summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorwen <wen>2016-07-26 06:50:24 +0000
committerwen <wen>2016-07-26 06:50:24 +0000
commit30e95df576f52a87d60508f734fb74286b71d162 (patch)
tree149dcdd925d1240f90674eff8a9a2390059348a2
parent1f0ccf88c759e47fde0b5646386e4a883c1f6920 (diff)
downloadpkgsrc-30e95df576f52a87d60508f734fb74286b71d162.tar.gz
Update to 0.58
Upstream changes: 0.58 2016-05-21 [API Changes] - prev_prime($n) where $n <= 2 now returns undef instead of 0. This may enable catching range errors, and is technically more correct. - nth_prime(0) now returns undef instead of 0. This should help catch cases where the base wasn't understood. The change is similar for all the nth_* functions (e.g. nth_twin_prime). - sumdigits(n,base) will interpret n as a number in the given base, rather than the Pari/GP method of converting decimal n to that base then summing. This allows sumdigits to easily sum hex strings. The old behavior is easily done with vecsum(todigits(n, base)). - binary() was not intended to be released (todigits and todigitstring are supersets), but the documentation got left in. Remove docs. [ADDED] - addmod(a, b, n) a + b mod n - mulmod(a, b, n) a * b mod n - divmod(a, b, n) a / b mod n - powmod(a, b, n) a ^ b mod n - sqrtmod(a, n) modular square root - is_euler_pseudoprime(n,a[...]) Euler test to given bases - is_primitive_root(r, n) is r a primitive root mod n - is_quasi_carmichael(n) is n a Quasi-Carmichael number - hclassno(n) Hurwitz class number H(n) * 12 - sieve_range(n, width, depth) sieve to given depth, return offsets [FUNCTIONALITY AND PERFORMANCE] - Fixed incorrect table entries for 2^16th Ramanujan prime count and nth_ramanujan_prime(23744). - foroddcomposites with certain arguments would start with 10 instead of 9. - lucasu and lucasv should return bigint types. - vecsum will handle 128-bit sums internally (performance increase). - Speedup is_carmichael. - Speedup znprimroot, 10% for small inputs, 10x for large composites. - Speedup znlog ~2x. It is now Rho racing an interleaved BSGS. - Change AKS to Bernstein 2003 theorem 4.1. 5-20x faster than Bornemann, 20000+x faster than V6. - sum_primes now uses tables for native sizes (performance increase). - ramanujan_tau uses Cohen's hclassno method instead of the sigma calculation. This is 3-4x faster than the GMP code for inputs > 300k, and much faster than the older PP code. - fromdigits much faster for large base-10 arrays. Timing is better than split plus join when output is a bigint.
-rw-r--r--math/p5-Math-Prime-Util/Makefile5
-rw-r--r--math/p5-Math-Prime-Util/distinfo10
2 files changed, 7 insertions, 8 deletions
diff --git a/math/p5-Math-Prime-Util/Makefile b/math/p5-Math-Prime-Util/Makefile
index 076eccceea2..354ecad48fe 100644
--- a/math/p5-Math-Prime-Util/Makefile
+++ b/math/p5-Math-Prime-Util/Makefile
@@ -1,8 +1,7 @@
-# $NetBSD: Makefile,v 1.11 2016/06/08 19:24:03 wiz Exp $
+# $NetBSD: Makefile,v 1.12 2016/07/26 06:50:24 wen Exp $
-DISTNAME= Math-Prime-Util-0.57
+DISTNAME= Math-Prime-Util-0.58
PKGNAME= p5-${DISTNAME}
-PKGREVISION= 1
CATEGORIES= math perl5
MASTER_SITES= ${MASTER_SITE_PERL_CPAN:=Math/}
diff --git a/math/p5-Math-Prime-Util/distinfo b/math/p5-Math-Prime-Util/distinfo
index 2f876dd624a..2c98a16bcbe 100644
--- a/math/p5-Math-Prime-Util/distinfo
+++ b/math/p5-Math-Prime-Util/distinfo
@@ -1,6 +1,6 @@
-$NetBSD: distinfo,v 1.8 2016/02/14 11:44:19 wen Exp $
+$NetBSD: distinfo,v 1.9 2016/07/26 06:50:24 wen Exp $
-SHA1 (Math-Prime-Util-0.57.tar.gz) = 712da12ef07c63f1790bcd2d4b4c9ef221af0e01
-RMD160 (Math-Prime-Util-0.57.tar.gz) = f1cfc60046a8e1a2f38d4870085d479e070ed889
-SHA512 (Math-Prime-Util-0.57.tar.gz) = 5909d2cae82187783c56b07c22a90c44f0feb8f5c12cffdf4ec3a1cb4996dbaaae8f917790cdaa4b970cc2302242b941f2ef34097578c7e994275d2c0edaac88
-Size (Math-Prime-Util-0.57.tar.gz) = 501214 bytes
+SHA1 (Math-Prime-Util-0.58.tar.gz) = 75124da5144d4bca88dabf28d26e66154aa5cdad
+RMD160 (Math-Prime-Util-0.58.tar.gz) = 35da58a27b3410efc39bef8a47c8b8a3b4eb3757
+SHA512 (Math-Prime-Util-0.58.tar.gz) = c47b7bcf5c4d1149e425d47304fc9e7974663c4598d9dc5acce8b34d6f3d46941669ec89a65b18efd48a258bea195a8778ca9aa0572949c7886bb992f585b6a9
+Size (Math-Prime-Util-0.58.tar.gz) = 515967 bytes