summaryrefslogtreecommitdiff
path: root/security/netpgpverify
diff options
context:
space:
mode:
authoragc <agc>2014-07-12 15:45:52 +0000
committeragc <agc>2014-07-12 15:45:52 +0000
commit2f94cfb14f621bf2a32bfb2ded9f95bd572836d9 (patch)
treef813e46810eaf8774d5f877e654e8a3fbc926c58 /security/netpgpverify
parentc2da9a0d449a3bdb1898bb0dad489120f9271b2f (diff)
downloadpkgsrc-2f94cfb14f621bf2a32bfb2ded9f95bd572836d9.tar.gz
Update netpgpverify package to 20140712
+ bring the bignum implementation up to the latest version + radix conversion routines added + bitwise operations added + whitespace cleanups
Diffstat (limited to 'security/netpgpverify')
-rw-r--r--security/netpgpverify/Makefile4
-rw-r--r--security/netpgpverify/files/bignum.c8617
-rw-r--r--security/netpgpverify/files/bn.h6
3 files changed, 4335 insertions, 4292 deletions
diff --git a/security/netpgpverify/Makefile b/security/netpgpverify/Makefile
index 70428eede59..a5a1b610aec 100644
--- a/security/netpgpverify/Makefile
+++ b/security/netpgpverify/Makefile
@@ -1,6 +1,6 @@
-# $NetBSD: Makefile,v 1.7 2014/03/05 04:51:37 agc Exp $
+# $NetBSD: Makefile,v 1.8 2014/07/12 15:45:52 agc Exp $
-DISTNAME= netpgpverify-20140304
+DISTNAME= netpgpverify-20140712
CATEGORIES= security
MASTER_SITES= # empty
DISTFILES= # empty
diff --git a/security/netpgpverify/files/bignum.c b/security/netpgpverify/files/bignum.c
index c825b30c501..f02b512d0fe 100644
--- a/security/netpgpverify/files/bignum.c
+++ b/security/netpgpverify/files/bignum.c
@@ -39,26 +39,20 @@
#include "config.h"
#include <sys/types.h>
-#include <sys/stat.h>
#include <sys/param.h>
#ifdef _KERNEL
# include <sys/kmem.h>
#else
# include <arpa/inet.h>
-# include <ctype.h>
-# include <inttypes.h>
# include <stdarg.h>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
-# include <time.h>
# include <unistd.h>
#endif
-#include "misc.h"
#include "bn.h"
-#include "digest.h"
/**************************************************************************/
@@ -94,116 +88,108 @@
#define __arraycount(__x) (sizeof(__x) / sizeof(__x[0]))
#endif
-#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
-
-#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
+#define MP_ISZERO(a) (((a)->used == 0) ? MP_YES : MP_NO)
typedef int mp_err;
-static int mp_mul(mp_int * a, mp_int * b, mp_int * c);
-static int mp_sqr(mp_int * a, mp_int * b);
+static int signed_multiply(mp_int * a, mp_int * b, mp_int * c);
+static int square(mp_int * a, mp_int * b);
-static int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+static int signed_subtract_word(mp_int *a, mp_digit b, mp_int *c);
-/* set to zero */
-static void
-mp_zero(mp_int *a)
+static inline void *
+allocate(size_t n, size_t m)
{
- int n;
- mp_digit *tmp;
+ return calloc(n, m);
+}
- a->sign = MP_ZPOS;
- a->used = 0;
+static inline void
+deallocate(void *v, size_t sz)
+{
+ USE_ARG(sz);
+ free(v);
+}
- tmp = a->dp;
- /* XXX - memset */
- for (n = 0; n < a->alloc; n++) {
- *tmp++ = 0;
- }
+/* set to zero */
+static inline void
+mp_zero(mp_int *a)
+{
+ a->sign = MP_ZPOS;
+ a->used = 0;
+ memset(a->dp, 0x0, a->alloc * sizeof(*a->dp));
}
/* grow as required */
static int
mp_grow(mp_int *a, int size)
{
- int i;
- mp_digit *tmp;
-
- /* if the alloc size is smaller alloc more ram */
- if (a->alloc < size) {
- /* ensure there are always at least MP_PREC digits extra on top */
- size += (MP_PREC * 2) - (size % MP_PREC);
-
- /* reallocate the array a->dp
- *
- * We store the return in a temporary variable
- * in case the operation failed we don't want
- * to overwrite the dp member of a.
- */
- tmp = realloc(a->dp, sizeof(*tmp) * size);
- if (tmp == NULL) {
- /* reallocation failed but "a" is still valid [can be freed] */
- return MP_MEM;
- }
-
- /* reallocation succeeded so set a->dp */
- a->dp = tmp;
-
- /* zero excess digits */
- i = a->alloc;
- a->alloc = size;
- for (; i < a->alloc; i++) {
- a->dp[i] = 0;
- }
- }
- return MP_OKAY;
+ mp_digit *tmp;
+
+ /* if the alloc size is smaller alloc more ram */
+ if (a->alloc < size) {
+ /* ensure there are always at least MP_PREC digits extra on top */
+ size += (MP_PREC * 2) - (size % MP_PREC);
+
+ /* reallocate the array a->dp
+ *
+ * We store the return in a temporary variable
+ * in case the operation failed we don't want
+ * to overwrite the dp member of a.
+ */
+ tmp = realloc(a->dp, sizeof(*tmp) * size);
+ if (tmp == NULL) {
+ /* reallocation failed but "a" is still valid [can be freed] */
+ return MP_MEM;
+ }
+
+ /* reallocation succeeded so set a->dp */
+ a->dp = tmp;
+ /* zero excess digits */
+ memset(&a->dp[a->alloc], 0x0, (size - a->alloc) * sizeof(*a->dp));
+ a->alloc = size;
+ }
+ return MP_OKAY;
}
/* shift left a certain amount of digits */
static int
-mp_lshd (mp_int * a, int b)
+lshift_digits(mp_int * a, int b)
{
- int x, res;
+ mp_digit *top, *bottom;
+ int x, res;
- /* if its less than zero return */
- if (b <= 0) {
- return MP_OKAY;
- }
-
- /* grow to fit the new digits */
- if (a->alloc < a->used + b) {
- if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
- return res;
- }
- }
+ /* if its less than zero return */
+ if (b <= 0) {
+ return MP_OKAY;
+ }
- {
- mp_digit *top, *bottom;
+ /* grow to fit the new digits */
+ if (a->alloc < a->used + b) {
+ if ((res = mp_grow(a, a->used + b)) != MP_OKAY) {
+ return res;
+ }
+ }
- /* increment the used by the shift amount then copy upwards */
- a->used += b;
+ /* increment the used by the shift amount then copy upwards */
+ a->used += b;
- /* top */
- top = a->dp + a->used - 1;
+ /* top */
+ top = a->dp + a->used - 1;
- /* base */
- bottom = a->dp + a->used - 1 - b;
+ /* base */
+ bottom = a->dp + a->used - 1 - b;
- /* much like mp_rshd this is implemented using a sliding window
- * except the window goes the otherway around. Copying from
- * the bottom to the top. see bn_mp_rshd.c for more info.
- */
- for (x = a->used - 1; x >= b; x--) {
- *top-- = *bottom--;
- }
+ /* much like rshift_digits this is implemented using a sliding window
+ * except the window goes the otherway around. Copying from
+ * the bottom to the top.
+ */
+ for (x = a->used - 1; x >= b; x--) {
+ *top-- = *bottom--;
+ }
- /* zero the lower digits */
- top = a->dp;
- for (x = 0; x < b; x++) {
- *top++ = 0;
- }
- }
- return MP_OKAY;
+ /* zero the lower digits */
+ memset(a->dp, 0x0, b * sizeof(*a->dp));
+ return MP_OKAY;
}
/* trim unused digits
@@ -214,710 +200,646 @@ mp_lshd (mp_int * a, int b)
* are no more leading digits
*/
static void
-mp_clamp (mp_int * a)
+trim_unused_digits(mp_int * a)
{
- /* decrease used while the most significant digit is
- * zero.
- */
- while (a->used > 0 && a->dp[a->used - 1] == 0) {
- --(a->used);
- }
-
- /* reset the sign flag if used == 0 */
- if (a->used == 0) {
- a->sign = MP_ZPOS;
- }
+ /* decrease used while the most significant digit is
+ * zero.
+ */
+ while (a->used > 0 && a->dp[a->used - 1] == 0) {
+ a->used -= 1;
+ }
+ /* reset the sign flag if used == 0 */
+ if (a->used == 0) {
+ a->sign = MP_ZPOS;
+ }
}
/* copy, b = a */
static int
mp_copy(BIGNUM *a, BIGNUM *b)
{
- int res, n;
+ int res;
- /* if dst == src do nothing */
- if (a == b) {
- return MP_OKAY;
- }
- if (a == NULL || b == NULL) {
- return MP_VAL;
- }
+ /* if dst == src do nothing */
+ if (a == b) {
+ return MP_OKAY;
+ }
+ if (a == NULL || b == NULL) {
+ return MP_VAL;
+ }
- /* grow dest */
- if (b->alloc < a->used) {
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
- return res;
- }
- }
+ /* grow dest */
+ if (b->alloc < a->used) {
+ if ((res = mp_grow(b, a->used)) != MP_OKAY) {
+ return res;
+ }
+ }
- /* zero b and copy the parameters over */
- {
- mp_digit *tmpa, *tmpb;
+ memcpy(b->dp, a->dp, a->used * sizeof(*b->dp));
+ if (b->used > a->used) {
+ memset(&b->dp[a->used], 0x0, (b->used - a->used) * sizeof(*b->dp));
+ }
- /* pointer aliases */
+ /* copy used count and sign */
+ b->used = a->used;
+ b->sign = a->sign;
+ return MP_OKAY;
+}
- /* source */
- tmpa = a->dp;
+/* shift left by a certain bit count */
+static int
+lshift_bits(mp_int *a, int b, mp_int *c)
+{
+ mp_digit d;
+ int res;
- /* destination */
- tmpb = b->dp;
+ /* copy */
+ if (a != c) {
+ if ((res = mp_copy(a, c)) != MP_OKAY) {
+ return res;
+ }
+ }
- /* copy all the digits */
- for (n = 0; n < a->used; n++) {
- *tmpb++ = *tmpa++;
- }
+ if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
+ if ((res = mp_grow(c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
- /* clear high digits */
- for (; n < b->used; n++) {
- *tmpb++ = 0;
- }
- }
+ /* shift by as many digits in the bit count */
+ if (b >= (int)DIGIT_BIT) {
+ if ((res = lshift_digits(c, b / DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ }
- /* copy used count and sign */
- b->used = a->used;
- b->sign = a->sign;
- return MP_OKAY;
-}
+ /* shift any bit count < DIGIT_BIT */
+ d = (mp_digit) (b % DIGIT_BIT);
+ if (d != 0) {
+ mp_digit *tmpc, shift, mask, carry, rr;
+ int x;
-/* shift left by a certain bit count */
-static int
-mp_mul_2d(mp_int *a, int b, mp_int *c)
-{
- mp_digit d;
- int res;
-
- /* copy */
- if (a != c) {
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- return res;
- }
- }
-
- if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
- if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- /* shift by as many digits in the bit count */
- if (b >= (int)DIGIT_BIT) {
- if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
- return res;
- }
- }
-
- /* shift any bit count < DIGIT_BIT */
- d = (mp_digit) (b % DIGIT_BIT);
- if (d != 0) {
- mp_digit *tmpc, shift, mask, r, rr;
- int x;
-
- /* bitmask for carries */
- mask = (((mp_digit)1) << d) - 1;
-
- /* shift for msbs */
- shift = DIGIT_BIT - d;
-
- /* alias */
- tmpc = c->dp;
-
- /* carry */
- r = 0;
- for (x = 0; x < c->used; x++) {
- /* get the higher bits of the current word */
- rr = (*tmpc >> shift) & mask;
-
- /* shift the current word and OR in the carry */
- *tmpc = ((*tmpc << d) | r) & MP_MASK;
- ++tmpc;
-
- /* set the carry to the carry bits of the current word */
- r = rr;
- }
-
- /* set final carry */
- if (r != 0) {
- c->dp[(c->used)++] = r;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
+ /* bitmask for carries */
+ mask = (((mp_digit)1) << d) - 1;
+
+ /* shift for msbs */
+ shift = DIGIT_BIT - d;
+
+ /* alias */
+ tmpc = c->dp;
+
+ /* carry */
+ carry = 0;
+ for (x = 0; x < c->used; x++) {
+ /* get the higher bits of the current word */
+ rr = (*tmpc >> shift) & mask;
+
+ /* shift the current word and OR in the carry */
+ *tmpc = ((*tmpc << d) | carry) & MP_MASK;
+ ++tmpc;
+
+ /* set the carry to the carry bits of the current word */
+ carry = rr;
+ }
+
+ /* set final carry */
+ if (carry != 0) {
+ c->dp[c->used++] = carry;
+ }
+ }
+ trim_unused_digits(c);
+ return MP_OKAY;
}
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
static int
mp_read_unsigned_bin(mp_int *a, const uint8_t *b, int c)
{
- int res;
+ int res;
- /* make sure there are at least two digits */
- if (a->alloc < 2) {
- if ((res = mp_grow(a, 2)) != MP_OKAY) {
- return res;
- }
- }
+ /* make sure there are at least two digits */
+ if (a->alloc < 2) {
+ if ((res = mp_grow(a, 2)) != MP_OKAY) {
+ return res;
+ }
+ }
- /* zero the int */
- mp_zero (a);
+ /* zero the int */
+ mp_zero(a);
- /* read the bytes in */
- while (c-- > 0) {
- if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
- return res;
- }
+ /* read the bytes in */
+ while (c-- > 0) {
+ if ((res = lshift_bits(a, 8, a)) != MP_OKAY) {
+ return res;
+ }
- a->dp[0] |= *b++;
- a->used += 1;
- }
- mp_clamp (a);
- return MP_OKAY;
+ a->dp[0] |= *b++;
+ a->used += 1;
+ }
+ trim_unused_digits(a);
+ return MP_OKAY;
}
-/* returns the number of bits in an int */
+/* returns the number of bits in an mpi */
static int
mp_count_bits(const mp_int *a)
{
- int r;
- mp_digit q;
+ int r;
+ mp_digit q;
+
+ /* shortcut */
+ if (a->used == 0) {
+ return 0;
+ }
- /* shortcut */
- if (a->used == 0) {
- return 0;
- }
+ /* get number of digits and add that */
+ r = (a->used - 1) * DIGIT_BIT;
- /* get number of digits and add that */
- r = (a->used - 1) * DIGIT_BIT;
-
- /* take the last digit and count the bits in it */
- q = a->dp[a->used - 1];
- while (q > ((mp_digit) 0)) {
- ++r;
- q >>= ((mp_digit) 1);
- }
- return r;
+ /* take the last digit and count the bits in it */
+ for (q = a->dp[a->used - 1]; q > ((mp_digit) 0) ; r++) {
+ q >>= ((mp_digit) 1);
+ }
+ return r;
}
/* compare maginitude of two ints (unsigned) */
static int
-mp_cmp_mag (mp_int * a, mp_int * b)
+compare_magnitude(mp_int * a, mp_int * b)
{
- int n;
- mp_digit *tmpa, *tmpb;
+ int n;
+ mp_digit *tmpa, *tmpb;
- /* compare based on # of non-zero digits */
- if (a->used > b->used) {
- return MP_GT;
- }
-
- if (a->used < b->used) {
- return MP_LT;
- }
+ /* compare based on # of non-zero digits */
+ if (a->used > b->used) {
+ return MP_GT;
+ }
- /* alias for a */
- tmpa = a->dp + (a->used - 1);
+ if (a->used < b->used) {
+ return MP_LT;
+ }
- /* alias for b */
- tmpb = b->dp + (a->used - 1);
+ /* alias for a */
+ tmpa = a->dp + (a->used - 1);
- /* compare based on digits */
- for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
- if (*tmpa > *tmpb) {
- return MP_GT;
- }
+ /* alias for b */
+ tmpb = b->dp + (a->used - 1);
- if (*tmpa < *tmpb) {
- return MP_LT;
- }
- }
- return MP_EQ;
+ /* compare based on digits */
+ for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
+ if (*tmpa > *tmpb) {
+ return MP_GT;
+ }
+
+ if (*tmpa < *tmpb) {
+ return MP_LT;
+ }
+ }
+ return MP_EQ;
}
/* compare two ints (signed)*/
static int
-mp_cmp (mp_int * a, mp_int * b)
-{
- /* compare based on sign */
- if (a->sign != b->sign) {
- if (a->sign == MP_NEG) {
- return MP_LT;
- } else {
- return MP_GT;
- }
- }
-
- /* compare digits */
- if (a->sign == MP_NEG) {
- /* if negative compare opposite direction */
- return mp_cmp_mag(b, a);
- } else {
- return mp_cmp_mag(a, b);
- }
+signed_compare(mp_int * a, mp_int * b)
+{
+ /* compare based on sign */
+ if (a->sign != b->sign) {
+ return (a->sign == MP_NEG) ? MP_LT : MP_GT;
+ }
+ return (a->sign == MP_NEG) ? compare_magnitude(b, a) : compare_magnitude(a, b);
}
/* get the size for an unsigned equivalent */
static int
-mp_unsigned_bin_size (mp_int * a)
+mp_unsigned_bin_size(mp_int * a)
{
- int size = mp_count_bits (a);
- return (size / 8 + ((size & 7) != 0 ? 1 : 0));
+ int size = mp_count_bits(a);
+
+ return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}
/* init a new mp_int */
static int
-mp_init (mp_int * a)
+mp_init(mp_int * a)
{
- int i;
-
- /* allocate memory required and clear it */
- a->dp = netpgp_allocate(1, sizeof (*a->dp) * MP_PREC);
- if (a->dp == NULL) {
- return MP_MEM;
- }
+ /* allocate memory required and clear it */
+ a->dp = allocate(1, sizeof(*a->dp) * MP_PREC);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
- /* set the digits to zero */
- for (i = 0; i < MP_PREC; i++) {
- a->dp[i] = 0;
- }
+ /* set the digits to zero */
+ memset(a->dp, 0x0, MP_PREC * sizeof(*a->dp));
- /* set the used to zero, allocated digits to the default precision
- * and sign to positive */
- a->used = 0;
- a->alloc = MP_PREC;
- a->sign = MP_ZPOS;
+ /* set the used to zero, allocated digits to the default precision
+ * and sign to positive */
+ a->used = 0;
+ a->alloc = MP_PREC;
+ a->sign = MP_ZPOS;
- return MP_OKAY;
+ return MP_OKAY;
}
/* clear one (frees) */
static void
-mp_clear (mp_int * a)
+mp_clear(mp_int * a)
{
- int i;
+ /* only do anything if a hasn't been freed previously */
+ if (a->dp != NULL) {
+ memset(a->dp, 0x0, a->used * sizeof(*a->dp));
- /* only do anything if a hasn't been freed previously */
- if (a->dp != NULL) {
- /* first zero the digits */
- for (i = 0; i < a->used; i++) {
- a->dp[i] = 0;
- }
+ /* free ram */
+ deallocate(a->dp, (size_t)a->alloc);
- /* free ram */
- netpgp_deallocate(a->dp, (size_t)a->alloc);
-
- /* reset members to make debugging easier */
- a->dp = NULL;
- a->alloc = a->used = 0;
- a->sign = MP_ZPOS;
- }
+ /* reset members to make debugging easier */
+ a->dp = NULL;
+ a->alloc = a->used = 0;
+ a->sign = MP_ZPOS;
+ }
}
static int
mp_init_multi(mp_int *mp, ...)
