summaryrefslogtreecommitdiff
path: root/usr/src/uts/sun4/vm/vm_dep.h
blob: aa0c0c01637905147fb2a45405da3d6042545066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * UNIX machine dependent virtual memory support.
 */

#ifndef	_VM_DEP_H
#define	_VM_DEP_H

#pragma ident	"%Z%%M%	%I%	%E% SMI"

#ifdef	__cplusplus
extern "C" {
#endif

#include <vm/hat_sfmmu.h>
#include <sys/archsystm.h>
#include <sys/memnode.h>

#define	GETTICK()	gettick()

/*
 * Per page size free lists. Allocated dynamically.
 */
#define	MAX_MEM_TYPES	2	/* 0 = reloc, 1 = noreloc */
#define	MTYPE_RELOC	0
#define	MTYPE_NORELOC	1

#define	PP_2_MTYPE(pp)	(PP_ISNORELOC(pp) ? MTYPE_NORELOC : MTYPE_RELOC)

#define	MTYPE_INIT(mtype, vp, vaddr, flags, pgsz)			\
	mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC;

/* mtype init for page_get_replacement_page */
#define	MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt)			\
	mtype = (flags & PG_NORELOC) ? MTYPE_NORELOC : MTYPE_RELOC;

#define	MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi)			\
	ASSERT(mtype != MTYPE_NORELOC);					\
	pfnlo = mem_node_config[mnode].physbase;			\
	pfnhi = mem_node_config[mnode].physmax;

/*
 * candidate counters in vm_pagelist.c are indexed by color and range
 */
#define	MAX_MNODE_MRANGES		MAX_MEM_TYPES
#define	MNODE_RANGE_CNT(mnode)		MAX_MNODE_MRANGES
#define	MNODE_MAX_MRANGE(mnode)		(MAX_MEM_TYPES - 1)
#define	MTYPE_2_MRANGE(mnode, mtype)	(mtype)

/*
 * Internal PG_ flags.
 */
#define	PGI_RELOCONLY	0x10000	/* acts in the opposite sense to PG_NORELOC */
#define	PGI_NOCAGE	0x20000	/* indicates Cage is disabled */
#define	PGI_PGCPHIPRI	0x40000	/* page_get_contig_page priority allocation */
#define	PGI_PGCPSZC0	0x80000	/* relocate base pagesize page */

/*
 * PGI mtype flags - should not overlap PGI flags
 */
#define	PGI_MT_RANGE	0x1000000	/* mtype range */
#define	PGI_MT_NEXT	0x2000000	/* get next mtype */

extern page_t ***page_freelists[MMU_PAGE_SIZES][MAX_MEM_TYPES];
extern page_t ***page_cachelists[MAX_MEM_TYPES];

#define	PAGE_FREELISTS(mnode, szc, color, mtype) \
	(*(page_freelists[szc][mtype][mnode] + (color)))

#define	PAGE_CACHELISTS(mnode, color, mtype) \
	(*(page_cachelists[mtype][mnode] + (color)))

/*
 * There are 'page_colors' colors/bins.  Spread them out under a
 * couple of locks.  There are mutexes for both the page freelist
 * and the page cachelist.  We want enough locks to make contention
 * reasonable, but not too many -- otherwise page_freelist_lock() gets
 * so expensive that it becomes the bottleneck!
 */
#define	NPC_MUTEX	16

extern kmutex_t	*fpc_mutex[NPC_MUTEX];
extern kmutex_t	*cpc_mutex[NPC_MUTEX];

/*
 * cpu specific color conversion functions
 */
extern uint_t page_get_nsz_color_mask_cpu(uchar_t, uint_t);
#pragma weak page_get_nsz_color_mask_cpu

extern uint_t page_get_nsz_color_cpu(uchar_t, uint_t);
#pragma weak page_get_nsz_color_cpu

extern uint_t page_get_color_shift_cpu(uchar_t, uchar_t);
#pragma weak page_get_color_shift_cpu

extern pfn_t page_next_pfn_for_color_cpu(pfn_t,
    uchar_t, uint_t, uint_t, uint_t);
#pragma weak page_next_pfn_for_color_cpu

extern uint_t  page_pfn_2_color_cpu(pfn_t, uchar_t);
#pragma weak page_pfn_2_color_cpu

