diff options
author | markd <markd> | 2016-08-24 23:50:12 +0000 |
---|---|---|
committer | markd <markd> | 2016-08-24 23:50:12 +0000 |
commit | 74ddf6cef356e72d5648ba22d9b83398884aa1b7 (patch) | |
tree | f07e404c990a3c4106d18351d55efcbba25f94b3 /math | |
parent | ea1b90d8dd645ded66afe2cee47fc82c5c263007 (diff) | |
download | pkgsrc-74ddf6cef356e72d5648ba22d9b83398884aa1b7.tar.gz |
Add py-autograd 1.1.5
Autograd can automatically differentiate native Python and Numpy
code. It can handle a large subset of Python's features, including
loops, ifs, recursion and closures, and it can even take derivatives
of derivatives of derivatives. It uses reverse-mode differentiation
(a.k.a. backpropagation), which means it can efficiently take
gradients of scalar-valued functions with respect to array-valued
arguments. The main intended application is gradient-based
optimization.
Diffstat (limited to 'math')
-rw-r--r-- | math/py-autograd/DESCR | 8 | ||||
-rw-r--r-- | math/py-autograd/Makefile | 15 | ||||
-rw-r--r-- | math/py-autograd/PLIST | 81 | ||||
-rw-r--r-- | math/py-autograd/distinfo | 6 |
4 files changed, 110 insertions, 0 deletions
diff --git a/math/py-autograd/DESCR b/math/py-autograd/DESCR new file mode 100644 index 00000000000..ce620a70f94 --- /dev/null +++ b/math/py-autograd/DESCR @@ -0,0 +1,8 @@ +Autograd can automatically differentiate native Python and Numpy +code. It can handle a large subset of Python's features, including +loops, ifs, recursion and closures, and it can even take derivatives +of derivatives of derivatives. It uses reverse-mode differentiation +(a.k.a. backpropagation), which means it can efficiently take +gradients of scalar-valued functions with respect to array-valued +arguments. The main intended application is gradient-based +optimization. diff --git a/math/py-autograd/Makefile b/math/py-autograd/Makefile new file mode 100644 index 00000000000..debf499c9b0 --- /dev/null +++ b/math/py-autograd/Makefile @@ -0,0 +1,15 @@ +# $NetBSD: Makefile,v 1.1 2016/08/24 23:50:12 markd Exp $ + +DISTNAME= autograd-1.1.5 +PKGNAME= ${PYPKGPREFIX}-${DISTNAME} +CATEGORIES= math +MASTER_SITES= ${MASTER_SITE_PYPI:=a/autograd/} + +MAINTAINER= pkgsrc-users@NetBSD.org +HOMEPAGE= https://github.com/HIPS/autograd +COMMENT= Efficiently computes derivatives of numpy code +LICENSE= mit + +.include "../../lang/python/egg.mk" +.include "../../math/py-numpy/buildlink3.mk" +.include "../../mk/bsd.pkg.mk" diff --git a/math/py-autograd/PLIST b/math/py-autograd/PLIST new file mode 100644 index 00000000000..ff13226e565 --- /dev/null +++ b/math/py-autograd/PLIST @@ -0,0 +1,81 @@ +@comment $NetBSD: PLIST,v 1.1 2016/08/24 23:50:12 markd Exp $ +${PYSITELIB}/${EGG_INFODIR}/PKG-INFO +${PYSITELIB}/${EGG_INFODIR}/SOURCES.txt +${PYSITELIB}/${EGG_INFODIR}/dependency_links.txt +${PYSITELIB}/${EGG_INFODIR}/requires.txt +${PYSITELIB}/${EGG_INFODIR}/top_level.txt +${PYSITELIB}/autograd/__init__.py +${PYSITELIB}/autograd/__init__.pyc +${PYSITELIB}/autograd/__init__.pyo +${PYSITELIB}/autograd/container_types.py +${PYSITELIB}/autograd/container_types.pyc +${PYSITELIB}/autograd/container_types.pyo +${PYSITELIB}/autograd/convenience_wrappers.py +${PYSITELIB}/autograd/convenience_wrappers.pyc +${PYSITELIB}/autograd/convenience_wrappers.pyo +${PYSITELIB}/autograd/core.py +${PYSITELIB}/autograd/core.pyc +${PYSITELIB}/autograd/core.pyo +${PYSITELIB}/autograd/numpy/__init__.py +${PYSITELIB}/autograd/numpy/__init__.pyc +${PYSITELIB}/autograd/numpy/__init__.pyo +${PYSITELIB}/autograd/numpy/complex_array_node.py +${PYSITELIB}/autograd/numpy/complex_array_node.pyc +${PYSITELIB}/autograd/numpy/complex_array_node.pyo +${PYSITELIB}/autograd/numpy/fft.py +${PYSITELIB}/autograd/numpy/fft.pyc +${PYSITELIB}/autograd/numpy/fft.pyo +${PYSITELIB}/autograd/numpy/gpu_array_node.py +${PYSITELIB}/autograd/numpy/gpu_array_node.pyc +${PYSITELIB}/autograd/numpy/gpu_array_node.pyo +${PYSITELIB}/autograd/numpy/linalg.py +${PYSITELIB}/autograd/numpy/linalg.pyc +${PYSITELIB}/autograd/numpy/linalg.pyo +${PYSITELIB}/autograd/numpy/numpy_extra.py +${PYSITELIB}/autograd/numpy/numpy_extra.pyc +${PYSITELIB}/autograd/numpy/numpy_extra.pyo +${PYSITELIB}/autograd/numpy/numpy_grads.py +${PYSITELIB}/autograd/numpy/numpy_grads.pyc +${PYSITELIB}/autograd/numpy/numpy_grads.pyo +${PYSITELIB}/autograd/numpy/numpy_wrapper.py +${PYSITELIB}/autograd/numpy/numpy_wrapper.pyc +${PYSITELIB}/autograd/numpy/numpy_wrapper.pyo +${PYSITELIB}/autograd/numpy/random.py +${PYSITELIB}/autograd/numpy/random.pyc +${PYSITELIB}/autograd/numpy/random.pyo +${PYSITELIB}/autograd/numpy/use_gpu_numpy.py +${PYSITELIB}/autograd/numpy/use_gpu_numpy.pyc +${PYSITELIB}/autograd/numpy/use_gpu_numpy.pyo +${PYSITELIB}/autograd/scipy/__init__.py +${PYSITELIB}/autograd/scipy/__init__.pyc +${PYSITELIB}/autograd/scipy/__init__.pyo +${PYSITELIB}/autograd/scipy/linalg.py +${PYSITELIB}/autograd/scipy/linalg.pyc +${PYSITELIB}/autograd/scipy/linalg.pyo +${PYSITELIB}/autograd/scipy/misc.py +${PYSITELIB}/autograd/scipy/misc.pyc +${PYSITELIB}/autograd/scipy/misc.pyo +${PYSITELIB}/autograd/scipy/signal.py +${PYSITELIB}/autograd/scipy/signal.pyc +${PYSITELIB}/autograd/scipy/signal.pyo +${PYSITELIB}/autograd/scipy/special.py +${PYSITELIB}/autograd/scipy/special.pyc +${PYSITELIB}/autograd/scipy/special.pyo +${PYSITELIB}/autograd/scipy/stats/__init__.py +${PYSITELIB}/autograd/scipy/stats/__init__.pyc +${PYSITELIB}/autograd/scipy/stats/__init__.pyo +${PYSITELIB}/autograd/scipy/stats/dirichlet.py +${PYSITELIB}/autograd/scipy/stats/dirichlet.pyc +${PYSITELIB}/autograd/scipy/stats/dirichlet.pyo +${PYSITELIB}/autograd/scipy/stats/multivariate_normal.py +${PYSITELIB}/autograd/scipy/stats/multivariate_normal.pyc +${PYSITELIB}/autograd/scipy/stats/multivariate_normal.pyo +${PYSITELIB}/autograd/scipy/stats/norm.py +${PYSITELIB}/autograd/scipy/stats/norm.pyc +${PYSITELIB}/autograd/scipy/stats/norm.pyo +${PYSITELIB}/autograd/scipy/stats/t.py +${PYSITELIB}/autograd/scipy/stats/t.pyc +${PYSITELIB}/autograd/scipy/stats/t.pyo +${PYSITELIB}/autograd/util.py +${PYSITELIB}/autograd/util.pyc +${PYSITELIB}/autograd/util.pyo diff --git a/math/py-autograd/distinfo b/math/py-autograd/distinfo new file mode 100644 index 00000000000..c37b66f3b67 --- /dev/null +++ b/math/py-autograd/distinfo @@ -0,0 +1,6 @@ +$NetBSD: distinfo,v 1.1 2016/08/24 23:50:12 markd Exp $ + +SHA1 (autograd-1.1.5.tar.gz) = 1ed7727ac1d634b47b9ebe7244a851e76e3edd81 +RMD160 (autograd-1.1.5.tar.gz) = 27ae3c0ef6a69141c1dddaa5975640f35ad63d94 +SHA512 (autograd-1.1.5.tar.gz) = 4c41363acc2fbddad9bf587b6f6b9dbe151c0c1ef95059b192262f6d4eec2309e69d906f40bb3b39677323735af20ba7706993267e2b91607b251b09ea61aa7c +Size (autograd-1.1.5.tar.gz) = 24986 bytes |