{
- mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
- int n = 0; /* Number of ok inits */
- mp_int* cur_arg = mp;
- va_list args;
-
- va_start(args, mp); /* init args to next argument from caller */
- while (cur_arg != NULL) {
- if (mp_init(cur_arg) != MP_OKAY) {
- /* Oops - error! Back-track and mp_clear what we already
- succeeded in init-ing, then return error.
- */
- va_list clean_args;
-
- /* end the current list */
- va_end(args);
-
- /* now start cleaning up */
- cur_arg = mp;
- va_start(clean_args, mp);
- while (n--) {
- mp_clear(cur_arg);
- cur_arg = va_arg(clean_args, mp_int*);
- }
- va_end(clean_args);
- res = MP_MEM;
- break;
- }
- n++;
- cur_arg = va_arg(args, mp_int*);
- }
- va_end(args);
- return res; /* Assumed ok, if error flagged above. */
+ mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
+ int n = 0; /* Number of ok inits */
+ mp_int* cur_arg = mp;
+ va_list args;
+
+ va_start(args, mp); /* init args to next argument from caller */
+ while (cur_arg != NULL) {
+ if (mp_init(cur_arg) != MP_OKAY) {
+ /* Oops - error! Back-track and mp_clear what we already
+ succeeded in init-ing, then return error.
+ */
+ va_list clean_args;
+
+ /* end the current list */
+ va_end(args);
+
+ /* now start cleaning up */
+ cur_arg = mp;
+ va_start(clean_args, mp);
+ while (n--) {
+ mp_clear(cur_arg);
+ cur_arg = va_arg(clean_args, mp_int*);
+ }
+ va_end(clean_args);
+ res = MP_MEM;
+ break;
+ }
+ n++;
+ cur_arg = va_arg(args, mp_int*);
+ }
+ va_end(args);
+ return res; /* Assumed ok, if error flagged above. */
}
/* init an mp_init for a given size */
static int
-mp_init_size (mp_int * a, int size)
+mp_init_size(mp_int * a, int size)
{
- int x;
+ /* pad size so there are always extra digits */
+ size += (MP_PREC * 2) - (size % MP_PREC);
- /* pad size so there are always extra digits */
- size += (MP_PREC * 2) - (size % MP_PREC);
-
- /* alloc mem */
- a->dp = netpgp_allocate (1, sizeof (*a->dp) * size);
- if (a->dp == NULL) {
- return MP_MEM;
- }
-
- /* set the members */
- a->used = 0;
- a->alloc = size;
- a->sign = MP_ZPOS;
+ /* alloc mem */
+ a->dp = allocate(1, sizeof(*a->dp) * size);
+ if (a->dp == NULL) {
+ return MP_MEM;
+ }
- /* zero the digits */
- for (x = 0; x < size; x++) {
- a->dp[x] = 0;
- }
+ /* set the members */
+ a->used = 0;
+ a->alloc = size;
+ a->sign = MP_ZPOS;
- return MP_OKAY;
+ /* zero the digits */
+ memset(a->dp, 0x0, size * sizeof(*a->dp));
+ return MP_OKAY;
}
/* creates "a" then copies b into it */
-static int mp_init_copy (mp_int * a, mp_int * b)
+static int
+mp_init_copy(mp_int * a, mp_int * b)
{
- int res;
+ int res;
- if ((res = mp_init (a)) != MP_OKAY) {
- return res;
- }
- return mp_copy (b, a);
+ if ((res = mp_init(a)) != MP_OKAY) {
+ return res;
+ }
+ return mp_copy(b, a);
}
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
static int
-s_mp_add (mp_int * a, mp_int * b, mp_int * c)
-{
- mp_int *x;
- int olduse, res, min, max;
-
- /* find sizes, we let |a| <= |b| which means we have to sort
- * them. "x" will point to the input with the most digits
- */
- if (a->used > b->used) {
- min = b->used;
- max = a->used;
- x = a;
- } else {
- min = a->used;
- max = b->used;
- x = b;
- }
-
- /* init result */
- if (c->alloc < max + 1) {
- if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- /* get old used digit count and set new one */
- olduse = c->used;
- c->used = max + 1;
-
- {
- mp_digit u, *tmpa, *tmpb, *tmpc;
- int i;
-
- /* alias for digit pointers */
-
- /* first input */
- tmpa = a->dp;
-
- /* second input */
- tmpb = b->dp;
-
- /* destination */
- tmpc = c->dp;
-
- /* zero the carry */
- u = 0;
- for (i = 0; i < min; i++) {
- /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
- *tmpc = *tmpa++ + *tmpb++ + u;
-
- /* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)DIGIT_BIT);
-
- /* take away carry bit from T[i] */
- *tmpc++ &= MP_MASK;
- }
-
- /* now copy higher words if any, that is in A+B
- * if A or B has more digits add those in
- */
- if (min != max) {
- for (; i < max; i++) {
- /* T[i] = X[i] + U */
- *tmpc = x->dp[i] + u;
-
- /* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)DIGIT_BIT);
-
- /* take away carry bit from T[i] */
- *tmpc++ &= MP_MASK;
- }
- }
-
- /* add carry */
- *tmpc++ = u;
-
- /* clear digits above oldused */
- for (i = c->used; i < olduse; i++) {
- *tmpc++ = 0;
- }
- }
-
- mp_clamp (c);
- return MP_OKAY;
+basic_add(mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int *x;
+ int olduse, res, min, max;
+
+ /* find sizes, we let |a| <= |b| which means we have to sort
+ * them. "x" will point to the input with the most digits
+ */
+ if (a->used > b->used) {
+ min = b->used;
+ max = a->used;
+ x = a;
+ } else {
+ min = a->used;
+ max = b->used;
+ x = b;
+ }
+
+ /* init result */
+ if (c->alloc < max + 1) {
+ if ((res = mp_grow(c, max + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* get old used digit count and set new one */
+ olduse = c->used;
+ c->used = max + 1;
+
+ {
+ mp_digit carry, *tmpa, *tmpb, *tmpc;
+ int i;
+
+ /* alias for digit pointers */
+
+ /* first input */
+ tmpa = a->dp;
+
+ /* second input */
+ tmpb = b->dp;
+
+ /* destination */
+ tmpc = c->dp;
+
+ /* zero the carry */
+ carry = 0;
+ for (i = 0; i < min; i++) {
+ /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+ *tmpc = *tmpa++ + *tmpb++ + carry;
+
+ /* U = carry bit of T[i] */
+ carry = *tmpc >> ((mp_digit)DIGIT_BIT);
+
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+
+ /* now copy higher words if any, that is in A+B
+ * if A or B has more digits add those in
+ */
+ if (min != max) {
+ for (; i < max; i++) {
+ /* T[i] = X[i] + U */
+ *tmpc = x->dp[i] + carry;
+
+ /* U = carry bit of T[i] */
+ carry = *tmpc >> ((mp_digit)DIGIT_BIT);
+
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+ }
+
+ /* add carry */
+ *tmpc++ = carry;
+
+ /* clear digits above oldused */
+ if (olduse > c->used) {
+ memset(tmpc, 0x0, (olduse - c->used) * sizeof(*c->dp));
+ }
+ }
+
+ trim_unused_digits(c);
+ return MP_OKAY;
}
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
static int
-s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
-{
- int olduse, res, min, max;
-
- /* find sizes */
- min = b->used;
- max = a->used;
-
- /* init result */
- if (c->alloc < max) {
- if ((res = mp_grow (c, max)) != MP_OKAY) {
- return res;
- }
- }
- olduse = c->used;
- c->used = max;
-
- {
- mp_digit u, *tmpa, *tmpb, *tmpc;
- int i;
-
- /* alias for digit pointers */
- tmpa = a->dp;
- tmpb = b->dp;
- tmpc = c->dp;
-
- /* set carry to zero */
- u = 0;
- for (i = 0; i < min; i++) {
- /* T[i] = A[i] - B[i] - U */
- *tmpc = *tmpa++ - *tmpb++ - u;
-
- /* U = carry bit of T[i]
- * Note this saves performing an AND operation since
- * if a carry does occur it will propagate all the way to the
- * MSB. As a result a single shift is enough to get the carry
- */
- u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-
- /* Clear carry from T[i] */
- *tmpc++ &= MP_MASK;
- }
-
- /* now copy higher words if any, e.g. if A has more digits than B */
- for (; i < max; i++) {
- /* T[i] = A[i] - U */
- *tmpc = *tmpa++ - u;
-
- /* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-
- /* Clear carry from T[i] */
- *tmpc++ &= MP_MASK;
- }
-
- /* clear digits above used (since we may not have grown result above) */
- for (i = c->used; i < olduse; i++) {
- *tmpc++ = 0;
- }
- }
-
- mp_clamp (c);
- return MP_OKAY;
-}
+basic_subtract(mp_int * a, mp_int * b, mp_int * c)
+{
+ int olduse, res, min, max;
-/* high level subtraction (handles signs) */
-static int
-mp_sub (mp_int * a, mp_int * b, mp_int * c)
-{
- int sa, sb, res;
-
- sa = a->sign;
- sb = b->sign;
-
- if (sa != sb) {
- /* subtract a negative from a positive, OR */
- /* subtract a positive from a negative. */
- /* In either case, ADD their magnitudes, */
- /* and use the sign of the first number. */
- c->sign = sa;
- res = s_mp_add (a, b, c);
- } else {
- /* subtract a positive from a positive, OR */
- /* subtract a negative from a negative. */
- /* First, take the difference between their */
- /* magnitudes, then... */
- if (mp_cmp_mag (a, b) != MP_LT) {
- /* Copy the sign from the first */
- c->sign = sa;
- /* The first has a larger or equal magnitude */
- res = s_mp_sub (a, b, c);
- } else {
- /* The result has the *opposite* sign from */
- /* the first number. */
- c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
- /* The second has a larger magnitude */
- res = s_mp_sub (b, a, c);
- }
- }
- return res;
-}
+ /* find sizes */
+ min = b->used;
+ max = a->used;
-/* shift right a certain amount of digits */
-static int mp_rshd (mp_int * a, int b)
-{
- int x;
+ /* init result */
+ if (c->alloc < max) {
+ if ((res = mp_grow(c, max)) != MP_OKAY) {
+ return res;
+ }
+ }
+ olduse = c->used;
+ c->used = max;
+
+ {
+ mp_digit carry, *tmpa, *tmpb, *tmpc;
+ int i;
+
+ /* alias for digit pointers */
+ tmpa = a->dp;
+ tmpb = b->dp;
+ tmpc = c->dp;
+
+ /* set carry to zero */
+ carry = 0;
+ for (i = 0; i < min; i++) {
+ /* T[i] = A[i] - B[i] - U */
+ *tmpc = *tmpa++ - *tmpb++ - carry;
+
+ /* U = carry bit of T[i]
+ * Note this saves performing an AND operation since
+ * if a carry does occur it will propagate all the way to the
+ * MSB. As a result a single shift is enough to get the carry
+ */
+ carry = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof(mp_digit) - 1));
+
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
- /* if b <= 0 then ignore it */
- if (b <= 0) {
- return 0;
- }
+ /* now copy higher words if any, e.g. if A has more digits than B */
+ for (; i < max; i++) {
+ /* T[i] = A[i] - U */
+ *tmpc = *tmpa++ - carry;
- /* if b > used then simply zero it and return */
- if (a->used <= b) {
- mp_zero (a);
- return 0;
- }
+ /* U = carry bit of T[i] */
+ carry = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof(mp_digit) - 1));
- {
- mp_digit *bottom, *top;
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
- /* shift the digits down */
+ /* clear digits above used (since we may not have grown result above) */
+ if (olduse > c->used) {
+ memset(tmpc, 0x0, (olduse - c->used) * sizeof(*a->dp));
+ }
+ }
- /* bottom */
- bottom = a->dp;
+ trim_unused_digits(c);
+ return MP_OKAY;
+}
- /* top [offset into digits] */
- top = a->dp + b;
+/* high level subtraction (handles signs) */
+static int
+signed_subtract(mp_int * a, mp_int * b, mp_int * c)
+{
+ int sa, sb, res;
+
+ sa = a->sign;
+ sb = b->sign;
+
+ if (sa != sb) {
+ /* subtract a negative from a positive, OR */
+ /* subtract a positive from a negative. */
+ /* In either case, ADD their magnitudes, */
+ /* and use the sign of the first number. */
+ c->sign = sa;
+ res = basic_add(a, b, c);
+ } else {
+ /* subtract a positive from a positive, OR */
+ /* subtract a negative from a negative. */
+ /* First, take the difference between their */
+ /* magnitudes, then... */
+ if (compare_magnitude(a, b) != MP_LT) {
+ /* Copy the sign from the first */
+ c->sign = sa;
+ /* The first has a larger or equal magnitude */
+ res = basic_subtract(a, b, c);
+ } else {
+ /* The result has the *opposite* sign from */
+ /* the first number. */
+ c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+ /* The second has a larger magnitude */
+ res = basic_subtract(b, a, c);
+ }
+ }
+ return res;
+}
- /* this is implemented as a sliding window where
- * the window is b-digits long and digits from
- * the top of the window are copied to the bottom
- *
- * e.g.