#define	PAGE_GET_COLOR_SHIFT(szc, nszc)				\
	((&page_get_color_shift_cpu != NULL) ?			\
	    page_get_color_shift_cpu(szc, nszc) :		\
	    (hw_page_array[(nszc)].hp_shift -			\
		hw_page_array[(szc)].hp_shift))

#define	PFN_2_COLOR(pfn, szc)					\
	((&page_pfn_2_color_cpu != NULL) ?			\
	    page_pfn_2_color_cpu(pfn, szc) :			\
	    ((pfn & (hw_page_array[0].hp_colors - 1)) >>	\
		(hw_page_array[szc].hp_shift -			\
		    hw_page_array[0].hp_shift)))

#define	PNUM_SIZE(szc)							\
	(hw_page_array[(szc)].hp_pgcnt)
#define	PNUM_SHIFT(szc)							\
	(hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift)
#define	PAGE_GET_SHIFT(szc)						\
	(hw_page_array[(szc)].hp_shift)
#define	PAGE_GET_PAGECOLORS(szc)					\
	(hw_page_array[(szc)].hp_colors)

/*
 * This macro calculates the next sequential pfn with the specified
 * color using color equivalency mask
 */
#define	PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask)        \
	ASSERT(((color) & ~(ceq_mask)) == 0);                                 \
	if (&page_next_pfn_for_color_cpu == NULL) {                           \
		uint_t	pfn_shift = PAGE_BSZS_SHIFT(szc);                     \
		pfn_t	spfn = pfn >> pfn_shift;                              \
		pfn_t	stride = (ceq_mask) + 1;                              \
		ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0);                 \
		if (((spfn ^ (color)) & (ceq_mask)) == 0) {                   \
			pfn += stride << pfn_shift;                           \
		} else {                                                      \
			pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color);          \
			pfn = (pfn > spfn ? pfn : pfn + stride) << pfn_shift; \
		}                                                             \
	} else {                                                              \
		pfn = page_next_pfn_for_color_cpu(pfn, szc, color,	      \
		    ceq_mask, color_mask);                                    \
	}

/* get the color equivalency mask for the next szc */
#define	PAGE_GET_NSZ_MASK(szc, mask)                                         \
	((&page_get_nsz_color_mask_cpu == NULL) ?                            \
	    ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) :  \
	    page_get_nsz_color_mask_cpu(szc, mask))

/* get the color of the next szc */
#define	PAGE_GET_NSZ_COLOR(szc, color)                                       \
	((&page_get_nsz_color_cpu == NULL) ?                                 \
	    ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) : \
	    page_get_nsz_color_cpu(szc, color))

/* Find the bin for the given page if it was of size szc */
#define	PP_2_BIN_SZC(pp, szc)	(PFN_2_COLOR(pp->p_pagenum, szc))

#define	PP_2_BIN(pp)		(PP_2_BIN_SZC(pp, pp->p_szc))

#define	PP_2_MEM_NODE(pp)	(PFN_2_MEM_NODE(pp->p_pagenum))

#define	PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ?	\
	&fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] :			\
	&cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode])

#define	FPC_MUTEX(mnode, i)	(&fpc_mutex[i][mnode])
#define	CPC_MUTEX(mnode, i)	(&cpc_mutex[i][mnode])

#define	PFN_BASE(pfnum, szc)	(pfnum & ~((1 << PAGE_BSZS_SHIFT(szc)) - 1))

/*
 * this structure is used for walking free page lists
 * controls when to split large pages into smaller pages,
 * and when to coalesce smaller pages into larger pages
 */
typedef struct page_list_walker {
	uint_t	plw_colors;		/* num of colors for szc */
	uint_t  plw_color_mask;		/* colors-1 */
	uint_t	plw_bin_step;		/* next bin: 1 or 2 */
	uint_t  plw_count;		/* loop count */
	uint_t	plw_bin0;		/* starting bin */
	uint_t  plw_bin_marker;		/* bin after initial jump */
	uint_t  plw_bin_split_prev;	/* last bin we tried to split */
	uint_t  plw_do_split;		/* set if OK to split */
	uint_t  plw_split_next;		/* next bin to split */
	uint_t	plw_ceq_dif;		/* number of different color groups */
					/* to check */
	uint_t	plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */
	uint_t	plw_bins[MMU_PAGE_SIZES + 1];	/* num of bins */
} page_list_walker_t;

void	page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin,
    int can_split, int use_ceq, page_list_walker_t *plw);

typedef	char	hpmctr_t;

