwp->lwp_pcb.pcb_step = STEP_NONE;
lwp->lwp_pcb.pcb_tracepc = NULL;
lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
}
/*
* Return non-zero if a single-step is in effect.
*/
int
prisstep(klwp_t *lwp)
{
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
return (lwp->lwp_pcb.pcb_step != STEP_NONE);
}
/*
* Set the PC to the specified virtual address.
*/
void
prsvaddr(klwp_t *lwp, caddr_t vaddr)
{
struct regs *r = lwptoregs(lwp);
ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
/*
* pc and npc must be word aligned on sparc.
* We silently make it so to avoid a watchdog reset.
*/
r->r_pc = (uintptr_t)vaddr & ~03L;
r->r_npc = r->r_pc + 4;
}
/*
* Map address "addr" in address space "as" into a kernel virtual address.
* The memory is guaranteed to be resident and locked down.
*/
caddr_t
prmapin(struct as *as, caddr_t addr, int writing)
{
page_t *pp;
caddr_t kaddr;
pfn_t pfnum;
/*
* XXX - Because of past mistakes, we have bits being returned
* by getpfnum that are actually the page type bits of the pte.
* When the object we are trying to map is a memory page with
* a page structure everything is ok and we can use the optimal
* method, ppmapin. Otherwise, we have to do something special.
*/
pfnum = hat_getpfnum(as->a_hat, addr);
if (pf_is_memory(pfnum)) {
pp = page_numtopp_nolock(pfnum);
if (pp != NULL) {
ASSERT(PAGE_LOCKED(pp));
kaddr = ppmapin(pp, writing ?
(PROT_READ | PROT_WRITE) : PROT_READ,
(caddr_t)-1);
return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
}
}
/*
* Oh well, we didn't have a page struct for the object we were
* trying to map in; ppmapin doesn't handle devices, but allocating a
* heap address allows ppmapout to free virutal space when done.
*/
kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
hat_devload(kas.a_hat, kaddr, PAGESIZE, pfnum,
writing ? (PROT_READ | PROT_WRITE) : PROT_READ, HAT_LOAD_LOCK);
return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
}
/*
* Unmap address "addr" in address space "as"; inverse of prmapin().
*/
/* ARGSUSED */
void
prmapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing)
{
extern void ppmapout(caddr_t);
vaddr = (caddr_t)((uintptr_t)vaddr & PAGEMASK);
ppmapout(vaddr);
}
#define BAMASK22 0xffc00000 /* for masking out disp22 from ba,a */
#define BAA 0x30800000 /* ba,a without disp22 */
#define FBAA 0x31800000 /* fba,a without disp22 */
#define CBAA 0x31c00000 /* cba,a without disp22 */
#define BAMASK19 0xfff80000 /* for masking out disp19 from ba,a %[ix]cc */
#define BAA_icc 0x30480000 /* ba,a %icc without disp19 */
#define BAA_xcc 0x30680000 /* ba,a %xcc without disp19 */
/*
* Prepare to single-step the lwp if requested.
* This is called by the lwp itself just before returning to user level.
*/
void
prdostep(void)
{
klwp_t *lwp = ttolwp(curthread);
struct regs *r = lwptoregs(lwp);
proc_t *p = lwptoproc(lwp);
struct as *as = p->p_as;
caddr_t pc;
caddr_t npc;
ASSERT(lwp != NULL);
ASSERT(r != NULL);
if (lwp->lwp_pcb.pcb_step == STEP_NONE ||
lwp->lwp_pcb.pcb_step == STEP_ACTIVE)
return;
if (p->p_model == DATAMODEL_ILP32) {
pc = (caddr_t)(uintptr_t)(caddr32_t)r->r_pc;
npc = (caddr_t)(uintptr_t)(caddr32_t)r->r_npc;
} else {
pc = (caddr_t)r->r_pc;
npc = (caddr_t)r->r_npc;
}
if (lwp->lwp_pcb.pcb_step == STEP_WASACTIVE) {
if (npc == (caddr_t)lwp->lwp_pcb.pcb_tracepc)
r->r_npc = (greg_t)as->a_userlimit;
else {
lwp->lwp_pcb.pcb_tracepc = (void *)pc;
r->r_pc = (greg_t)as->a_userlimit;
}
} else {
/*
* Single-stepping on sparc is effected by setting nPC
* to an invalid address and expecting FLTBOUNDS to
* occur after the instruction at PC is executed.