+/* shift right a certain amount of digits */
+static int
+rshift_digits(mp_int * a, int b)
+{
+ /* if b <= 0 then ignore it */
+ if (b <= 0) {
+ return 0;
+ }
- b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
- /\ | ---->
- \-------------------/ ---->
- */
- for (x = 0; x < (a->used - b); x++) {
- *bottom++ = *top++;
- }
+ /* if b > used then simply zero it and return */
+ if (a->used <= b) {
+ mp_zero(a);
+ return 0;
+ }
- /* zero the top digits */
- for (; x < a->used; x++) {
- *bottom++ = 0;
- }
- }
-
- /* remove excess digits */
- a->used -= b;
- return 1;
+ /* this is implemented as a sliding window where
+ * the window is b-digits long and digits from
+ * the top of the window are copied to the bottom
+ *
+ * e.g.
+
+ b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
+ /\ | ---->
+ \-------------------/ ---->
+ */
+ memmove(a->dp, &a->dp[b], (a->used - b) * sizeof(*a->dp));
+ memset(&a->dp[a->used - b], 0x0, b * sizeof(*a->dp));
+
+ /* remove excess digits */
+ a->used -= b;
+ return 1;
}
/* multiply by a digit */
static int
-mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+multiply_digit(mp_int * a, mp_digit b, mp_int * c)
{
- mp_digit u, *tmpa, *tmpc;
- mp_word r;
- int ix, res, olduse;
+ mp_digit carry, *tmpa, *tmpc;
+ mp_word r;
+ int ix, res, olduse;
- /* make sure c is big enough to hold a*b */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- /* get the original destinations used count */
- olduse = c->used;
+ /* make sure c is big enough to hold a*b */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
- /* set the sign */
- c->sign = a->sign;
+ /* get the original destinations used count */
+ olduse = c->used;
- /* alias for a->dp [source] */
- tmpa = a->dp;
+ /* set the sign */
+ c->sign = a->sign;
- /* alias for c->dp [dest] */
- tmpc = c->dp;
+ /* alias for a->dp [source] */
+ tmpa = a->dp;
- /* zero carry */
- u = 0;
+ /* alias for c->dp [dest] */
+ tmpc = c->dp;
- /* compute columns */
- for (ix = 0; ix < a->used; ix++) {
- /* compute product and carry sum for this term */
- r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
+ /* zero carry */
+ carry = 0;
- /* mask off higher bits to get a single digit */
- *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+ /* compute columns */
+ for (ix = 0; ix < a->used; ix++) {
+ /* compute product and carry sum for this term */
+ r = ((mp_word) carry) + ((mp_word)*tmpa++) * ((mp_word)b);
- /* send carry into next iteration */
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
- }
+ /* mask off higher bits to get a single digit */
+ *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
- /* store final carry [if any] and increment ix offset */
- *tmpc++ = u;
- ++ix;
+ /* send carry into next iteration */
+ carry = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
- /* now zero digits above the top */
- while (ix++ < olduse) {
- *tmpc++ = 0;
- }
+ /* store final carry [if any] and increment ix offset */
+ *tmpc++ = carry;
+ ++ix;
+ if (olduse > ix) {
+ memset(tmpc, 0x0, (olduse - ix) * sizeof(*tmpc));
+ }
- /* set used count */
- c->used = a->used + 1;
- mp_clamp(c);
+ /* set used count */
+ c->used = a->used + 1;
+ trim_unused_digits(c);
- return MP_OKAY;
+ return MP_OKAY;
}
/* high level addition (handles signs) */
-static int mp_add (mp_int * a, mp_int * b, mp_int * c)
-{
- int sa, sb, res;
-
- /* get sign of both inputs */
- sa = a->sign;
- sb = b->sign;
-
- /* handle two cases, not four */
- if (sa == sb) {
- /* both positive or both negative */
- /* add their magnitudes, copy the sign */
- c->sign = sa;
- res = s_mp_add (a, b, c);
- } else {
- /* one positive, the other negative */
- /* subtract the one with the greater magnitude from */
- /* the one of the lesser magnitude. The result gets */
- /* the sign of the one with the greater magnitude. */
- if (mp_cmp_mag (a, b) == MP_LT) {
- c->sign = sb;
- res = s_mp_sub (b, a, c);
- } else {
- c->sign = sa;
- res = s_mp_sub (a, b, c);
- }
- }
- return res;
+static int
+signed_add(mp_int * a, mp_int * b, mp_int * c)
+{
+ int asign, bsign, res;
+
+ /* get sign of both inputs */
+ asign = a->sign;
+ bsign = b->sign;
+
+ /* handle two cases, not four */
+ if (asign == bsign) {
+ /* both positive or both negative */
+ /* add their magnitudes, copy the sign */
+ c->sign = asign;
+ res = basic_add(a, b, c);
+ } else {
+ /* one positive, the other negative */
+ /* subtract the one with the greater magnitude from */
+ /* the one of the lesser magnitude. The result gets */
+ /* the sign of the one with the greater magnitude. */
+ if (compare_magnitude(a, b) == MP_LT) {
+ c->sign = bsign;
+ res = basic_subtract(b, a, c);
+ } else {
+ c->sign = asign;
+ res = basic_subtract(a, b, c);
+ }
+ }
+ return res;
}
/* swap the elements of two integers, for cases where you can't simply swap the
@@ -926,121 +848,122 @@ static int mp_add (mp_int * a, mp_int * b, mp_int * c)
static void
mp_exch(mp_int *a, mp_int *b)
{
- mp_int t;
+ mp_int t;
- t = *a;
- *a = *b;
- *b = t;
+ t = *a;
+ *a = *b;
+ *b = t;
}
/* calc a value mod 2**b */
static int
-mp_mod_2d (mp_int * a, int b, mp_int * c)
-{
- int x, res;
-
- /* if b is <= 0 then zero the int */
- if (b <= 0) {
- mp_zero (c);
- return MP_OKAY;
- }
-
- /* if the modulus is larger than the value than return */
- if (b >= (int) (a->used * DIGIT_BIT)) {
- res = mp_copy (a, c);
- return res;
- }
-
- /* copy */
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- return res;
- }
-
- /* zero digits above the last digit of the modulus */
- for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
- c->dp[x] = 0;
- }
- /* clear the digit that is not completely outside/inside the modulus */
- c->dp[b / DIGIT_BIT] &=
- (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
- mp_clamp (c);
- return MP_OKAY;
+modulo_2_to_power(mp_int * a, int b, mp_int * c)
+{
+ int x, res;
+
+ /* if b is <= 0 then zero the int */
+ if (b <= 0) {
+ mp_zero(c);
+ return MP_OKAY;
+ }
+
+ /* if the modulus is larger than the value than return */
+ if (b >= (int) (a->used * DIGIT_BIT)) {
+ res = mp_copy(a, c);
+ return res;
+ }
+
+ /* copy */
+ if ((res = mp_copy(a, c)) != MP_OKAY) {
+ return res;
+ }
+
+ /* zero digits above the last digit of the modulus */
+ for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
+ c->dp[x] = 0;
+ }
+ /* clear the digit that is not completely outside/inside the modulus */
+ c->dp[b / DIGIT_BIT] &=
+ (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
+ trim_unused_digits(c);
+ return MP_OKAY;
}
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
-static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
-{
- mp_digit D, r, rr;
- int x, res;
- mp_int t;
-
-
- /* if the shift count is <= 0 then we do no work */
- if (b <= 0) {
- res = mp_copy (a, c);
- if (d != NULL) {
- mp_zero (d);
- }
- return res;
- }
-
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
-
- /* get the remainder */
- if (d != NULL) {
- if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- }
-
- /* copy */
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
-
- /* shift by as many digits in the bit count */
- if (b >= (int)DIGIT_BIT) {
- mp_rshd (c, b / DIGIT_BIT);
- }
-
- /* shift any bit count < DIGIT_BIT */
- D = (mp_digit) (b % DIGIT_BIT);
- if (D != 0) {
- mp_digit *tmpc, mask, shift;
-
- /* mask */
- mask = (((mp_digit)1) << D) - 1;
-
- /* shift for lsb */
- shift = DIGIT_BIT - D;
-
- /* alias */
- tmpc = c->dp + (c->used - 1);
-
- /* carry */
- r = 0;
- for (x = c->used - 1; x >= 0; x--) {
- /* get the lower bits of this word in a temp */
- rr = *tmpc & mask;
-
- /* shift the current word and mix in the carry bits from the previous word */
- *tmpc = (*tmpc >> D) | (r << shift);
- --tmpc;
-
- /* set the carry to the carry bits of the current word found above */
- r = rr;
- }
- }
- mp_clamp (c);
- if (d != NULL) {
- mp_exch (&t, d);
- }
- mp_clear (&t);
- return MP_OKAY;
+static int
+rshift_bits(mp_int * a, int b, mp_int * c, mp_int * d)
+{
+ mp_digit D, r, rr;
+ int x, res;
+ mp_int t;
+
+
+ /* if the shift count is <= 0 then we do no work */
+ if (b <= 0) {
+ res = mp_copy(a, c);
+ if (d != NULL) {
+ mp_zero(d);
+ }
+ return res;
+ }
+
+ if ((res = mp_init(&t)) != MP_OKAY) {
+ return res;
+ }
+
+ /* get the remainder */
+ if (d != NULL) {
+ if ((res = modulo_2_to_power(a, b, &t)) != MP_OKAY) {
+ mp_clear(&t);
+ return res;
+ }
+ }
+
+ /* copy */
+ if ((res = mp_copy(a, c)) != MP_OKAY) {
+ mp_clear(&t);
+ return res;
+ }
+
+ /* shift by as many digits in the bit count */
+ if (b >= (int)DIGIT_BIT) {
+ rshift_digits(c, b / DIGIT_BIT);
+ }
+
+ /* shift any bit count < DIGIT_BIT */
+ D = (mp_digit) (b % DIGIT_BIT);
+ if (D != 0) {
+ mp_digit *tmpc, mask, shift;
+
+ /* mask */
+ mask = (((mp_digit)1) << D) - 1;
+
+ /* shift for lsb */
+ shift = DIGIT_BIT - D;
+
+ /* alias */
+ tmpc = c->dp + (c->used - 1);
+
+ /* carry */
+ r = 0;
+ for (x = c->used - 1; x >= 0; x--) {
+ /* get the lower bits of this word in a temp */
+ rr = *tmpc & mask;
+
+ /* shift the current word and mix in the carry bits from the previous word */
+ *tmpc = (*tmpc >> D) | (r << shift);
+ --tmpc;
+
+ /* set the carry to the carry bits of the current word found above */
+ r = rr;
+ }
+ }
+ trim_unused_digits(c);
+ if (d != NULL) {
+ mp_exch(&t, d);
+ }
+ mp_clear(&t);
+ return MP_OKAY;
}
/* integer signed division.
@@ -1057,304 +980,314 @@ static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
* 14.20 from HAC but fixed to treat these cases.