#ifdef DEBUG
#define	CHK_LPG(pp, szc)	chk_lpg(pp, szc)
extern void	chk_lpg(page_t *, uchar_t);
#else
#define	CHK_LPG(pp, szc)
#endif

/*
 * page list count per mnode and type.
 */
typedef	struct {
	pgcnt_t	plc_mt_pgmax;		/* max page cnt */
	pgcnt_t plc_mt_clpgcnt;		/* cache list cnt */
	pgcnt_t plc_mt_flpgcnt;		/* free list cnt - small pages */
	pgcnt_t plc_mt_lgpgcnt;		/* free list cnt - large pages */
#ifdef DEBUG
	struct {
		pgcnt_t plc_mts_pgcnt;	/* per page size count */
		int	plc_mts_colors;
		pgcnt_t	*plc_mtsc_pgcnt; /* per color bin count */
	} plc_mts[MMU_PAGE_SIZES];
#endif
} plcnt_t[MAX_MEM_NODES][MAX_MEM_TYPES];

#ifdef DEBUG

#define	PLCNT_SZ(ctrs_sz) {						\
	int	szc;							\
	for (szc = 0; szc < mmu_page_sizes; szc++) {			\
		int	colors = page_get_pagecolors(szc);		\
		ctrs_sz += (max_mem_nodes * MAX_MEM_TYPES *		\
		    colors * sizeof (pgcnt_t));				\
	}								\
}

#define	PLCNT_INIT(base) {						\
	int	mn, mt, szc, colors;					\
	for (szc = 0; szc < mmu_page_sizes; szc++) {			\
		colors = page_get_pagecolors(szc);			\
		for (mn = 0; mn < max_mem_nodes; mn++) {		\
			for (mt = 0; mt < MAX_MEM_TYPES; mt++) {	\
				plcnt[mn][mt].plc_mts[szc].		\
				    plc_mts_colors = colors;		\
				plcnt[mn][mt].plc_mts[szc].		\
				    plc_mtsc_pgcnt = (pgcnt_t *)base;	\
				base += (colors * sizeof (pgcnt_t));	\
			}						\
		}							\
	}								\
}

#define	PLCNT_DO(pp, mn, mtype, szc, cnt, flags) {			\
	int	bin = PP_2_BIN(pp);					\
	if (flags & PG_CACHE_LIST)					\
		atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt);	\
	else if (szc)							\
		atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt);	\
	else								\
		atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt);	\
	atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].plc_mts_pgcnt,	\
	    cnt);							\
	atomic_add_long(&plcnt[mn][mtype].plc_mts[szc].			\
	    plc_mtsc_pgcnt[bin], cnt);					\
}

#else

#define	PLCNT_SZ(ctrs_sz)

#define	PLCNT_INIT(base)

/* PG_FREE_LIST may not be explicitly set in flags for large pages */

#define	PLCNT_DO(pp, mn, mtype, szc, cnt, flags) {			\
	if (flags & PG_CACHE_LIST)					\
		atomic_add_long(&plcnt[mn][mtype].plc_mt_clpgcnt, cnt);	\
	else if (szc)							\
		atomic_add_long(&plcnt[mn][mtype].plc_mt_lgpgcnt, cnt);	\
	else								\
		atomic_add_long(&plcnt[mn][mtype].plc_mt_flpgcnt, cnt);	\
}

#endif

#define	PLCNT_INCR(pp, mn, mtype, szc, flags) {				\
	long	cnt = (1 << PAGE_BSZS_SHIFT(szc));			\
	PLCNT_DO(pp, mn, mtype, szc, cnt, flags);			\
}

#define	PLCNT_DECR(pp, mn, mtype, szc, flags) {				\
	long	cnt = ((-1) << PAGE_BSZS_SHIFT(szc));			\
	PLCNT_DO(pp, mn, mtype, szc, cnt, flags);			\
}

/*
 * macros to update page list max counts - done when pages transferred
 * from RELOC to NORELOC mtype (kcage_init or kcage_assimilate_page).
 */