* This is not the whole story, however; we must
* deal with branch-always instructions with the
* annul bit set as a special case here.
*
* fuword() returns -1 on error and we can't distinguish
* this from a legitimate instruction of all 1's.
* However 0xffffffff is not one of the branch-always
* instructions we are interested in. No problem.
*/
int32_t instr;
int32_t i;
if (fuword32_nowatch((void *)pc, (uint32_t *)&instr) != 0)
instr = -1;
if ((i = instr & BAMASK22) == BAA || i == FBAA || i == CBAA) {
/*
* For ba,a and relatives, compute the
* new PC from the instruction.
*/
i = (instr << 10) >> 8;
lwp->lwp_pcb.pcb_tracepc = (void *)(pc + i);
r->r_pc = (greg_t)as->a_userlimit;
r->r_npc = r->r_pc + 4;
} else if ((i = instr & BAMASK19) == BAA_icc || i == BAA_xcc) {
/*
* For ba,a %icc and ba,a %xcc, compute the
* new PC from the instruction.
*/
i = (instr << 13) >> 11;
lwp->lwp_pcb.pcb_tracepc = (void *)(pc + i);
r->r_pc = (greg_t)as->a_userlimit;
r->r_npc = r->r_pc + 4;
} else {
lwp->lwp_pcb.pcb_tracepc = (void *)npc;
r->r_npc = (greg_t)as->a_userlimit;
}
}
lwp->lwp_pcb.pcb_step = STEP_ACTIVE;
}
/*
* Wrap up single stepping of the lwp.
* This is called by the lwp itself just after it has taken
* the FLTBOUNDS trap. We fix up the PC and nPC to have their
* proper values after the step. We return 1 to indicate that
* this fault really is the one we are expecting, else 0.
*
* This is also called from syscall() and stop() to reset PC
* and nPC to their proper values for debugger visibility.
*/
int
prundostep(void)
{
klwp_t *lwp = ttolwp(curthread);
proc_t *p = ttoproc(curthread);
struct as *as = p->p_as;
int rc = 0;
caddr_t pc;
caddr_t npc;
ASSERT(lwp != NULL);
if (lwp->lwp_pcb.pcb_step == STEP_ACTIVE) {
struct regs *r = lwptoregs(lwp);
ASSERT(r != NULL);
if (p->p_model == DATAMODEL_ILP32) {
pc = (caddr_t)(uintptr_t)(caddr32_t)r->r_pc;
npc = (caddr_t)(uintptr_t)(caddr32_t)r->r_npc;
} else {
pc = (caddr_t)r->r_pc;
npc = (caddr_t)r->r_npc;
}
if (pc == (caddr_t)as->a_userlimit ||
pc == (caddr_t)as->a_userlimit + 4) {
if (pc == (caddr_t)as->a_userlimit) {
r->r_pc = (greg_t)lwp->lwp_pcb.pcb_tracepc;
if (npc == (caddr_t)as->a_userlimit + 4)
r->r_npc = r->r_pc + 4;
} else {
r->r_pc = (greg_t)lwp->lwp_pcb.pcb_tracepc + 4;
r->r_npc = r->r_pc + 4;
}
rc = 1;
} else {
r->r_npc = (greg_t)lwp->lwp_pcb.pcb_tracepc;
}
lwp->lwp_pcb.pcb_step = STEP_WASACTIVE;
}
return (rc);
}
/*
* Make sure the lwp is in an orderly state
* for inspection by a debugger through /proc.
* Called from stop() and from syslwp_create().
*/
/* ARGSUSED */
void
prstop(int why, int what)
{
klwp_t *lwp = ttolwp(curthread);
proc_t *p = lwptoproc(lwp);
struct regs *r = lwptoregs(lwp);
kfpu_t *pfp = lwptofpu(lwp);
caddr_t sp;
caddr_t pc;
int watched;
extern void fp_prsave(kfpu_t *);
/*
* Make sure we don't deadlock on a recursive call
* to prstop(). stop() tests the lwp_nostop flag.
*/
ASSERT(lwp->lwp_nostop == 0);
lwp->lwp_nostop = 1;
(void) flush_user_windows_to_stack(NULL);
if (lwp->lwp_pcb.pcb_step != STEP_NONE)
(void) prundostep();
if (lwp->lwp_pcb.pcb_xregstat == XREGNONE) {
/*
* Attempt to fetch the last register window from the stack.
* If that fails, look for it in the pcb.
* If that fails, give up.