*/
static int
-mp_div(mp_int *c, mp_int *d, mp_int *a, mp_int *b)
-{
- mp_int q, x, y, t1, t2;
- int res, n, t, i, norm, neg;
-
- /* is divisor zero ? */
- if (BN_is_zero (b) == 1) {
- return MP_VAL;
- }
-
- /* if a < b then q=0, r = a */
- if (mp_cmp_mag (a, b) == MP_LT) {
- if (d != NULL) {
- res = mp_copy (a, d);
- } else {
- res = MP_OKAY;
- }
- if (c != NULL) {
- mp_zero (c);
- }
- return res;
- }
-
- if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
- return res;
- }
- q.used = a->used + 2;
-
- if ((res = mp_init (&t1)) != MP_OKAY) {
- goto LBL_Q;
- }
-
- if ((res = mp_init (&t2)) != MP_OKAY) {
- goto LBL_T1;
- }
-
- if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
- goto LBL_T2;
- }
-
- if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
- goto LBL_X;
- }
-
- /* fix the sign */
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
- x.sign = y.sign = MP_ZPOS;
-
- /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
- norm = mp_count_bits(&y) % DIGIT_BIT;
- if (norm < (int)(DIGIT_BIT-1)) {
- norm = (DIGIT_BIT-1) - norm;
- if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
- if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
- goto LBL_Y;
- }
- } else {
- norm = 0;
- }
-
- /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
- n = x.used - 1;
- t = y.used - 1;
-
- /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
- if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
- goto LBL_Y;
- }
-
- while (mp_cmp (&x, &y) != MP_LT) {
- ++(q.dp[n - t]);
- if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
- }
-
- /* reset y by shifting it back down */
- mp_rshd (&y, n - t);
-
- /* step 3. for i from n down to (t + 1) */
- for (i = n; i >= (t + 1); i--) {
- if (i > x.used) {
- continue;
- }
-
- /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
- * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
- if (x.dp[i] == y.dp[t]) {
- q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
- } else {
- mp_word tmp;
- tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
- tmp |= ((mp_word) x.dp[i - 1]);
- tmp /= ((mp_word) y.dp[t]);
- if (tmp > (mp_word) MP_MASK)
- tmp = MP_MASK;
- q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
- }
-
- /* while (q{i-t-1} * (yt * b + y{t-1})) >
- xi * b**2 + xi-1 * b + xi-2
-
- do q{i-t-1} -= 1;
- */
- q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
- do {
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
-
- /* find left hand */
- mp_zero (&t1);
- t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
- t1.dp[1] = y.dp[t];
- t1.used = 2;
- if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- /* find right hand */
- t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
- t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
- t2.dp[2] = x.dp[i];
- t2.used = 3;
- } while (mp_cmp_mag(&t1, &t2) == MP_GT);
-
- /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
- if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
- if (x.sign == MP_NEG) {
- if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
- goto LBL_Y;
- }
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
- goto LBL_Y;
- }
- if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
- }
- }
-
- /* now q is the quotient and x is the remainder
- * [which we have to normalize]
- */
-
- /* get sign before writing to c */
- x.sign = x.used == 0 ? MP_ZPOS : a->sign;
-
- if (c != NULL) {
- mp_clamp (&q);
- mp_exch (&q, c);
- c->sign = neg;
- }
-
- if (d != NULL) {
- mp_div_2d (&x, norm, &x, NULL);
- mp_exch (&x, d);
- }
-
- res = MP_OKAY;
-
-LBL_Y:mp_clear (&y);
-LBL_X:mp_clear (&x);
-LBL_T2:mp_clear (&t2);
-LBL_T1:mp_clear (&t1);
-LBL_Q:mp_clear (&q);
- return res;
+signed_divide(mp_int *c, mp_int *d, mp_int *a, mp_int *b)
+{
+ mp_int q, x, y, t1, t2;
+ int res, n, t, i, norm, neg;
+
+ /* is divisor zero ? */
+ if (MP_ISZERO(b) == MP_YES) {
+ return MP_VAL;
+ }
+
+ /* if a < b then q=0, r = a */
+ if (compare_magnitude(a, b) == MP_LT) {
+ if (d != NULL) {
+ res = mp_copy(a, d);
+ } else {
+ res = MP_OKAY;
+ }
+ if (c != NULL) {
+ mp_zero(c);
+ }
+ return res;
+ }
+
+ if ((res = mp_init_size(&q, a->used + 2)) != MP_OKAY) {
+ return res;
+ }
+ q.used = a->used + 2;
+
+ if ((res = mp_init(&t1)) != MP_OKAY) {
+ goto LBL_Q;
+ }
+
+ if ((res = mp_init(&t2)) != MP_OKAY) {
+ goto LBL_T1;
+ }
+
+ if ((res = mp_init_copy(&x, a)) != MP_OKAY) {
+ goto LBL_T2;
+ }
+
+ if ((res = mp_init_copy(&y, b)) != MP_OKAY) {
+ goto LBL_X;
+ }
+
+ /* fix the sign */
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+ x.sign = y.sign = MP_ZPOS;
+
+ /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
+ norm = mp_count_bits(&y) % DIGIT_BIT;
+ if (norm < (int)(DIGIT_BIT-1)) {
+ norm = (DIGIT_BIT-1) - norm;
+ if ((res = lshift_bits(&x, norm, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = lshift_bits(&y, norm, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ } else {
+ norm = 0;
+ }
+
+ /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+ n = x.used - 1;
+ t = y.used - 1;
+
+ /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
+ if ((res = lshift_digits(&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
+ goto LBL_Y;
+ }
+
+ while (signed_compare(&x, &y) != MP_LT) {
+ ++(q.dp[n - t]);
+ if ((res = signed_subtract(&x, &y, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ }
+
+ /* reset y by shifting it back down */
+ rshift_digits(&y, n - t);
+
+ /* step 3. for i from n down to (t + 1) */
+ for (i = n; i >= (t + 1); i--) {
+ if (i > x.used) {
+ continue;
+ }
+
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
+ * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
+ if (x.dp[i] == y.dp[t]) {
+ q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
+ } else {
+ mp_word tmp;
+ tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
+ tmp |= ((mp_word) x.dp[i - 1]);
+ tmp /= ((mp_word) y.dp[t]);
+ if (tmp > (mp_word) MP_MASK) {
+ tmp = MP_MASK;
+ }
+ q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
+ }
+
+ /* while (q{i-t-1} * (yt * b + y{t-1})) >
+ xi * b**2 + xi-1 * b + xi-2
+ do q{i-t-1} -= 1;
+ */
+ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
+ do {
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
+
+ /* find left hand */
+ mp_zero(&t1);
+ t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+ t1.dp[1] = y.dp[t];
+ t1.used = 2;
+ if ((res = multiply_digit(&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* find right hand */
+ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
+ t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+ t2.dp[2] = x.dp[i];
+ t2.used = 3;
+ } while (compare_magnitude(&t1, &t2) == MP_GT);
+
+ /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
+ if ((res = multiply_digit(&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ if ((res = lshift_digits(&t1, i - t - 1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ if ((res = signed_subtract(&x, &t1, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
+ if (x.sign == MP_NEG) {
+ if ((res = mp_copy(&y, &t1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = lshift_digits(&t1, i - t - 1)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+ if ((res = signed_add(&x, &t1, &x)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
+ }
+ }
+
+ /* now q is the quotient and x is the remainder
+ * [which we have to normalize]
+ */
+
+ /* get sign before writing to c */
+ x.sign = x.used == 0 ? MP_ZPOS : a->sign;
+
+ if (c != NULL) {
+ trim_unused_digits(&q);
+ mp_exch(&q, c);
+ c->sign = neg;
+ }
+
+ if (d != NULL) {
+ rshift_bits(&x, norm, &x, NULL);
+ mp_exch(&x, d);
+ }
+
+ res = MP_OKAY;
+
+LBL_Y:
+ mp_clear(&y);
+LBL_X:
+ mp_clear(&x);
+LBL_T2:
+ mp_clear(&t2);
+LBL_T1:
+ mp_clear(&t1);
+LBL_Q:
+ mp_clear(&q);
+ return res;
}
/* c = a mod b, 0 <= c < b */
static int
-mp_mod (mp_int * a, mp_int * b, mp_int * c)
+modulo(mp_int * a, mp_int * b, mp_int * c)
{
- mp_int t;
- int res;
+ mp_int t;
+ int res;
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
+ if ((res = mp_init(&t)) != MP_OKAY) {
+ return res;
+ }
- if ((res = mp_div (NULL, &t, a, b)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
+ if ((res = signed_divide(NULL, &t, a, b)) != MP_OKAY) {
+ mp_clear(&t);
+ return res;
+ }
- if (t.sign != b->sign) {
- res = mp_add (b, &t, c);
- } else {
- res = MP_OKAY;
- mp_exch (&t, c);
- }
+ if (t.sign != b->sign) {
+ res = signed_add(b, &t, c);
+ } else {
+ res = MP_OKAY;
+ mp_exch(&t, c);
+ }
- mp_clear (&t);
- return res;
+ mp_clear(&t);
+ return res;
}
/* set to a digit */
-static void mp_set (mp_int * a, mp_digit b)
+static void
+set_word(mp_int * a, mp_digit b)
{
- mp_zero (a);
- a->dp[0] = b & MP_MASK;
- a->used = (a->dp[0] != 0) ? 1 : 0;
+ mp_zero(a);
+ a->dp[0] = b & MP_MASK;
+ a->used = (a->dp[0] != 0) ? 1 : 0;
}
/* b = a/2 */
-static int mp_div_2(mp_int * a, mp_int * b)
+static int
+half(mp_int * a, mp_int * b)
{
- int x, res, oldused;
+ int x, res, oldused;
- /* copy */
- if (b->alloc < a->used) {
- if ((res = mp_grow (b, a->used)) != MP_OKAY) {
- return res;
- }
- }
+ /* copy */
+ if (b->alloc < a->used) {
+ if ((res = mp_grow(b, a->used)) != MP_OKAY) {
+ return res;
+ }
+ }
- oldused = b->used;
- b->used = a->used;
- {
- mp_digit r, rr, *tmpa, *tmpb;
+ oldused = b->used;
+ b->used = a->used;
+ {
+ mp_digit r, rr, *tmpa, *tmpb;
- /* source alias */
- tmpa = a->dp + b->used - 1;
+ /* source alias */
+ tmpa = a->dp + b->used - 1;
- /* dest alias */
- tmpb = b->dp + b->used - 1;
+ /* dest alias */
+ tmpb = b->dp + b->used - 1;
- /* carry */
- r = 0;
- for (x = b->used - 1; x >= 0; x--) {
- /* get the carry for the next iteration */
- rr = *tmpa & 1;
+ /* carry */
+ r = 0;
+ for (x = b->used - 1; x >= 0; x--) {
+ /* get the carry for the next iteration */
+ rr = *tmpa & 1;
- /* shift the current digit, add in carry and store */
- *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+ /* shift the current digit, add in carry and store */
+ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
- /* forward carry to next iteration */
- r = rr;
- }
+ /* forward carry to next iteration */
+ r = rr;
+ }
- /* zero excess digits */
- tmpb = b->dp + b->used;
- for (x = b->used; x < oldused; x++) {
- *tmpb++ = 0;
- }
- }
- b->sign = a->sign;
- mp_clamp (b);
- return MP_OKAY;
+ /* zero excess digits */
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
+ }
+ b->sign = a->sign;
+ trim_unused_digits(b);
+ return MP_OKAY;
}
/* compare a digit */
-static int mp_cmp_d(mp_int * a, mp_digit b)
+static int
+compare_digit(mp_int * a, mp_digit b)
{
- /* compare based on sign */
- if (a->sign == MP_NEG) {
- return MP_LT;
- }
+ /* compare based on sign */
+ if (a->sign == MP_NEG) {
+ return MP_LT;
+ }
- /* compare based on magnitude */
- if (a->used > 1) {
- return MP_GT;
- }
+ /* compare based on magnitude */
+ if (a->used > 1) {
+ return MP_GT;
+ }
- /* compare the only digit of a to b */
- if (a->dp[0] > b) {
- return MP_GT;
- } else if (a->dp[0] < b) {
- return MP_LT;
- } else {
- return MP_EQ;
- }
+ /* compare the only digit of a to b */
+ if (a->dp[0] > b) {
+ return MP_GT;
+ } else if (a->dp[0] < b) {
+ return MP_LT;
+ } else {
+ return MP_EQ;
+ }
}
-static void mp_clear_multi(mp_int *mp, ...)
+static void
+mp_clear_multi(mp_int *mp, ...)
{
- mp_int* next_mp = mp;
- va_list args;
- va_start(args, mp);
- while (next_mp != NULL) {
- mp_clear(next_mp);
- next_mp = va_arg(args, mp_int*);
- }
- va_end(args);
+ mp_int* next_mp = mp;
+ va_list args;
+
+ va_start(args, mp);
+ while (next_mp != NULL) {
+ mp_clear(next_mp);
+ next_mp = va_arg(args, mp_int*);
+ }
+ va_end(args);
}
/* computes the modular inverse via binary extended euclidean algorithm,
@@ -1364,299 +1297,297 @@ static void mp_clear_multi(mp_int *mp, ...)
* odd as per HAC Note 14.64 on pp. 610
*/
static int
-fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-{
- mp_int x, y, u, v, B, D;
- int res, neg;
-
- /* 2. [modified] b must be odd */
- if (BN_is_even (b) == 1) {
- return MP_VAL;
- }
-
- /* init all our temps */
- if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
- return res;
- }
-
- /* x == modulus, y == value to invert */
- if ((res = mp_copy (b, &x)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- /* we need y = |a| */
- if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
- if ((res = mp_copy (&x, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy (&y, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- mp_set (&D, 1);
+fast_modular_inverse(mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, B, D;
+ int res, neg;
+
+ /* 2. [modified] b must be odd */
+ if (MP_ISZERO(b) == MP_YES) {
+ return MP_VAL;
+ }
+
+ /* init all our temps */
+ if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* x == modulus, y == value to invert */
+ if ((res = mp_copy(b, &x)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* we need y = |a| */
+ if ((res = modulo(a, b, &y)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy(&x, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy(&y, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ set_word(&D, 1);
top:
- /* 4. while u is even do */
- while (BN_is_even (&u) == 1) {
- /* 4.1 u = u/2 */
- if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 4.2 if B is odd then */
- if (BN_is_odd (&B) == 1) {
- if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* B = B/2 */
- if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* 5. while v is even do */
- while (BN_is_even (&v) == 1) {
- /* 5.1 v = v/2 */
- if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 5.2 if D is odd then */
- if (BN_is_odd (&D) == 1) {
- /* D = (D-x)/2 */
- if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* D = D/2 */
- if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* 6. if u >= v then */
- if (mp_cmp (&u, &v) != MP_LT) {
- /* u = u - v, B = B - D */
- if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- } else {
- /* v - v - u, D = D - B */
- if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* if not zero goto step 4 */
- if (BN_is_zero (&u) == 0) {
- goto top;
- }
-
- /* now a = C, b = D, gcd == g*v */
-
- /* if v != 1 then there is no inverse */
- if (mp_cmp_d (&v, 1) != MP_EQ) {
- res = MP_VAL;
- goto LBL_ERR;
- }
-
- /* b is now the inverse */
- neg = a->sign;
- while (D.sign == MP_NEG) {
- if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- mp_exch (&D, c);
- c->sign = neg;
- res = MP_OKAY;
-
-LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
- return res;
+ /* 4. while u is even do */
+ while (BN_is_even(&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = half(&u, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 4.2 if B is odd then */
+ if (BN_is_odd(&B) == 1) {
+ if ((res = signed_subtract(&B, &x, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* B = B/2 */
+ if ((res = half(&B, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 5. while v is even do */
+ while (BN_is_even(&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = half(&v, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 5.2 if D is odd then */
+ if (BN_is_odd(&D) == 1) {
+ /* D = (D-x)/2 */
+ if ((res = signed_subtract(&D, &x, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* D = D/2 */
+ if ((res = half(&D, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (signed_compare(&u, &v) != MP_LT) {
+ /* u = u - v, B = B - D */
+ if ((res = signed_subtract(&u, &v, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = signed_subtract(&B, &D, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ } else {
+ /* v - v - u, D = D - B */
+ if ((res = signed_subtract(&v, &u, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = signed_subtract(&D, &B, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (MP_ISZERO(&u) == MP_NO) {
+ goto top;
+ }
+
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (compare_digit(&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* b is now the inverse */
+ neg = a->sign;
+ while (D.sign == MP_NEG) {
+ if ((res = signed_add(&D, b, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ mp_exch(&D, c);
+ c->sign = neg;
+ res = MP_OKAY;
+
+LBL_ERR:
+ mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
+ return res;
}
/* hac 14.61, pp608 */
static int
-mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
-{
- mp_int x, y, u, v, A, B, C, D;
- int res;
-
- /* b cannot be negative */
- if (b->sign == MP_NEG || BN_is_zero(b) == 1) {
- return MP_VAL;
- }
-
- /* init temps */
- if ((res = mp_init_multi(&x, &y, &u, &v,
- &A, &B, &C, &D, NULL)) != MP_OKAY) {
- return res;
- }
-
- /* x = a, y = b */
- if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy (b, &y)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- /* 2. [modified] if x,y are both even then return an error! */
- if (BN_is_even (&x) == 1 && BN_is_even (&y) == 1) {
- res = MP_VAL;
- goto LBL_ERR;
- }
-
- /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
- if ((res = mp_copy (&x, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_copy (&y, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- mp_set (&A, 1);
- mp_set (&D, 1);
+slow_modular_inverse(mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x, y, u, v, A, B, C, D;
+ int res;
+
+ /* b cannot be negative */
+ if (b->sign == MP_NEG || MP_ISZERO(b) == MP_YES) {
+ return MP_VAL;
+ }
+
+ /* init temps */
+ if ((res = mp_init_multi(&x, &y, &u, &v,
+ &A, &B, &C, &D, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* x = a, y = b */
+ if ((res = modulo(a, b, &x)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy(b, &y)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ /* 2. [modified] if x,y are both even then return an error! */
+ if (BN_is_even(&x) == 1 && BN_is_even(&y) == 1) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+ if ((res = mp_copy(&x, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = mp_copy(&y, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ set_word(&A, 1);
+ set_word(&D, 1);
top:
- /* 4. while u is even do */
- while (BN_is_even (&u) == 1) {
- /* 4.1 u = u/2 */
- if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 4.2 if A or B is odd then */
- if (BN_is_odd (&A) == 1 || BN_is_odd (&B) == 1) {
- /* A = (A+y)/2, B = (B-x)/2 */
- if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* A = A/2, B = B/2 */
- if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* 5. while v is even do */
- while (BN_is_even (&v) == 1) {
- /* 5.1 v = v/2 */
- if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* 5.2 if C or D is odd then */