#define	PLCNT_XFER_NORELOC(pp) {					\
	long	cnt = (1 << PAGE_BSZS_SHIFT((pp)->p_szc));		\
	int	mn = PP_2_MEM_NODE(pp);					\
	atomic_add_long(&plcnt[mn][MTYPE_NORELOC].plc_mt_pgmax, cnt);	\
	atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, -cnt);	\
}

/*
 * macro to modify the page list max counts when memory is added to
 * the page lists during startup (add_physmem) or during a DR operation
 * when memory is added (kphysm_add_memory_dynamic) or deleted
 * (kphysm_del_cleanup).
 */
#define	PLCNT_MODIFY_MAX(pfn, cnt) {					\
	int	mn = PFN_2_MEM_NODE(pfn);				\
	atomic_add_long(&plcnt[mn][MTYPE_RELOC].plc_mt_pgmax, (cnt));	\
}

extern plcnt_t	plcnt;

#define	MNODE_PGCNT(mn)							\
	(plcnt[mn][MTYPE_RELOC].plc_mt_clpgcnt +			\
	    plcnt[mn][MTYPE_NORELOC].plc_mt_clpgcnt +			\
	    plcnt[mn][MTYPE_RELOC].plc_mt_flpgcnt +			\
	    plcnt[mn][MTYPE_NORELOC].plc_mt_flpgcnt +			\
	    plcnt[mn][MTYPE_RELOC].plc_mt_lgpgcnt +			\
	    plcnt[mn][MTYPE_NORELOC].plc_mt_lgpgcnt)

#define	MNODETYPE_PGCNT(mn, mtype)					\
	(plcnt[mn][mtype].plc_mt_clpgcnt +				\
	    plcnt[mn][mtype].plc_mt_flpgcnt +				\
	    plcnt[mn][mtype].plc_mt_lgpgcnt)

/*
 * macros to loop through the mtype range - MTYPE_START returns -1 in
 * mtype if no pages in mnode/mtype and possibly NEXT mtype.
 */
#define	MTYPE_START(mnode, mtype, flags) {				\
	if (plcnt[mnode][mtype].plc_mt_pgmax == 0) {			\
		ASSERT(mtype == MTYPE_RELOC ||				\
		    MNODETYPE_PGCNT(mnode, mtype) == 0 ||		\
		    plcnt[mnode][mtype].plc_mt_pgmax != 0);		\
		MTYPE_NEXT(mnode, mtype, flags);			\
	}								\
}

/*
 * if allocation from the RELOC pool failed and there is sufficient cage
 * memory, attempt to allocate from the NORELOC pool.
 */
#define	MTYPE_NEXT(mnode, mtype, flags) { 				\
	if (!(flags & (PG_NORELOC | PGI_NOCAGE | PGI_RELOCONLY)) &&	\
	    (kcage_freemem >= kcage_lotsfree)) {			\
		if (plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax == 0) {	\
			ASSERT(MNODETYPE_PGCNT(mnode, MTYPE_NORELOC) == 0 || \
			    plcnt[mnode][MTYPE_NORELOC].plc_mt_pgmax != 0);  \
			mtype = -1;					\
		} else {						\
			mtype = MTYPE_NORELOC;				\
			flags |= PG_NORELOC;				\
		}							\
	} else {							\
		mtype = -1;						\
	}								\
}

/*
 * get the ecache setsize for the current cpu.
 */
#define	CPUSETSIZE()	(cpunodes[CPU->cpu_id].ecache_setsize)

extern struct cpu	cpu0;
#define	CPU0		&cpu0

#define	PAGE_BSZS_SHIFT(szc)	TTE_BSZS_SHIFT(szc)
/*
 * For sfmmu each larger page is 8 times the size of the previous
 * size page.
 */
#define	FULL_REGION_CNT(rg_szc)	(8)

/*
 * The counter base must be per page_counter element to prevent
 * races when re-indexing, and the base page size element should
 * be aligned on a boundary of the given region size.
 *
 * We also round up the number of pages spanned by the counters
 * for a given region to PC_BASE_ALIGN in certain situations to simplify
 * the coding for some non-performance critical routines.
 */
#define	PC_BASE_ALIGN		((pfn_t)1 << PAGE_BSZS_SHIFT(mmu_page_sizes-1))
#define	PC_BASE_ALIGN_MASK	(PC_BASE_ALIGN - 1)

extern int ecache_alignsize;
#define	L2CACHE_ALIGN		ecache_alignsize
#define	L2CACHE_ALIGN_MAX	512

extern int consistent_coloring;
extern uint_t vac_colors_mask;
extern int vac_size;
extern int vac_shift;

