diff options
author | wen <wen> | 2016-07-26 06:50:24 +0000 |
---|---|---|
committer | wen <wen> | 2016-07-26 06:50:24 +0000 |
commit | 30e95df576f52a87d60508f734fb74286b71d162 (patch) | |
tree | 149dcdd925d1240f90674eff8a9a2390059348a2 | |
parent | 1f0ccf88c759e47fde0b5646386e4a883c1f6920 (diff) | |
download | pkgsrc-30e95df576f52a87d60508f734fb74286b71d162.tar.gz |
Update to 0.58
Upstream changes:
0.58 2016-05-21
[API Changes]
- prev_prime($n) where $n <= 2 now returns undef instead of 0. This
may enable catching range errors, and is technically more correct.
- nth_prime(0) now returns undef instead of 0. This should help catch
cases where the base wasn't understood. The change is similar for
all the nth_* functions (e.g. nth_twin_prime).
- sumdigits(n,base) will interpret n as a number in the given base,
rather than the Pari/GP method of converting decimal n to that base
then summing. This allows sumdigits to easily sum hex strings.
The old behavior is easily done with vecsum(todigits(n, base)).
- binary() was not intended to be released (todigits and todigitstring
are supersets), but the documentation got left in. Remove docs.
[ADDED]
- addmod(a, b, n) a + b mod n
- mulmod(a, b, n) a * b mod n
- divmod(a, b, n) a / b mod n
- powmod(a, b, n) a ^ b mod n
- sqrtmod(a, n) modular square root
- is_euler_pseudoprime(n,a[...]) Euler test to given bases
- is_primitive_root(r, n) is r a primitive root mod n
- is_quasi_carmichael(n) is n a Quasi-Carmichael number
- hclassno(n) Hurwitz class number H(n) * 12
- sieve_range(n, width, depth) sieve to given depth, return offsets
[FUNCTIONALITY AND PERFORMANCE]
- Fixed incorrect table entries for 2^16th Ramanujan prime count and
nth_ramanujan_prime(23744).
- foroddcomposites with certain arguments would start with 10 instead of 9.
- lucasu and lucasv should return bigint types.
- vecsum will handle 128-bit sums internally (performance increase).
- Speedup is_carmichael.
- Speedup znprimroot, 10% for small inputs, 10x for large composites.
- Speedup znlog ~2x. It is now Rho racing an interleaved BSGS.
- Change AKS to Bernstein 2003 theorem 4.1.
5-20x faster than Bornemann, 20000+x faster than V6.
- sum_primes now uses tables for native sizes (performance increase).
- ramanujan_tau uses Cohen's hclassno method instead of the sigma
calculation. This is 3-4x faster than the GMP code for inputs > 300k,
and much faster than the older PP code.
- fromdigits much faster for large base-10 arrays. Timing is better than
split plus join when output is a bigint.
-rw-r--r-- | math/p5-Math-Prime-Util/Makefile | 5 | ||||
-rw-r--r-- | math/p5-Math-Prime-Util/distinfo | 10 |
2 files changed, 7 insertions, 8 deletions
diff --git a/math/p5-Math-Prime-Util/Makefile b/math/p5-Math-Prime-Util/Makefile index 076eccceea2..354ecad48fe 100644 --- a/math/p5-Math-Prime-Util/Makefile +++ b/math/p5-Math-Prime-Util/Makefile @@ -1,8 +1,7 @@ -# $NetBSD: Makefile,v 1.11 2016/06/08 19:24:03 wiz Exp $ +# $NetBSD: Makefile,v 1.12 2016/07/26 06:50:24 wen Exp $ -DISTNAME= Math-Prime-Util-0.57 +DISTNAME= Math-Prime-Util-0.58 PKGNAME= p5-${DISTNAME} -PKGREVISION= 1 CATEGORIES= math perl5 MASTER_SITES= ${MASTER_SITE_PERL_CPAN:=Math/} diff --git a/math/p5-Math-Prime-Util/distinfo b/math/p5-Math-Prime-Util/distinfo index 2f876dd624a..2c98a16bcbe 100644 --- a/math/p5-Math-Prime-Util/distinfo +++ b/math/p5-Math-Prime-Util/distinfo @@ -1,6 +1,6 @@ -$NetBSD: distinfo,v 1.8 2016/02/14 11:44:19 wen Exp $ +$NetBSD: distinfo,v 1.9 2016/07/26 06:50:24 wen Exp $ -SHA1 (Math-Prime-Util-0.57.tar.gz) = 712da12ef07c63f1790bcd2d4b4c9ef221af0e01 -RMD160 (Math-Prime-Util-0.57.tar.gz) = f1cfc60046a8e1a2f38d4870085d479e070ed889 -SHA512 (Math-Prime-Util-0.57.tar.gz) = 5909d2cae82187783c56b07c22a90c44f0feb8f5c12cffdf4ec3a1cb4996dbaaae8f917790cdaa4b970cc2302242b941f2ef34097578c7e994275d2c0edaac88 -Size (Math-Prime-Util-0.57.tar.gz) = 501214 bytes +SHA1 (Math-Prime-Util-0.58.tar.gz) = 75124da5144d4bca88dabf28d26e66154aa5cdad +RMD160 (Math-Prime-Util-0.58.tar.gz) = 35da58a27b3410efc39bef8a47c8b8a3b4eb3757 +SHA512 (Math-Prime-Util-0.58.tar.gz) = c47b7bcf5c4d1149e425d47304fc9e7974663c4598d9dc5acce8b34d6f3d46941669ec89a65b18efd48a258bea195a8778ca9aa0572949c7886bb992f585b6a9 +Size (Math-Prime-Util-0.58.tar.gz) = 515967 bytes |