- if (BN_is_odd (&C) == 1 || BN_is_odd (&D) == 1) {
- /* C = (C+y)/2, D = (D-x)/2 */
- if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
- /* C = C/2, D = D/2 */
- if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* 6. if u >= v then */
- if (mp_cmp (&u, &v) != MP_LT) {
- /* u = u - v, A = A - C, B = B - D */
- if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
- goto LBL_ERR;
- }
- } else {
- /* v - v - u, C = C - A, D = D - B */
- if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
-
- if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* if not zero goto step 4 */
- if (BN_is_zero (&u) == 0)
- goto top;
-
- /* now a = C, b = D, gcd == g*v */
-
- /* if v != 1 then there is no inverse */
- if (mp_cmp_d (&v, 1) != MP_EQ) {
- res = MP_VAL;
- goto LBL_ERR;
- }
-
- /* if its too low */
- while (mp_cmp_d(&C, 0) == MP_LT) {
- if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* too big */
- while (mp_cmp_mag(&C, b) != MP_LT) {
- if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
- goto LBL_ERR;
- }
- }
-
- /* C is now the inverse */
- mp_exch (&C, c);
- res = MP_OKAY;
-LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
- return res;
+ /* 4. while u is even do */
+ while (BN_is_even(&u) == 1) {
+ /* 4.1 u = u/2 */
+ if ((res = half(&u, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 4.2 if A or B is odd then */
+ if (BN_is_odd(&A) == 1 || BN_is_odd(&B) == 1) {
+ /* A = (A+y)/2, B = (B-x)/2 */
+ if ((res = signed_add(&A, &y, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = signed_subtract(&B, &x, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* A = A/2, B = B/2 */
+ if ((res = half(&A, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = half(&B, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 5. while v is even do */
+ while (BN_is_even(&v) == 1) {
+ /* 5.1 v = v/2 */
+ if ((res = half(&v, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ /* 5.2 if C or D is odd then */
+ if (BN_is_odd(&C) == 1 || BN_is_odd(&D) == 1) {
+ /* C = (C+y)/2, D = (D-x)/2 */
+ if ((res = signed_add(&C, &y, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = signed_subtract(&D, &x, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+ /* C = C/2, D = D/2 */
+ if ((res = half(&C, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ if ((res = half(&D, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* 6. if u >= v then */
+ if (signed_compare(&u, &v) != MP_LT) {
+ /* u = u - v, A = A - C, B = B - D */
+ if ((res = signed_subtract(&u, &v, &u)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = signed_subtract(&A, &C, &A)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = signed_subtract(&B, &D, &B)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ } else {
+ /* v - v - u, C = C - A, D = D - B */
+ if ((res = signed_subtract(&v, &u, &v)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = signed_subtract(&C, &A, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+
+ if ((res = signed_subtract(&D, &B, &D)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* if not zero goto step 4 */
+ if (BN_is_zero(&u) == 0) {
+ goto top;
+ }
+ /* now a = C, b = D, gcd == g*v */
+
+ /* if v != 1 then there is no inverse */
+ if (compare_digit(&v, 1) != MP_EQ) {
+ res = MP_VAL;
+ goto LBL_ERR;
+ }
+
+ /* if its too low */
+ while (compare_digit(&C, 0) == MP_LT) {
+ if ((res = signed_add(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* too big */
+ while (compare_magnitude(&C, b) != MP_LT) {
+ if ((res = signed_subtract(&C, b, &C)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
+ }
+
+ /* C is now the inverse */
+ mp_exch(&C, c);
+ res = MP_OKAY;
+LBL_ERR:
+ mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL);
+ return res;
}
static int
-mp_invmod(mp_int *c, mp_int *a, mp_int *b)
+modular_inverse(mp_int *c, mp_int *a, mp_int *b)
{
- /* b cannot be negative */
- if (b->sign == MP_NEG || BN_is_zero(b) == 1) {
- return MP_VAL;
- }
-
- /* if the modulus is odd we can use a faster routine instead */
- if (BN_is_odd (b) == 1) {
- return fast_mp_invmod(a, b, c);
- }
-
- return mp_invmod_slow(a, b, c);
+ /* b cannot be negative */
+ if (b->sign == MP_NEG || MP_ISZERO(b) == MP_YES) {
+ return MP_VAL;
+ }
- /*NOTREACHED*/
- return MP_VAL;
+ /* if the modulus is odd we can use a faster routine instead */
+ if (BN_is_odd(b) == 1) {
+ return fast_modular_inverse(a, b, c);
+ }
+ return slow_modular_inverse(a, b, c);
}
/* b = |a|
@@ -1664,43 +1595,44 @@ mp_invmod(mp_int *c, mp_int *a, mp_int *b)
* Simple function copies the input and fixes the sign to positive
*/
static int
-mp_abs (mp_int * a, mp_int * b)
+absolute(mp_int * a, mp_int * b)
{
- int res;
+ int res;
- /* copy a to b */
- if (a != b) {
- if ((res = mp_copy (a, b)) != MP_OKAY) {
- return res;
- }
- }
+ /* copy a to b */
+ if (a != b) {
+ if ((res = mp_copy(a, b)) != MP_OKAY) {
+ return res;
+ }
+ }
- /* force the sign of b to positive */
- b->sign = MP_ZPOS;
+ /* force the sign of b to positive */
+ b->sign = MP_ZPOS;
- return MP_OKAY;
+ return MP_OKAY;
}
/* determines if reduce_2k_l can be used */
-static int mp_reduce_is_2k_l(mp_int *a)
-{
- int ix, iy;
-
- if (a->used == 0) {
- return MP_NO;
- } else if (a->used == 1) {
- return MP_YES;
- } else if (a->used > 1) {
- /* if more than half of the digits are -1 we're sold */
- for (iy = ix = 0; ix < a->used; ix++) {
- if (a->dp[ix] == MP_MASK) {
- ++iy;
- }
- }
- return (iy >= (a->used/2)) ? MP_YES : MP_NO;
-
- }
- return MP_NO;
+static int
+mp_reduce_is_2k_l(mp_int *a)
+{
+ int ix, iy;
+
+ if (a->used == 0) {
+ return MP_NO;
+ } else if (a->used == 1) {
+ return MP_YES;
+ } else if (a->used > 1) {
+ /* if more than half of the digits are -1 we're sold */
+ for (iy = ix = 0; ix < a->used; ix++) {
+ if (a->dp[ix] == MP_MASK) {
+ ++iy;
+ }
+ }
+ return (iy >= (a->used/2)) ? MP_YES : MP_NO;
+
+ }
+ return MP_NO;
}
/* computes a = 2**b
@@ -1709,156 +1641,158 @@ static int mp_reduce_is_2k_l(mp_int *a)
* as required.
*/
static int
-mp_2expt (mp_int * a, int b)
+mp_2expt(mp_int * a, int b)
{
- int res;
+ int res;
- /* zero a as per default */
- mp_zero (a);
+ /* zero a as per default */
+ mp_zero(a);
- /* grow a to accomodate the single bit */
- if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
- return res;
- }
+ /* grow a to accomodate the single bit */
+ if ((res = mp_grow(a, b / DIGIT_BIT + 1)) != MP_OKAY) {
+ return res;
+ }
- /* set the used count of where the bit will go */
- a->used = b / DIGIT_BIT + 1;
+ /* set the used count of where the bit will go */
+ a->used = b / DIGIT_BIT + 1;
- /* put the single bit in its place */
- a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
+ /* put the single bit in its place */
+ a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
- return MP_OKAY;
+ return MP_OKAY;
}
/* pre-calculate the value required for Barrett reduction
* For a given modulus "b" it calulates the value required in "a"
*/
-static int mp_reduce_setup (mp_int * a, mp_int * b)
+static int
+mp_reduce_setup(mp_int * a, mp_int * b)
{
- int res;
-
- if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
- return res;
- }
- return mp_div (a, NULL, a, b);
+ int res;
+
+ if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ return signed_divide(a, NULL, a, b);
}
/* b = a*2 */
-static int mp_mul_2(mp_int * a, mp_int * b)
-{
- int x, res, oldused;
-
- /* grow to accomodate result */
- if (b->alloc < a->used + 1) {
- if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- oldused = b->used;
- b->used = a->used;
-
- {
- mp_digit r, rr, *tmpa, *tmpb;
-
- /* alias for source */
- tmpa = a->dp;
-
- /* alias for dest */
- tmpb = b->dp;
-
- /* carry */
- r = 0;
- for (x = 0; x < a->used; x++) {
-
- /* get what will be the *next* carry bit from the
- * MSB of the current digit
- */
- rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
-
- /* now shift up this digit, add in the carry [from the previous] */
- *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
-
- /* copy the carry that would be from the source
- * digit into the next iteration
- */
- r = rr;
- }
-
- /* new leading digit? */
- if (r != 0) {
- /* add a MSB which is always 1 at this point */
- *tmpb = 1;
- ++(b->used);
- }
-
- /* now zero any excess digits on the destination
- * that we didn't write to
- */
- tmpb = b->dp + b->used;
- for (x = b->used; x < oldused; x++) {
- *tmpb++ = 0;
- }
- }
- b->sign = a->sign;
- return MP_OKAY;
+static int
+doubled(mp_int * a, mp_int * b)
+{
+ int x, res, oldused;
+
+ /* grow to accomodate result */
+ if (b->alloc < a->used + 1) {
+ if ((res = mp_grow(b, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ oldused = b->used;
+ b->used = a->used;
+
+ {
+ mp_digit r, rr, *tmpa, *tmpb;
+
+ /* alias for source */
+ tmpa = a->dp;
+
+ /* alias for dest */
+ tmpb = b->dp;
+
+ /* carry */
+ r = 0;
+ for (x = 0; x < a->used; x++) {
+
+ /* get what will be the *next* carry bit from the
+ * MSB of the current digit
+ */
+ rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
+
+ /* now shift up this digit, add in the carry [from the previous] */
+ *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
+
+ /* copy the carry that would be from the source
+ * digit into the next iteration
+ */
+ r = rr;
+ }
+
+ /* new leading digit? */
+ if (r != 0) {
+ /* add a MSB which is always 1 at this point */
+ *tmpb = 1;
+ ++(b->used);
+ }
+
+ /* now zero any excess digits on the destination
+ * that we didn't write to
+ */
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
+ }
+ b->sign = a->sign;
+ return MP_OKAY;
}
/* divide by three (based on routine from MPI and the GMP manual) */
static int
-mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
-{
- mp_int q;
- mp_word w, t;
- mp_digit b;
- int res, ix;
-
- /* b = 2**DIGIT_BIT / 3 */
- b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
-
- if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
- return res;
- }
-
- q.used = a->used;
- q.sign = a->sign;
- w = 0;
- for (ix = a->used - 1; ix >= 0; ix--) {
- w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
-
- if (w >= 3) {
- /* multiply w by [1/3] */
- t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
-
- /* now subtract 3 * [w/3] from w, to get the remainder */
- w -= t+t+t;
-
- /* fixup the remainder as required since
- * the optimization is not exact.
- */
- while (w >= 3) {
- t += 1;
- w -= 3;
- }
- } else {
- t = 0;
- }
- q.dp[ix] = (mp_digit)t;
- }
-
- /* [optional] store the remainder */
- if (d != NULL) {
- *d = (mp_digit)w;
- }
-
- /* [optional] store the quotient */
- if (c != NULL) {
- mp_clamp(&q);
- mp_exch(&q, c);
- }
- mp_clear(&q);
-
- return res;
+third(mp_int * a, mp_int *c, mp_digit * d)
+{
+ mp_int q;
+ mp_word w, t;
+ mp_digit b;
+ int res, ix;
+
+ /* b = 2**DIGIT_BIT / 3 */
+ b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
+
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= 3) {
+ /* multiply w by [1/3] */
+ t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
+
+ /* now subtract 3 * [w/3] from w, to get the remainder */
+ w -= t+t+t;
+
+ /* fixup the remainder as required since
+ * the optimization is not exact.
+ */
+ while (w >= 3) {
+ t += 1;
+ w -= 3;
+ }
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = (mp_digit)t;
+ }
+
+ /* [optional] store the remainder */
+ if (d != NULL) {
+ *d = (mp_digit)w;
+ }
+
+ /* [optional] store the quotient */
+ if (c != NULL) {
+ trim_unused_digits(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
+ return res;
}
/* multiplication using the Toom-Cook 3-way algorithm
@@ -1868,259 +1802,260 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
* only particularly useful on VERY large inputs
* (we're talking 1000s of digits here...).
*/
-static int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
-{
- mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
- int res, B;
-
- /* init temps */
- if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
- &a0, &a1, &a2, &b0, &b1,
- &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
- return res;
- }
-
- /* B */
- B = MIN(a->used, b->used) / 3;
-
- /* a = a2 * B**2 + a1 * B + a0 */
- if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_copy(a, &a1)) != MP_OKAY) {
- goto ERR;
- }
- mp_rshd(&a1, B);
- mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
-
- if ((res = mp_copy(a, &a2)) != MP_OKAY) {
- goto ERR;
- }
- mp_rshd(&a2, B*2);
-
- /* b = b2 * B**2 + b1 * B + b0 */
- if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_copy(b, &b1)) != MP_OKAY) {
- goto ERR;
- }
- mp_rshd(&b1, B);
- mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
-
- if ((res = mp_copy(b, &b2)) != MP_OKAY) {
- goto ERR;
- }
- mp_rshd(&b2, B*2);
-
- /* w0 = a0*b0 */
- if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
- goto ERR;
- }
-
- /* w4 = a2 * b2 */
- if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
- goto ERR;
- }
-
- /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
- if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
- goto ERR;
- }
-
- /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
- if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
- goto ERR;
- }
-
-
- /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
- if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
- goto ERR;
- }
-
- /* now solve the matrix
-
- 0 0 0 0 1
- 1 2 4 8 16
- 1 1 1 1 1
- 16 8 4 2 1
- 1 0 0 0 0
-
- using 12 subtractions, 4 shifts,
- 2 small divisions and 1 small multiplication
- */
-
- /* r1 - r4 */
- if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r0 */
- if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1/2 */
- if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3/2 */
- if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r2 - r0 - r4 */
- if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - r2 */
- if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r2 */
- if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - 8r0 */
- if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - 8r4 */
- if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* 3r2 - r1 - r3 */
- if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - r2 */
- if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r2 */
- if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1/3 */
- if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
- goto ERR;
- }
- /* r3/3 */
- if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
- goto ERR;
- }
-
- /* at this point shift W[n] by B*n */
- if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
- goto ERR;
- }
-
+static int
+toom_cook_multiply(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
+ &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = MIN(a->used, b->used) / 3;
+
+ /* a = a2 * B**2 + a1 * B + a0 */
+ if ((res = modulo_2_to_power(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ rshift_digits(&a1, B);
+ modulo_2_to_power(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ rshift_digits(&a2, B*2);
+
+ /* b = b2 * B**2 + b1 * B + b0 */
+ if ((res = modulo_2_to_power(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(b, &b1)) != MP_OKAY) {
+ goto ERR;
+ }
+ rshift_digits(&b1, B);
+ modulo_2_to_power(&b1, DIGIT_BIT * B, &b1);
+
+ if ((res = mp_copy(b, &b2)) != MP_OKAY) {
+ goto ERR;
+ }
+ rshift_digits(&b2, B*2);
+
+ /* w0 = a0*b0 */
+ if ((res = signed_multiply(&a0, &b0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * b2 */
+ if ((res = signed_multiply(&a2, &b2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
+ if ((res = doubled(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = doubled(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = doubled(&b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = doubled(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = signed_multiply(&tmp1, &tmp2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
+ if ((res = doubled(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = doubled(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = doubled(&b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = doubled(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = signed_multiply(&tmp1, &tmp2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
+ if ((res = signed_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&b2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_multiply(&tmp1, &tmp2, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts,
+ 2 small divisions and 1 small multiplication
+ */
+
+ /* r1 - r4 */
+ if ((res = signed_subtract(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = signed_subtract(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = half(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = half(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = signed_subtract(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = signed_subtract(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = signed_subtract(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = lshift_bits(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = lshift_bits(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = multiply_digit(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = signed_subtract(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = signed_subtract(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = third(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = third(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = lshift_digits(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = lshift_digits(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = lshift_digits(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = lshift_digits(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = signed_add(&w0, &w1, c)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, c, c)) != MP_OKAY) {
+ goto ERR;
+ }
+
ERR:
- mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
- &a0, &a1, &a2, &b0, &b1,
- &b2, &tmp1, &tmp2, NULL);
- return res;
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
+ &b2, &tmp1, &tmp2, NULL);
+ return res;
}
#define TOOM_MUL_CUTOFF 350
@@ -2147,7 +2082,7 @@ ERR:
* Note that a multiplication of half the digits requires
* 1/4th the number of single precision multiplications so in
* total after one call 25% of the single precision multiplications
- * are saved. Note also that the call to mp_mul can end up back
+ * are saved. Note also that the call to signed_multiply can end up back
* in this function if the a0, a1, b0, or b1 are above the threshold.