/*
 * Kernel mem segment in 64-bit space
 */
extern caddr_t kmem64_base, kmem64_end, kmem64_aligned_end;
extern int kmem64_alignsize, kmem64_szc;
extern uint64_t kmem64_pabase;
extern int max_bootlp_tteszc;

/*
 * Maximum and default values for user heap, stack, private and shared
 * anonymous memory, and user text and initialized data.
 *
 * Initial values are defined in architecture specific mach_vm_dep.c file.
 * Used by map_pgsz*() routines.
 */
extern size_t max_uheap_lpsize;
extern size_t default_uheap_lpsize;
extern size_t max_ustack_lpsize;
extern size_t default_ustack_lpsize;
extern size_t max_privmap_lpsize;
extern size_t max_uidata_lpsize;
extern size_t max_utext_lpsize;
extern size_t max_shm_lpsize;

/*
 * For adjusting the default lpsize, for DTLB-limited page sizes.
 */
extern void adjust_data_maxlpsize(size_t ismpagesize);

/*
 * Sanity control. Don't use large pages regardless of user
 * settings if there's less than priv or shm_lpg_min_physmem memory installed.
 * The units for this variable are 8K pages.
 */
extern pgcnt_t privm_lpg_min_physmem;
extern pgcnt_t shm_lpg_min_physmem;

/*
 * AS_2_BIN macro controls the page coloring policy.
 * 0 (default) uses various vaddr bits
 * 1 virtual=paddr
 * 2 bin hopping
 */
#define	AS_2_BIN(as, seg, vp, addr, bin, szc)				\
switch (consistent_coloring) {						\
	default:                                                        \
		cmn_err(CE_WARN,					\
			"AS_2_BIN: bad consistent coloring value");	\
		/* assume default algorithm -> continue */		\
	case 0: {                                                       \
		uint32_t ndx, new;					\
		int slew = 0;						\
		pfn_t pfn;                                              \
                                                                        \
		if (vp != NULL && IS_SWAPVP(vp) &&			\
		    seg->s_ops == &segvn_ops)				\
			slew = as_color_bin(as);			\
                                                                        \
		pfn = ((uintptr_t)addr >> MMU_PAGESHIFT) +		\
			(((uintptr_t)addr >> page_coloring_shift) <<	\
			(vac_shift - MMU_PAGESHIFT));			\
		if ((szc) == 0 || &page_pfn_2_color_cpu == NULL) {	\
			pfn += slew;					\
			bin = PFN_2_COLOR(pfn, szc);			\
		} else {						\
			bin = PFN_2_COLOR(pfn, szc);			\
			bin += slew >> (vac_shift - MMU_PAGESHIFT);	\
			bin &= hw_page_array[(szc)].hp_colors - 1;	\
		}							\
		break;                                                  \
	}                                                               \
	case 1:                                                         \
		bin = PFN_2_COLOR(((uintptr_t)addr >> MMU_PAGESHIFT),   \
					szc);	                        \
		break;                                                  \
	case 2: {                                                       \
		int cnt = as_color_bin(as);				\
		uint_t color_mask = page_get_pagecolors(0) - 1;		\
                                                                        \
		/* make sure physical color aligns with vac color */	\
		while ((cnt & vac_colors_mask) !=			\
		    addr_to_vcolor(addr)) {				\
			cnt++;						\
		}                                                       \
		bin = cnt = cnt & color_mask;			        \
		bin >>= PAGE_GET_COLOR_SHIFT(0, szc);                   \
		/* update per as page coloring fields */		\
		cnt = (cnt + 1) & color_mask;			        \
		if (cnt == (as_color_start(as) & color_mask)) {	        \
			cnt = as_color_start(as) = as_color_start(as) + \
				PGCLR_LOOPFACTOR;			\
		}                                                       \
		as_color_bin(as) = cnt & color_mask;		        \
		break;                                                  \
	}								\
}									\
	ASSERT(bin < page_get_pagecolors(szc));