*/
struct machpcb *mpcb = lwptompcb(lwp);
struct rwindow32 rwindow32;
size_t rw_size;
caddr_t rwp;
int is64;
if (mpcb->mpcb_wstate == WSTATE_USER32) {
rw_size = sizeof (struct rwindow32);
sp = (caddr_t)(uintptr_t)(caddr32_t)r->r_sp;
rwp = sp;
is64 = 0;
} else {
rw_size = sizeof (struct rwindow);
sp = (caddr_t)r->r_sp;
rwp = sp + V9BIAS64;
is64 = 1;
}
watched = watch_disable_addr(rwp, rw_size, S_READ);
if (is64 &&
copyin(rwp, &lwp->lwp_pcb.pcb_xregs, rw_size) == 0)
lwp->lwp_pcb.pcb_xregstat = XREGPRESENT;
else if (!is64 &&
copyin(rwp, &rwindow32, rw_size) == 0) {
rwindow_32ton(&rwindow32, &lwp->lwp_pcb.pcb_xregs);
lwp->lwp_pcb.pcb_xregstat = XREGPRESENT;
} else {
int i;
for (i = 0; i < mpcb->mpcb_wbcnt; i++) {
if (sp == mpcb->mpcb_spbuf[i]) {
if (is64) {
bcopy(mpcb->mpcb_wbuf +
(i * rw_size),
&lwp->lwp_pcb.pcb_xregs,
rw_size);
} else {
struct rwindow32 *rw32 =
(struct rwindow32 *)
(mpcb->mpcb_wbuf +
(i * rw_size));
rwindow_32ton(rw32,
&lwp->lwp_pcb.pcb_xregs);
}
lwp->lwp_pcb.pcb_xregstat = XREGPRESENT;
break;
}
}
}
if (watched)
watch_enable_addr(rwp, rw_size, S_READ);
}
/*
* Make sure the floating point state is saved.
*/
fp_prsave(pfp);
if (p->p_model == DATAMODEL_ILP32)
pc = (caddr_t)(uintptr_t)(caddr32_t)r->r_pc;
else
pc = (caddr_t)r->r_pc;
if (copyin_nowatch(pc, &lwp->lwp_pcb.pcb_instr,
sizeof (lwp->lwp_pcb.pcb_instr)) == 0)
lwp->lwp_pcb.pcb_flags |= INSTR_VALID;
else {
lwp->lwp_pcb.pcb_flags &= ~INSTR_VALID;
lwp->lwp_pcb.pcb_instr = 0;
}
(void) save_syscall_args();
ASSERT(lwp->lwp_nostop == 1);
lwp->lwp_nostop = 0;
}
/*
* Fetch the user-level instruction on which the lwp is stopped.
* It was saved by the lwp itself, in prstop().
* Return non-zero if the instruction is valid.
*/
int
prfetchinstr(klwp_t *lwp, ulong_t *ip)
{
*ip = (ulong_t)(instr_t)lwp->lwp_pcb.pcb_instr;
return (lwp->lwp_pcb.pcb_flags & INSTR_VALID);
}
int
prnwindows(klwp_t *lwp)
{
struct machpcb *mpcb = lwptompcb(lwp);
return (mpcb->mpcb_wbcnt);
}
void
prgetwindows(klwp_t *lwp, gwindows_t *gwp)
{
getgwins(lwp, gwp);
}
#ifdef _SYSCALL32_IMPL
void
prgetwindows32(klwp_t *lwp, gwindows32_t *gwp)
{
getgwins32(lwp, gwp);
}
#endif /* _SYSCALL32_IMPL */
/*
* Called from trap() when a load or store instruction
* falls in a watched page but is not a watchpoint.
* We emulate the instruction in the kernel.
*/
int
pr_watch_emul(struct regs *rp, caddr_t addr, enum seg_rw rw)
{
char *badaddr = (caddr_t)(-1);
int res;
int watched;
/* prevent recursive calls to pr_watch_emul() */
ASSERT(!(curthread->t_flag & T_WATCHPT));
curthread->t_flag |= T_WATCHPT;
watched = watch_disable_addr(addr, 16, rw);
res = do_unaligned(rp, &badaddr);
if (watched)
watch_enable_addr(addr, 16, rw);
curthread->t_flag &= ~T_WATCHPT;
if (res == SIMU_SUCCESS) {
rp->r_pc = rp->r_npc;
rp->r_npc += 4;
return (1);
}
return (0);
}
|