* This is known as divide-and-conquer and leads to the famous
* O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
@@ -2155,122 +2090,141 @@ ERR:
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
-static int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
-{
- mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
- int B;
- int err;
-
- /* default the return code to an error */
- err = MP_MEM;
-
- /* min # of digits */
- B = MIN (a->used, b->used);
-
- /* now divide in two */
- B = (int)((unsigned)B >> 1);
-
- /* init copy all the temps */
- if (mp_init_size (&x0, B) != MP_OKAY)
- goto ERR;
- if (mp_init_size (&x1, a->used - B) != MP_OKAY)
- goto X0;
- if (mp_init_size (&y0, B) != MP_OKAY)
- goto X1;
- if (mp_init_size (&y1, b->used - B) != MP_OKAY)
- goto Y0;
-
- /* init temps */
- if (mp_init_size (&t1, B * 2) != MP_OKAY)
- goto Y1;
- if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
- goto T1;
- if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
- goto X0Y0;
-
- /* now shift the digits */
- x0.used = y0.used = B;
- x1.used = a->used - B;
- y1.used = b->used - B;
-
- {
- int x;
- mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
-
- /* we copy the digits directly instead of using higher level functions
- * since we also need to shift the digits
- */
- tmpa = a->dp;
- tmpb = b->dp;
-
- tmpx = x0.dp;
- tmpy = y0.dp;
- for (x = 0; x < B; x++) {
- *tmpx++ = *tmpa++;
- *tmpy++ = *tmpb++;
- }
-
- tmpx = x1.dp;
- for (x = B; x < a->used; x++) {
- *tmpx++ = *tmpa++;
- }
-
- tmpy = y1.dp;
- for (x = B; x < b->used; x++) {
- *tmpy++ = *tmpb++;
- }
- }
-
- /* only need to clamp the lower words since by definition the
- * upper words x1/y1 must have a known number of digits
- */
- mp_clamp (&x0);
- mp_clamp (&y0);
-
- /* now calc the products x0y0 and x1y1 */
- /* after this x0 is no longer required, free temp [x0==t2]! */
- if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
- goto X1Y1; /* x0y0 = x0*y0 */
- if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
- goto X1Y1; /* x1y1 = x1*y1 */
-
- /* now calc x1+x0 and y1+y0 */
- if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
- goto X1Y1; /* t1 = x1 - x0 */
- if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
- goto X1Y1; /* t2 = y1 - y0 */
- if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
- goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
-
- /* add x0y0 */
- if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
- goto X1Y1; /* t2 = x0y0 + x1y1 */
- if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
- goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
-
- /* shift by B */
- if (mp_lshd (&t1, B) != MP_OKAY)
- goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
- if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
- goto X1Y1; /* x1y1 = x1y1 << 2*B */
-
- if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
- goto X1Y1; /* t1 = x0y0 + t1 */
- if (mp_add (&t1, &x1y1, c) != MP_OKAY)
- goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
-
- /* Algorithm succeeded set the return code to MP_OKAY */
- err = MP_OKAY;
-
-X1Y1:mp_clear (&x1y1);
-X0Y0:mp_clear (&x0y0);
-T1:mp_clear (&t1);
-Y1:mp_clear (&y1);
-Y0:mp_clear (&y0);
-X1:mp_clear (&x1);
-X0:mp_clear (&x0);
+static int
+karatsuba_multiply(mp_int * a, mp_int * b, mp_int * c)
+{
+ mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
+ int B;
+ int err;
+
+ /* default the return code to an error */
+ err = MP_MEM;
+
+ /* min # of digits */
+ B = MIN(a->used, b->used);
+
+ /* now divide in two */
+ B = (int)((unsigned)B >> 1);
+
+ /* init copy all the temps */
+ if (mp_init_size(&x0, B) != MP_OKAY) {
+ goto ERR;
+ }
+ if (mp_init_size(&x1, a->used - B) != MP_OKAY) {
+ goto X0;
+ }
+ if (mp_init_size(&y0, B) != MP_OKAY) {
+ goto X1;
+ }
+ if (mp_init_size(&y1, b->used - B) != MP_OKAY) {
+ goto Y0;
+ }
+ /* init temps */
+ if (mp_init_size(&t1, B * 2) != MP_OKAY) {
+ goto Y1;
+ }
+ if (mp_init_size(&x0y0, B * 2) != MP_OKAY) {
+ goto T1;
+ }
+ if (mp_init_size(&x1y1, B * 2) != MP_OKAY) {
+ goto X0Y0;
+ }
+ /* now shift the digits */
+ x0.used = y0.used = B;
+ x1.used = a->used - B;
+ y1.used = b->used - B;
+
+ {
+ int x;
+ mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
+
+ /* we copy the digits directly instead of using higher level functions
+ * since we also need to shift the digits
+ */
+ tmpa = a->dp;
+ tmpb = b->dp;
+
+ tmpx = x0.dp;
+ tmpy = y0.dp;
+ for (x = 0; x < B; x++) {
+ *tmpx++ = *tmpa++;
+ *tmpy++ = *tmpb++;
+ }
+
+ tmpx = x1.dp;
+ for (x = B; x < a->used; x++) {
+ *tmpx++ = *tmpa++;
+ }
+
+ tmpy = y1.dp;
+ for (x = B; x < b->used; x++) {
+ *tmpy++ = *tmpb++;
+ }
+ }
+
+ /* only need to clamp the lower words since by definition the
+ * upper words x1/y1 must have a known number of digits
+ */
+ trim_unused_digits(&x0);
+ trim_unused_digits(&y0);
+
+ /* now calc the products x0y0 and x1y1 */
+ /* after this x0 is no longer required, free temp [x0==t2]! */
+ if (signed_multiply(&x0, &y0, &x0y0) != MP_OKAY) {
+ goto X1Y1; /* x0y0 = x0*y0 */
+ }
+ if (signed_multiply(&x1, &y1, &x1y1) != MP_OKAY) {
+ goto X1Y1; /* x1y1 = x1*y1 */
+ }
+ /* now calc x1+x0 and y1+y0 */
+ if (basic_add(&x1, &x0, &t1) != MP_OKAY) {
+ goto X1Y1; /* t1 = x1 - x0 */
+ }
+ if (basic_add(&y1, &y0, &x0) != MP_OKAY) {
+ goto X1Y1; /* t2 = y1 - y0 */
+ }
+ if (signed_multiply(&t1, &x0, &t1) != MP_OKAY) {
+ goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
+ }
+ /* add x0y0 */
+ if (signed_add(&x0y0, &x1y1, &x0) != MP_OKAY) {
+ goto X1Y1; /* t2 = x0y0 + x1y1 */
+ }
+ if (basic_subtract(&t1, &x0, &t1) != MP_OKAY) {
+ goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
+ }
+ /* shift by B */
+ if (lshift_digits(&t1, B) != MP_OKAY) {
+ goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+ }
+ if (lshift_digits(&x1y1, B * 2) != MP_OKAY) {
+ goto X1Y1; /* x1y1 = x1y1 << 2*B */
+ }
+ if (signed_add(&x0y0, &t1, &t1) != MP_OKAY) {
+ goto X1Y1; /* t1 = x0y0 + t1 */
+ }
+ if (signed_add(&t1, &x1y1, c) != MP_OKAY) {
+ goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
+ }
+ /* Algorithm succeeded set the return code to MP_OKAY */
+ err = MP_OKAY;
+
+X1Y1:
+ mp_clear(&x1y1);
+X0Y0:
+ mp_clear(&x0y0);
+T1:
+ mp_clear(&t1);
+Y1:
+ mp_clear(&y1);
+Y0:
+ mp_clear(&y0);
+X1:
+ mp_clear(&x1);
+X0:
+ mp_clear(&x0);
ERR:
- return err;
+ return err;
}
/* Fast (comba) multiplier
@@ -2289,75 +2243,89 @@ ERR:
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
-static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
- int olduse, res, pa, ix, iz;
- /*LINTED*/
- mp_digit W[MP_WARRAY];
- mp_word _W;
-
- /* grow the destination as required */
- if (c->alloc < digs) {
- if ((res = mp_grow (c, digs)) != MP_OKAY) {
- return res;
- }
- }
-
- /* number of output digits to produce */
- pa = MIN(digs, a->used + b->used);
-
- /* clear the carry */
- _W = 0;
- for (ix = 0; ix < pa; ix++) {
- int tx, ty;
- int iy;
- mp_digit *tmpx, *tmpy;
-
- /* get offsets into the two bignums */
- ty = MIN(b->used-1, ix);
- tx = ix - ty;
-
- /* setup temp aliases */
- tmpx = a->dp + tx;
- tmpy = b->dp + ty;
-
- /* this is the number of times the loop will iterrate, essentially
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy = MIN(a->used-tx, ty+1);
-
- /* execute loop */
- for (iz = 0; iz < iy; ++iz) {
- _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
-
- }
-
- /* store term */
- W[ix] = ((mp_digit)_W) & MP_MASK;
-
- /* make next carry */
- _W = _W >> ((mp_word)DIGIT_BIT);
- }
-
- /* setup dest */
- olduse = c->used;
- c->used = pa;
-
- {
- mp_digit *tmpc;
- tmpc = c->dp;
- for (ix = 0; ix < pa+1; ix++) {
- /* now extract the previous digit [below the carry] */
- *tmpc++ = W[ix];
- }
-
- /* clear unused digits [that existed in the old copy of c] */
- for (; ix < olduse; ix++) {
- *tmpc++ = 0;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
+static int
+fast_col_array_multiply(mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ int olduse, res, pa, ix, iz;
+ /*LINTED*/
+ mp_digit W[MP_WARRAY];
+ mp_word _W;
+
+ /* grow the destination as required */
+ if (c->alloc < digs) {
+ if ((res = mp_grow(c, digs)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ pa = MIN(digs, a->used + b->used);
+
+ /* clear the carry */
+ _W = 0;
+ for (ix = 0; ix < pa; ix++) {
+ int tx, ty;
+ int iy;
+ mp_digit *tmpx, *tmpy;
+
+ /* get offsets into the two bignums */
+ ty = MIN(b->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = b->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* execute loop */
+ for (iz = 0; iz < iy; ++iz) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+
+ }
+
+ /* store term */
+ W[ix] = ((mp_digit)_W) & MP_MASK;
+
+ /* make next carry */
+ _W = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* setup dest */
+ olduse = c->used;
+ c->used = pa;
+
+ {
+ mp_digit *tmpc;
+ tmpc = c->dp;
+ for (ix = 0; ix < pa+1; ix++) {
+ /* now extract the previous digit [below the carry] */
+ *tmpc++ = W[ix];
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+ }
+ trim_unused_digits(c);
+ return MP_OKAY;
+}
+
+/* return 1 if we can use fast column array multiply */
+/*
+* The fast multiplier can be used if the output will
+* have less than MP_WARRAY digits and the number of
+* digits won't affect carry propagation
+*/
+static inline int
+can_use_fast_column_array(int ndigits, int used)
+{
+ return (((unsigned)ndigits < MP_WARRAY) &&
+ used < (1 << (unsigned)((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))));
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_s_mp_mul_digs.c,v $ */
@@ -2369,69 +2337,68 @@ static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
* HAC pp. 595, Algorithm 14.12 Modified so you can control how
* many digits of output are created.
*/
-static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
- mp_int t;
- int res, pa, pb, ix, iy;
- mp_digit u;
- mp_word r;
- mp_digit tmpx, *tmpt, *tmpy;
-
- /* can we use the fast multiplier? */
- if (((unsigned)(digs) < MP_WARRAY) &&
- MIN (a->used, b->used) <
- (1 << (unsigned)((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_s_mp_mul_digs (a, b, c, digs);
- }
-
- if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
- return res;
- }
- t.used = digs;
-
- /* compute the digits of the product directly */
- pa = a->used;
- for (ix = 0; ix < pa; ix++) {
- /* set the carry to zero */
- u = 0;
-
- /* limit ourselves to making digs digits of output */
- pb = MIN (b->used, digs - ix);
-
- /* setup some aliases */
- /* copy of the digit from a used within the nested loop */
- tmpx = a->dp[ix];
-
- /* an alias for the destination shifted ix places */
- tmpt = t.dp + ix;
-
- /* an alias for the digits of b */
- tmpy = b->dp;
-
- /* compute the columns of the output and propagate the carry */
- for (iy = 0; iy < pb; iy++) {
- /* compute the column as a mp_word */
- r = ((mp_word)*tmpt) +
- ((mp_word)tmpx) * ((mp_word)*tmpy++) +
- ((mp_word) u);
-
- /* the new column is the lower part of the result */
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
- /* get the carry word from the result */
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
- }
- /* set carry if it is placed below digs */
- if (ix + iy < digs) {
- *tmpt = u;
- }
- }
-
- mp_clamp (&t);
- mp_exch (&t, c);
-
- mp_clear (&t);
- return MP_OKAY;
+static int
+basic_multiply_partial_lower(mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
+
+ /* can we use the fast multiplier? */
+ if (can_use_fast_column_array(digs, MIN(a->used, b->used))) {
+ return fast_col_array_multiply(a, b, c, digs);
+ }
+
+ if ((res = mp_init_size(&t, digs)) != MP_OKAY) {
+ return res;
+ }
+ t.used = digs;
+
+ /* compute the digits of the product directly */
+ pa = a->used;
+ for (ix = 0; ix < pa; ix++) {
+ /* set the carry to zero */
+ u = 0;
+
+ /* limit ourselves to making digs digits of output */
+ pb = MIN(b->used, digs - ix);
+
+ /* setup some aliases */
+ /* copy of the digit from a used within the nested loop */
+ tmpx = a->dp[ix];
+
+ /* an alias for the destination shifted ix places */
+ tmpt = t.dp + ix;
+
+ /* an alias for the digits of b */
+ tmpy = b->dp;
+
+ /* compute the columns of the output and propagate the carry */
+ for (iy = 0; iy < pb; iy++) {
+ /* compute the column as a mp_word */
+ r = ((mp_word)*tmpt) +
+ ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+ ((mp_word) u);
+
+ /* the new column is the lower part of the result */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get the carry word from the result */
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ /* set carry if it is placed below digs */
+ if (ix + iy < digs) {
+ *tmpt = u;
+ }
+ }
+
+ trim_unused_digits(&t);
+ mp_exch(&t, c);
+
+ mp_clear(&t);
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_s_mp_mul_digs.c,v $ */
@@ -2440,38 +2407,29 @@ static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* high level multiplication (handles sign) */
static int
-mp_mul(mp_int * a, mp_int * b, mp_int * c)
-{
- int res, neg;
- neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
-
- /* use Toom-Cook? */
- if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
- res = mp_toom_mul(a, b, c);
- } else
- /* use Karatsuba? */
- if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
- res = mp_karatsuba_mul (a, b, c);
- } else
- {
- /* can we use the fast multiplier?