/*
 * cpu private vm data - accessed thru CPU->cpu_vm_data
 *	vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock()
 *	vc_pnext_memseg: tracks last memseg visited in page_nextn()
 *	vc_kmptr: unaligned kmem pointer for this vm_cpu_data_t
 *	vc_kmsize: orignal kmem size for this vm_cpu_data_t
 */

typedef struct {
	struct memseg	*vc_pnum_memseg;
	struct memseg	*vc_pnext_memseg;
	void		*vc_kmptr;
	size_t		vc_kmsize;
} vm_cpu_data_t;

/* allocation size to ensure vm_cpu_data_t resides in its own cache line */
#define	VM_CPU_DATA_PADSIZE						\
	(P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX))

/* for boot cpu before kmem is initialized */
extern char	vm_cpu_data0[];

/*
 * Function to get an ecache color bin: F(as, cnt, vcolor).
 * the goal of this function is to:
 * - to spread a processes' physical pages across the entire ecache to
 *	maximize its use.
 * - to minimize vac flushes caused when we reuse a physical page on a
 *	different vac color than it was previously used.
 * - to prevent all processes to use the same exact colors and trash each
 *	other.
 *
 * cnt is a bin ptr kept on a per as basis.  As we page_create we increment
 * the ptr so we spread out the physical pages to cover the entire ecache.
 * The virtual color is made a subset of the physical color in order to
 * in minimize virtual cache flushing.
 * We add in the as to spread out different as.	 This happens when we
 * initialize the start count value.
 * sizeof(struct as) is 60 so we shift by 3 to get into the bit range
 * that will tend to change.  For example, on spitfire based machines
 * (vcshft == 1) contigous as are spread bu ~6 bins.
 * vcshft provides for proper virtual color alignment.
 * In theory cnt should be updated using cas only but if we are off by one
 * or 2 it is no big deal.
 * We also keep a start value which is used to randomize on what bin we
 * start counting when it is time to start another loop. This avoids
 * contigous allocations of ecache size to point to the same bin.
 * Why 3? Seems work ok. Better than 7 or anything larger.
 */
#define	PGCLR_LOOPFACTOR 3

/*
 * When a bin is empty, and we can't satisfy a color request correctly,
 * we scan.  If we assume that the programs have reasonable spatial
 * behavior, then it will not be a good idea to use the adjacent color.
 * Using the adjacent color would result in virtually adjacent addresses
 * mapping into the same spot in the cache.  So, if we stumble across
 * an empty bin, skip a bunch before looking.  After the first skip,
 * then just look one bin at a time so we don't miss our cache on
 * every look. Be sure to check every bin.  Page_create() will panic
 * if we miss a page.
 *
 * This also explains the `<=' in the for loops in both page_get_freelist()
 * and page_get_cachelist().  Since we checked the target bin, skipped
 * a bunch, then continued one a time, we wind up checking the target bin
 * twice to make sure we get all of them bins.
 */
#define	BIN_STEP	20

#ifdef VM_STATS
struct vmm_vmstats_str {
	ulong_t pgf_alloc[MMU_PAGE_SIZES];	/* page_get_freelist */
	ulong_t pgf_allocok[MMU_PAGE_SIZES];
	ulong_t pgf_allocokrem[MMU_PAGE_SIZES];
	ulong_t pgf_allocfailed[MMU_PAGE_SIZES];
	ulong_t pgf_allocdeferred;
	ulong_t	pgf_allocretry[MMU_PAGE_SIZES];
	ulong_t pgc_alloc;			/* page_get_cachelist */
	ulong_t pgc_allocok;
	ulong_t pgc_allocokrem;
	ulong_t	pgc_allocokdeferred;
	ulong_t pgc_allocfailed;
	ulong_t	pgcp_alloc[MMU_PAGE_SIZES];	/* page_get_contig_pages */
	ulong_t	pgcp_allocfailed[MMU_PAGE_SIZES];
	ulong_t	pgcp_allocempty[MMU_PAGE_SIZES];
	ulong_t	pgcp_allocok[MMU_PAGE_SIZES];
	ulong_t	ptcp[MMU_PAGE_SIZES];		/* page_trylock_contig_pages */
	ulong_t	ptcpfreethresh[MMU_PAGE_SIZES];
	ulong_t	ptcpfailexcl[MMU_PAGE_SIZES];
	ulong_t	ptcpfailszc[MMU_PAGE_SIZES];
	ulong_t	ptcpfailcage[MMU_PAGE_SIZES];
	ulong_t	ptcpok[MMU_PAGE_SIZES];
	ulong_t	pgmf_alloc[MMU_PAGE_SIZES];	/* page_get_mnode_freelist */
	ulong_t	pgmf_allocfailed[MMU_PAGE_SIZES];
	ulong_t	pgmf_allocempty[MMU_PAGE_SIZES];
	ulong_t	pgmf_allocok[MMU_PAGE_SIZES];
	ulong_t	pgmc_alloc;			/* page_get_mnode_cachelist */
	ulong_t	pgmc_allocfailed;
	ulong_t	pgmc_allocempty;
	ulong_t	pgmc_allocok;
	ulong_t	pladd_free[MMU_PAGE_SIZES];	/* page_list_add/sub */
	ulong_t	plsub_free[MMU_PAGE_SIZES];
	ulong_t	pladd_cache;
	ulong_t	plsub_cache;
	ulong_t	plsubpages_szcbig;
	ulong_t	plsubpages_szc0;
	ulong_t	pfs_req[MMU_PAGE_SIZES];	/* page_freelist_split */
	ulong_t	pfs_demote[MMU_PAGE_SIZES];
	ulong_t	pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
	ulong_t ppr_reloc[MMU_PAGE_SIZES];	/* page_relocate */
	ulong_t ppr_relocok[MMU_PAGE_SIZES];
	ulong_t ppr_relocnoroot[MMU_PAGE_SIZES];
	ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES];
	ulong_t ppr_relocnolock[MMU_PAGE_SIZES];
	ulong_t ppr_relocnomem[MMU_PAGE_SIZES];
	ulong_t ppr_krelocfail[MMU_PAGE_SIZES];
	ulong_t ppr_copyfail;
	/* page coalesce counter */
	ulong_t	page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
	/* candidates useful */
	ulong_t	page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
	/* ctrs changed after locking */
	ulong_t	page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
	/* page_freelist_coalesce failed */
	ulong_t	page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
	ulong_t	page_ctrs_coalesce_all;	/* page coalesce all counter */
	ulong_t	page_ctrs_cands_skip_all; /* candidates useful for all func */
};
extern struct vmm_vmstats_str vmm_vmstats;
#endif	/* VM_STATS */

/*
 * Used to hold off page relocations into the cage until OBP has completed
 * its boot-time handoff of its resources to the kernel.
 */
extern int page_relocate_ready;

/*
 * cpu/mmu-dependent vm variables may be reset at bootup.
 */
extern uint_t mmu_page_sizes;
extern uint_t max_mmu_page_sizes;
extern uint_t mmu_hashcnt;
extern uint_t max_mmu_hashcnt;
extern size_t mmu_ism_pagesize;
extern int mmu_exported_pagesize_mask;
extern uint_t mmu_exported_page_sizes;
extern uint_t szc_2_userszc[];
extern uint_t userszc_2_szc[];

#define	USERSZC_2_SZC(userszc)	(userszc_2_szc[userszc])
#define	SZC_2_USERSZC(szc)	(szc_2_userszc[szc])

/*
 * Platform specific page routines
 */
extern void mach_page_add(page_t **, page_t *);
extern void mach_page_sub(page_t **, page_t *);
extern uint_t page_get_pagecolors(uint_t);
extern void ppcopy_kernel__relocatable(page_t *, page_t *);
#define	ppcopy_kernel(p1, p2)	ppcopy_kernel__relocatable(p1, p2)

/*
 * platform specific large pages for kernel heap support
 */
extern size_t get_segkmem_lpsize(size_t lpsize);
extern size_t mmu_get_kernel_lpsize(size_t lpsize);
extern void mmu_init_kernel_pgsz(struct hat *hat);
extern void mmu_init_kcontext();
extern uint64_t kcontextreg;

/*
 * Nucleus data page allocator routines
 */
extern void ndata_alloc_init(struct memlist *, uintptr_t, uintptr_t);
extern void *ndata_alloc(struct memlist *, size_t, size_t);
extern void *ndata_extra_base(struct memlist *, size_t, caddr_t);
extern size_t ndata_maxsize(struct memlist *);
extern size_t ndata_spare(struct memlist *, size_t, size_t);

#ifdef	__cplusplus
}
#endif

#endif	/* _VM_DEP_H */