- *
- * The fast multiplier can be used if the output will
- * have less than MP_WARRAY digits and the number of
- * digits won't affect carry propagation
- */
- int digs = a->used + b->used + 1;
-
- if (((unsigned)digs < MP_WARRAY) &&
- MIN(a->used, b->used) <=
- (1 << (unsigned)((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- res = fast_s_mp_mul_digs (a, b, c, digs);
- } else
- res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
-
- }
- c->sign = (c->used > 0) ? neg : MP_ZPOS;
- return res;
+signed_multiply(mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, neg;
+
+ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+ /* use Toom-Cook? */
+ if (MIN(a->used, b->used) >= TOOM_MUL_CUTOFF) {
+ res = toom_cook_multiply(a, b, c);
+ } else if (MIN(a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
+ /* use Karatsuba? */
+ res = karatsuba_multiply(a, b, c);
+ } else {
+ /* can we use the fast multiplier? */
+ int digs = a->used + b->used + 1;
+
+ if (can_use_fast_column_array(digs, MIN(a->used, b->used))) {
+ res = fast_col_array_multiply(a, b, c, digs);
+ } else {
+ res = basic_multiply_partial_lower(a, b, c, (a)->used + (b)->used + 1);
+ }
+ }
+ c->sign = (c->used > 0) ? neg : MP_ZPOS;
+ return res;
}
/* this is a modified version of fast_s_mul_digs that only produces
@@ -2484,72 +2442,72 @@ mp_mul(mp_int * a, mp_int * b, mp_int * c)
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
static int
-fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
- int olduse, res, pa, ix, iz;
- mp_digit W[MP_WARRAY];
- mp_word _W;
-
- /* grow the destination as required */
- pa = a->used + b->used;
- if (c->alloc < pa) {
- if ((res = mp_grow (c, pa)) != MP_OKAY) {
- return res;
- }
- }
-
- /* number of output digits to produce */
- pa = a->used + b->used;
- _W = 0;
- for (ix = digs; ix < pa; ix++) {
- int tx, ty, iy;
- mp_digit *tmpx, *tmpy;
-
- /* get offsets into the two bignums */
- ty = MIN(b->used-1, ix);
- tx = ix - ty;
-
- /* setup temp aliases */
- tmpx = a->dp + tx;
- tmpy = b->dp + ty;
-
- /* this is the number of times the loop will iterrate, essentially its
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy = MIN(a->used-tx, ty+1);
-
- /* execute loop */
- for (iz = 0; iz < iy; iz++) {
- _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
- }
-
- /* store term */
- W[ix] = ((mp_digit)_W) & MP_MASK;
-
- /* make next carry */
- _W = _W >> ((mp_word)DIGIT_BIT);
- }
-
- /* setup dest */
- olduse = c->used;
- c->used = pa;
-
- {
- mp_digit *tmpc;
-
- tmpc = c->dp + digs;
- for (ix = digs; ix < pa; ix++) {
- /* now extract the previous digit [below the carry] */
- *tmpc++ = W[ix];
- }
-
- /* clear unused digits [that existed in the old copy of c] */
- for (; ix < olduse; ix++) {
- *tmpc++ = 0;
- }
- }
- mp_clamp (c);
- return MP_OKAY;
+fast_basic_multiply_partial_upper(mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ int olduse, res, pa, ix, iz;
+ mp_digit W[MP_WARRAY];
+ mp_word _W;
+
+ /* grow the destination as required */
+ pa = a->used + b->used;
+ if (c->alloc < pa) {
+ if ((res = mp_grow(c, pa)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ pa = a->used + b->used;
+ _W = 0;
+ for (ix = digs; ix < pa; ix++) {
+ int tx, ty, iy;
+ mp_digit *tmpx, *tmpy;
+
+ /* get offsets into the two bignums */
+ ty = MIN(b->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = b->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially its
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* execute loop */
+ for (iz = 0; iz < iy; iz++) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+ }
+
+ /* store term */
+ W[ix] = ((mp_digit)_W) & MP_MASK;
+
+ /* make next carry */
+ _W = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* setup dest */
+ olduse = c->used;
+ c->used = pa;
+
+ {
+ mp_digit *tmpc;
+
+ tmpc = c->dp + digs;
+ for (ix = digs; ix < pa; ix++) {
+ /* now extract the previous digit [below the carry] */
+ *tmpc++ = W[ix];
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+ }
+ trim_unused_digits(c);
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_s_mp_mul_high_digs.c,v $ */
@@ -2560,58 +2518,57 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
* [meant to get the higher part of the product]
*/
static int
-s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-{
- mp_int t;
- int res, pa, pb, ix, iy;
- mp_digit u;
- mp_word r;
- mp_digit tmpx, *tmpt, *tmpy;
-
- /* can we use the fast multiplier? */
- if (((unsigned)(a->used + b->used + 1) < MP_WARRAY)
- && MIN (a->used, b->used) < (1 << (unsigned)((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_s_mp_mul_high_digs (a, b, c, digs);
- }
-
- if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
- return res;
- }
- t.used = a->used + b->used + 1;
-
- pa = a->used;
- pb = b->used;
- for (ix = 0; ix < pa; ix++) {
- /* clear the carry */
- u = 0;
-
- /* left hand side of A[ix] * B[iy] */
- tmpx = a->dp[ix];
-
- /* alias to the address of where the digits will be stored */
- tmpt = &(t.dp[digs]);
-
- /* alias for where to read the right hand side from */
- tmpy = b->dp + (digs - ix);
-
- for (iy = digs - ix; iy < pb; iy++) {
- /* calculate the double precision result */
- r = ((mp_word)*tmpt) +
- ((mp_word)tmpx) * ((mp_word)*tmpy++) +
- ((mp_word) u);
-
- /* get the lower part */
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
- /* carry the carry */
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
- }
- *tmpt = u;
- }
- mp_clamp (&t);
- mp_exch (&t, c);
- mp_clear (&t);
- return MP_OKAY;
+basic_multiply_partial_upper(mp_int * a, mp_int * b, mp_int * c, int digs)
+{
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit carry;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
+
+ /* can we use the fast multiplier? */
+ if (can_use_fast_column_array(a->used + b->used + 1, MIN(a->used, b->used))) {
+ return fast_basic_multiply_partial_upper(a, b, c, digs);
+ }
+
+ if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ t.used = a->used + b->used + 1;
+
+ pa = a->used;
+ pb = b->used;
+ for (ix = 0; ix < pa; ix++) {
+ /* clear the carry */
+ carry = 0;
+
+ /* left hand side of A[ix] * B[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias to the address of where the digits will be stored */
+ tmpt = &(t.dp[digs]);
+
+ /* alias for where to read the right hand side from */
+ tmpy = b->dp + (digs - ix);
+
+ for (iy = digs - ix; iy < pb; iy++) {
+ /* calculate the double precision result */
+ r = ((mp_word)*tmpt) +
+ ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+ ((mp_word) carry);
+
+ /* get the lower part */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* carry the carry */
+ carry = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ *tmpt = carry;
+ }
+ trim_unused_digits(&t);
+ mp_exch(&t, c);
+ mp_clear(&t);
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_s_mp_mul_high_digs.c,v $ */
@@ -2623,91 +2580,94 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
* From HAC pp.604 Algorithm 14.42
*/
static int
-mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
-{
- mp_int q;
- int res, um = m->used;
-
- /* q = x */
- if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
- return res;
- }
-
- /* q1 = x / b**(k-1) */
- mp_rshd (&q, um - 1);
-
- /* according to HAC this optimization is ok */
- if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
- if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
- goto CLEANUP;
- }
- } else {
- if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
- goto CLEANUP;
- }
- }
-
- /* q3 = q2 / b**(k+1) */
- mp_rshd (&q, um + 1);
-
- /* x = x mod b**(k+1), quick (no division) */
- if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
- goto CLEANUP;
- }
-
- /* q = q * m mod b**(k+1), quick (no division) */
- if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
- goto CLEANUP;
- }
-
- /* x = x - q */
- if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
- goto CLEANUP;
- }
-
- /* If x < 0, add b**(k+1) to it */
- if (mp_cmp_d (x, 0) == MP_LT) {
- mp_set (&q, 1);
- if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
- goto CLEANUP;
- if ((res = mp_add (x, &q, x)) != MP_OKAY)
- goto CLEANUP;
- }
-
- /* Back off if it's too big */
- while (mp_cmp (x, m) != MP_LT) {
- if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
- goto CLEANUP;
- }
- }
-
+mp_reduce(mp_int * x, mp_int * m, mp_int * mu)
+{
+ mp_int q;
+ int res, um = m->used;
+
+ /* q = x */
+ if ((res = mp_init_copy(&q, x)) != MP_OKAY) {
+ return res;
+ }
+
+ /* q1 = x / b**(k-1) */
+ rshift_digits(&q, um - 1);
+
+ /* according to HAC this optimization is ok */
+ if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
+ if ((res = signed_multiply(&q, mu, &q)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ } else {
+ if ((res = basic_multiply_partial_upper(&q, mu, &q, um)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ }
+
+ /* q3 = q2 / b**(k+1) */
+ rshift_digits(&q, um + 1);
+
+ /* x = x mod b**(k+1), quick (no division) */
+ if ((res = modulo_2_to_power(x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* q = q * m mod b**(k+1), quick (no division) */
+ if ((res = basic_multiply_partial_lower(&q, m, &q, um + 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* x = x - q */
+ if ((res = signed_subtract(x, &q, x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+
+ /* If x < 0, add b**(k+1) to it */
+ if (compare_digit(x, 0) == MP_LT) {
+ set_word(&q, 1);
+ if ((res = lshift_digits(&q, um + 1)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ if ((res = signed_add(x, &q, x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ }
+
+ /* Back off if it's too big */
+ while (signed_compare(x, m) != MP_LT) {
+ if ((res = basic_subtract(x, m, x)) != MP_OKAY) {
+ goto CLEANUP;
+ }
+ }
+
CLEANUP:
- mp_clear (&q);
+ mp_clear(&q);
- return res;
+ return res;
}
/* determines the setup value */
-static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
-{
- int res;
- mp_int tmp;
-
- if ((res = mp_init(&tmp)) != MP_OKAY) {
- return res;
- }
-
- if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
- goto ERR;
- }
-
+static int
+mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
+{
+ int res;
+ mp_int tmp;
+
+ if ((res = mp_init(&tmp)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = basic_subtract(&tmp, a, d)) != MP_OKAY) {
+ goto ERR;
+ }
+
ERR:
- mp_clear(&tmp);
- return res;
+ mp_clear(&tmp);
+ return res;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_2k_setup_l.c,v $ */
@@ -2721,38 +2681,38 @@ ERR:
static int
mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
- mp_int q;
- int p, res;
-
- if ((res = mp_init(&q)) != MP_OKAY) {
- return res;
- }
-
- p = mp_count_bits(n);
+ mp_int q;
+ int p, res;
+
+ if ((res = mp_init(&q)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(n);
top:
- /* q = a/2**p, a = a mod 2**p */
- if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
- goto ERR;
- }
-
- /* q = q * d */
- if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
- goto ERR;
- }
-
- /* a = a + q */
- if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
- goto ERR;
- }
-
- if (mp_cmp_mag(a, n) != MP_LT) {
- s_mp_sub(a, n, a);
- goto top;
- }
-
+ /* q = a/2**p, a = a mod 2**p */
+ if ((res = rshift_bits(a, p, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* q = q * d */
+ if ((res = signed_multiply(&q, d, &q)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* a = a + q */
+ if ((res = basic_add(a, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (compare_magnitude(a, n) != MP_LT) {
+ basic_subtract(a, n, a);
+ goto top;
+ }
+
ERR:
- mp_clear(&q);
- return res;
+ mp_clear(&q);
+ return res;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_2k_l.c,v $ */
@@ -2761,206 +2721,206 @@ ERR:
/* squaring using Toom-Cook 3-way algorithm */
static int
-mp_toom_sqr(mp_int *a, mp_int *b)
-{
- mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
- int res, B;
-
- /* init temps */
- if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
- return res;
- }
-
- /* B */
- B = a->used / 3;
-
- /* a = a2 * B**2 + a1 * B + a0 */
- if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_copy(a, &a1)) != MP_OKAY) {
- goto ERR;
- }
- mp_rshd(&a1, B);
- mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
-
- if ((res = mp_copy(a, &a2)) != MP_OKAY) {
- goto ERR;
- }
- mp_rshd(&a2, B*2);
-
- /* w0 = a0*a0 */
- if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
- goto ERR;
- }
-
- /* w4 = a2 * a2 */
- if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
- goto ERR;
- }
-
- /* w1 = (a2 + 2(a1 + 2a0))**2 */
- if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
- goto ERR;
- }
-
- /* w3 = (a0 + 2(a1 + 2a2))**2 */
- if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
- goto ERR;
- }
-
-
- /* w2 = (a2 + a1 + a0)**2 */
- if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
- goto ERR;
- }
-
- /* now solve the matrix
-
- 0 0 0 0 1
- 1 2 4 8 16
- 1 1 1 1 1
- 16 8 4 2 1
- 1 0 0 0 0
-
- using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
- */
-
- /* r1 - r4 */
- if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r0 */
- if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1/2 */
- if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3/2 */
- if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r2 - r0 - r4 */
- if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - r2 */
- if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r2 */
- if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - 8r0 */
- if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - 8r4 */
- if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* 3r2 - r1 - r3 */
- if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - r2 */
- if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r2 */
- if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1/3 */
- if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
- goto ERR;
- }
- /* r3/3 */
- if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
- goto ERR;
- }
-
- /* at this point shift W[n] by B*n */
- if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
- goto ERR;
- }
-
- if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
- goto ERR;
- }
+toom_cook_square(mp_int *a, mp_int *b)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = a->used / 3;
+
+ /* a = a2 * B**2 + a1 * B + a0 */
+ if ((res = modulo_2_to_power(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ rshift_digits(&a1, B);
+ modulo_2_to_power(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ rshift_digits(&a2, B*2);
+
+ /* w0 = a0*a0 */
+ if ((res = square(&a0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * a2 */
+ if ((res = square(&a2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))**2 */
+ if ((res = doubled(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = doubled(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = square(&tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))**2 */
+ if ((res = doubled(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = doubled(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = square(&tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)**2 */
+ if ((res = signed_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = square(&tmp1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
+ */
+
+ /* r1 - r4 */
+ if ((res = signed_subtract(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = signed_subtract(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = half(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = half(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = signed_subtract(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = signed_subtract(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = signed_subtract(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = lshift_bits(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = lshift_bits(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = multiply_digit(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_subtract(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = signed_subtract(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = signed_subtract(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = third(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = third(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = lshift_digits(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = lshift_digits(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = lshift_digits(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = lshift_digits(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = signed_add(&w0, &w1, b)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = signed_add(&tmp1, b, b)) != MP_OKAY) {
+ goto ERR;
+ }
ERR:
- mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
- return res;
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
+ return res;
}
@@ -2975,97 +2935,99 @@ ERR:
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
-static int mp_karatsuba_sqr (mp_int * a, mp_int * b)
-{
- mp_int x0, x1, t1, t2, x0x0, x1x1;
- int B, err;
-
- err = MP_MEM;
-
- /* min # of digits */
- B = a->used;
-
- /* now divide in two */
- B = (unsigned)B >> 1;
-
- /* init copy all the temps */
- if (mp_init_size (&x0, B) != MP_OKAY)
- goto ERR;
- if (mp_init_size (&x1, a->used - B) != MP_OKAY)
- goto X0;
-
- /* init temps */
- if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
- goto X1;
- if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
- goto T1;
- if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
- goto T2;
- if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
- goto X0X0;
-
- {
- int x;
- mp_digit *dst, *src;
-
- src = a->dp;
-
- /* now shift the digits */
- dst = x0.dp;
- for (x = 0; x < B; x++) {
- *dst++ = *src++;
- }
-
- dst = x1.dp;
- for (x = B; x < a->used; x++) {
- *dst++ = *src++;
- }
- }
-
- x0.used = B;
- x1.used = a->used - B;
-
- mp_clamp (&x0);
-
- /* now calc the products x0*x0 and x1*x1 */
- if (mp_sqr (&x0, &x0x0) != MP_OKAY)
- goto X1X1; /* x0x0 = x0*x0 */
- if (mp_sqr (&x1, &x1x1) != MP_OKAY)
- goto X1X1; /* x1x1 = x1*x1 */
-
- /* now calc (x1+x0)**2 */
- if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
- goto X1X1; /* t1 = x1 - x0 */
- if (mp_sqr (&t1, &t1) != MP_OKAY)
- goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
-
- /* add x0y0 */
- if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
- goto X1X1; /* t2 = x0x0 + x1x1 */
- if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
- goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
-
- /* shift by B */
- if (mp_lshd (&t1, B) != MP_OKAY)
- goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
- if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
- goto X1X1; /* x1x1 = x1x1 << 2*B */
-
- if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
- goto X1X1; /* t1 = x0x0 + t1 */
- if (mp_add (&t1, &x1x1, b) != MP_OKAY)
- goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
-
- err = MP_OKAY;
-
-X1X1:mp_clear (&x1x1);
-X0X0:mp_clear (&x0x0);
-T2:mp_clear (&t2);
-T1:mp_clear (&t1);
-X1:mp_clear (&x1);
-X0:mp_clear (&x0);
+static int
+karatsuba_square(mp_int * a, mp_int * b)
+{
+ mp_int x0, x1, t1, t2, x0x0, x1x1;
+ int B, err;
+
+ err = MP_MEM;
+
+ /* min # of digits */
+ B = a->used;
+
+ /* now divide in two */
+ B = (unsigned)B >> 1;
+
+ /* init copy all the temps */
+ if (mp_init_size(&x0, B) != MP_OKAY) {
+ goto ERR;
+ }
+ if (mp_init_size(&x1, a->used - B) != MP_OKAY) {
+ goto X0;
+ }
+ /* init temps */
+ if (mp_init_size(&t1, a->used * 2) != MP_OKAY) {
+ goto X1;
+ }
+ if (mp_init_size(&t2, a->used * 2) != MP_OKAY) {
+ goto T1;
+ }
+ if (mp_init_size(&x0x0, B * 2) != MP_OKAY) {
+ goto T2;
+ }
+ if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY) {
+ goto X0X0;
+ }
+
+ memcpy(x0.dp, a->dp, B * sizeof(*x0.dp));
+ memcpy(x1.dp, &a->dp[B], (a->used - B) * sizeof(*x1.dp));
+
+ x0.used = B;
+ x1.used = a->used - B;
+
+ trim_unused_digits(&x0);
+
+ /* now calc the products x0*x0 and x1*x1 */
+ if (square(&x0, &x0x0) != MP_OKAY) {
+ goto X1X1; /* x0x0 = x0*x0 */
+ }
+ if (square(&x1, &x1x1) != MP_OKAY) {
+ goto X1X1; /* x1x1 = x1*x1 */
+ }
+ /* now calc (x1+x0)**2 */
+ if (basic_add(&x1, &x0, &t1) != MP_OKAY) {
+ goto X1X1; /* t1 = x1 - x0 */
+ }
+ if (square(&t1, &t1) != MP_OKAY) {
+ goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
+ }
+ /* add x0y0 */
+ if (basic_add(&x0x0, &x1x1, &t2) != MP_OKAY) {
+ goto X1X1; /* t2 = x0x0 + x1x1 */
+ }
+ if (basic_subtract(&t1, &t2, &t1) != MP_OKAY) {
+ goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
+ }
+ /* shift by B */
+ if (lshift_digits(&t1, B) != MP_OKAY) {
+ goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
+ }
+ if (lshift_digits(&x1x1, B * 2) != MP_OKAY) {
+ goto X1X1; /* x1x1 = x1x1 << 2*B */
+ }
+ if (signed_add(&x0x0, &t1, &t1) != MP_OKAY) {
+ goto X1X1; /* t1 = x0x0 + t1 */
+ }
+ if (signed_add(&t1, &x1x1, b) != MP_OKAY) {
+ goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
+ }
+ err = MP_OKAY;
+
+X1X1:
+ mp_clear(&x1x1);
+X0X0:
+ mp_clear(&x0x0);
+T2:
+ mp_clear(&t2);
+T1:
+ mp_clear(&t1);
+X1:
+ mp_clear(&x1);
+X0:
+ mp_clear(&x0);
ERR:
- return err;
+ return err;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_karatsuba_sqr.c,v $ */
@@ -3082,87 +3044,88 @@ ERR:
After that loop you do the squares and add them in.
*/
-static int fast_s_mp_sqr (mp_int * a, mp_int * b)
-{
- int olduse, res, pa, ix, iz;
- mp_digit W[MP_WARRAY], *tmpx;
- mp_word W1;
-
- /* grow the destination as required */
- pa = a->used + a->used;
- if (b->alloc < pa) {
- if ((res = mp_grow (b, pa)) != MP_OKAY) {
- return res;
- }
- }
-
- /* number of output digits to produce */
- W1 = 0;
- for (ix = 0; ix < pa; ix++) {
- int tx, ty, iy;
- mp_word _W;
- mp_digit *tmpy;
-
- /* clear counter */
- _W = 0;
-
- /* get offsets into the two bignums */
- ty = MIN(a->used-1, ix);
- tx = ix - ty;
-
- /* setup temp aliases */
- tmpx = a->dp + tx;
- tmpy = a->dp + ty;
-
- /* this is the number of times the loop will iterrate, essentially
- while (tx++ < a->used && ty-- >= 0) { ... }
- */
- iy = MIN(a->used-tx, ty+1);
-
- /* now for squaring tx can never equal ty
- * we halve the distance since they approach at a rate of 2x
- * and we have to round because odd cases need to be executed
- */
- iy = MIN(iy, (int)((unsigned)(ty-tx+1)>>1));
-
- /* execute loop */
- for (iz = 0; iz < iy; iz++) {
- _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
- }
-
- /* double the inner product and add carry */
- _W = _W + _W + W1;
-
- /* even columns have the square term in them */
- if ((ix&1) == 0) {
- _W += ((mp_word)a->dp[(unsigned)ix>>1])*((mp_word)a->dp[(unsigned)ix>>1]);
- }
-
- /* store it */
- W[ix] = (mp_digit)(_W & MP_MASK);
-
- /* make next carry */
- W1 = _W >> ((mp_word)DIGIT_BIT);
- }
-
- /* setup dest */
- olduse = b->used;
- b->used = a->used+a->used;
-
- {
- mp_digit *tmpb;
- tmpb = b->dp;
- for (ix = 0; ix < pa; ix++) {
- *tmpb++ = W[ix] & MP_MASK;
- }
-
- /* clear unused digits [that existed in the old copy of c] */
- for (; ix < olduse; ix++) {
- *tmpb++ = 0;
- }
- }
- mp_clamp (b);
- return MP_OKAY;
+static int
+fast_basic_square(mp_int * a, mp_int * b)
+{
+ int olduse, res, pa, ix, iz;
+ mp_digit W[MP_WARRAY], *tmpx;
+ mp_word W1;
+
+ /* grow the destination as required */
+ pa = a->used + a->used;
+ if (b->alloc < pa) {
+ if ((res = mp_grow(b, pa)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* number of output digits to produce */
+ W1 = 0;
+ for (ix = 0; ix < pa; ix++) {
+ int tx, ty, iy;
+ mp_word _W;
+ mp_digit *tmpy;
+
+ /* clear counter */
+ _W = 0;
+
+ /* get offsets into the two bignums */
+ ty = MIN(a->used-1, ix);
+ tx = ix - ty;
+
+ /* setup temp aliases */
+ tmpx = a->dp + tx;
+ tmpy = a->dp + ty;
+
+ /* this is the number of times the loop will iterrate, essentially
+ while (tx++ < a->used && ty-- >= 0) { ... }
+ */
+ iy = MIN(a->used-tx, ty+1);
+
+ /* now for squaring tx can never equal ty
+ * we halve the distance since they approach at a rate of 2x
+ * and we have to round because odd cases need to be executed
+ */
+ iy = MIN(iy, (int)((unsigned)(ty-tx+1)>>1));
+
+ /* execute loop */
+ for (iz = 0; iz < iy; iz++) {
+ _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
+ }
+
+ /* double the inner product and add carry */
+ _W = _W + _W + W1;
+
+ /* even columns have the square term in them */
+ if ((ix&1) == 0) {
+ _W += ((mp_word)a->dp[(unsigned)ix>>1])*((mp_word)a->dp[(unsigned)ix>>1]);
+ }
+
+ /* store it */
+ W[ix] = (mp_digit)(_W & MP_MASK);
+
+ /* make next carry */
+ W1 = _W >> ((mp_word)DIGIT_BIT);
+ }
+
+ /* setup dest */
+ olduse = b->used;
+ b->used = a->used+a->used;
+
+ {
+ mp_digit *tmpb;
+ tmpb = b->dp;
+ for (ix = 0; ix < pa; ix++) {
+ *tmpb++ = W[ix] & MP_MASK;
+ }
+
+ /* clear unused digits [that existed in the old copy of c] */
+ for (; ix < olduse; ix++) {
+ *tmpb++ = 0;
+ }
+ }
+ trim_unused_digits(b);
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_s_mp_sqr.c,v $ */
@@ -3171,66 +3134,66 @@ static int fast_s_mp_sqr (mp_int * a, mp_int * b)
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
static int
-s_mp_sqr (mp_int * a, mp_int * b)
-{
- mp_int t;
- int res, ix, iy, pa;
- mp_word r;
- mp_digit u, tmpx, *tmpt;
-
- pa = a->used;
- if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
- return res;
- }
-
- /* default used is maximum possible size */
- t.used = 2*pa + 1;
-
- for (ix = 0; ix < pa; ix++) {
- /* first calculate the digit at 2*ix */
- /* calculate double precision result */
- r = ((mp_word) t.dp[2*ix]) +
- ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
-
- /* store lower part in result */
- t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
-
- /* get the carry */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-
- /* left hand side of A[ix] * A[iy] */
- tmpx = a->dp[ix];
-
- /* alias for where to store the results */
- tmpt = t.dp + (2*ix + 1);
-
- for (iy = ix + 1; iy < pa; iy++) {
- /* first calculate the product */
- r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
-
- /* now calculate the double precision result, note we use
- * addition instead of *2 since it's easier to optimize
- */
- r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
-
- /* store lower part */
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-
- /* get carry */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
- }
- /* propagate upwards */
- while (u != ((mp_digit) 0)) {
- r = ((mp_word) *tmpt) + ((mp_word) u);
- *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
- }
- }
-
- mp_clamp (&t);
- mp_exch (&t, b);
- mp_clear (&t);
- return MP_OKAY;
+basic_square(mp_int * a, mp_int * b)
+{
+ mp_int t;
+ int res, ix, iy, pa;
+ mp_word r;
+ mp_digit carry, tmpx, *tmpt;
+
+ pa = a->used;
+ if ((res = mp_init_size(&t, 2*pa + 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* default used is maximum possible size */
+ t.used = 2*pa + 1;
+
+ for (ix = 0; ix < pa; ix++) {
+ /* first calculate the digit at 2*ix */
+ /* calculate double precision result */
+ r = ((mp_word) t.dp[2*ix]) +
+ ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
+
+ /* store lower part in result */
+ t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get the carry */
+ carry = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+
+ /* left hand side of A[ix] * A[iy] */
+ tmpx = a->dp[ix];
+
+ /* alias for where to store the results */
+ tmpt = t.dp + (2*ix + 1);
+
+ for (iy = ix + 1; iy < pa; iy++) {
+ /* first calculate the product */
+ r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+
+ /* now calculate the double precision result, note we use
+ * addition instead of *2 since it's easier to optimize
+ */
+ r = ((mp_word) *tmpt) + r + r + ((mp_word) carry);
+
+ /* store lower part */
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+
+ /* get carry */
+ carry = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+ }
+ /* propagate upwards */
+ while (carry != ((mp_digit) 0)) {
+ r = ((mp_word) *tmpt) + ((mp_word) carry);
+ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+ carry = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+ }
+ }
+
+ trim_unused_digits(&t);
+ mp_exch(&t, b);
+ mp_clear(&t);
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_s_mp_sqr.c,v $ */
@@ -3242,29 +3205,36 @@ s_mp_sqr (mp_int * a, mp_int * b)
/* computes b = a*a */
static int
-mp_sqr (mp_int * a, mp_int * b)
-{
- int res;
-
- /* use Toom-Cook? */
- if (a->used >= TOOM_SQR_CUTOFF) {
- res = mp_toom_sqr(a, b);
- /* Karatsuba? */
- } else
-if (a->used >= KARATSUBA_SQR_CUTOFF) {
- res = mp_karatsuba_sqr (a, b);
- } else
- {
- /* can we use the fast comba multiplier? */
- if (((unsigned)a->used * 2 + 1) < MP_WARRAY &&
- a->used <
- (1 << (unsigned)(sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
- res = fast_s_mp_sqr (a, b);
- } else
- res = s_mp_sqr (a, b);
- }
- b->sign = MP_ZPOS;
- return res;
+square(mp_int * a, mp_int * b)
+{
+ int res;
+
+ /* use Toom-Cook? */
+ if (a->used >= TOOM_SQR_CUTOFF) {
+ res = toom_cook_square(a, b);
+ /* Karatsuba? */
+ } else if (a->used >= KARATSUBA_SQR_CUTOFF) {
+ res = karatsuba_square(a, b);
+ } else {
+ /* can we use the fast comba multiplier? */
+ if (can_use_fast_column_array(a->used + a->used + 1, a->used)) {
+ res = fast_basic_square(a, b);
+ } else {
+ res = basic_square(a, b);
+ }
+ }
+ b->sign = MP_ZPOS;
+ return res;
+}
+
+/* find window size */
+static inline int
+find_window_size(mp_int *X)
+{
+ int x;
+
+ x = mp_count_bits(X);
+ return (x <= 7) ? 2 : (x <= 36) ? 3 : (x <= 140) ? 4 : (x <= 450) ? 5 : (x <= 1303) ? 6 : (x <= 3529) ? 7 : 8;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_sqr.c,v $ */
@@ -3273,246 +3243,233 @@ if (a->used >= KARATSUBA_SQR_CUTOFF) {
#define TAB_SIZE 256
-static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
-{
- mp_int M[TAB_SIZE], res, mu;
- mp_digit buf;
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
- int (*redux)(mp_int*,mp_int*,mp_int*);
-
- /* find window size */
- x = mp_count_bits (X);
- if (x <= 7) {
- winsize = 2;
- } else if (x <= 36) {
- winsize = 3;
- } else if (x <= 140) {
- winsize = 4;
- } else if (x <= 450) {
- winsize = 5;
- } else if (x <= 1303) {
- winsize = 6;
- } else if (x <= 3529) {
- winsize = 7;
- } else {
- winsize = 8;
- }
-
- /* init M array */
- /* init first cell */
- if ((err = mp_init(&M[1])) != MP_OKAY) {
- return err;
- }
-
- /* now init the second half of the array */
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- if ((err = mp_init(&M[x])) != MP_OKAY) {
- for (y = 1<<(winsize-1); y < x; y++) {
- mp_clear (&M[y]);
- }
- mp_clear(&M[1]);
- return err;
- }
- }
-
- /* create mu, used for Barrett reduction */
- if ((err = mp_init (&mu)) != MP_OKAY) {
- goto LBL_M;
- }
-
- if (redmode == 0) {
- if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
- goto LBL_MU;
- }
- redux = mp_reduce;
- } else {
- if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
- goto LBL_MU;
- }
- redux = mp_reduce_2k_l;
- }
-
- /* create M table
- *
- * The M table contains powers of the base,
- * e.g. M[x] = G**x mod P
- *
- * The first half of the table is not
- * computed though accept for M[0] and M[1]
- */
- if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
- goto LBL_MU;
- }
-
- /* compute the value at M[1<<(winsize-1)] by squaring
- * M[1] (winsize-1) times
- */
- if ((err = mp_copy ( &M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto LBL_MU;
- }
-
- for (x = 0; x < (winsize - 1); x++) {
- /* square it */
- if ((err = mp_sqr (&M[1 << (winsize - 1)],
- &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto LBL_MU;
- }
-
- /* reduce modulo P */
- if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
- goto LBL_MU;
- }
- }
-
- /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
- * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
- */
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
- if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
- goto LBL_MU;
- }
- if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
- goto LBL_MU;
- }
- }
-
- /* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
- goto LBL_MU;
- }
- mp_set (&res, 1);
-
- /* set initial mode and bit cnt */
- mode = 0;
- bitcnt = 1;
- buf = 0;
- digidx = X->used - 1;
- bitcpy = 0;
- bitbuf = 0;
-
- for (;;) {
- /* grab next digit as required */
- if (--bitcnt == 0) {
- /* if digidx == -1 we are out of digits */
- if (digidx == -1) {
- break;
- }
- /* read next digit and reset the bitcnt */
- buf = X->dp[digidx--];
- bitcnt = (int) DIGIT_BIT;
- }
-
- /* grab the next msb from the exponent */
- y = (unsigned)(buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
- buf <<= (mp_digit)1;
-
- /* if the bit is zero and mode == 0 then we ignore it
- * These represent the leading zero bits before the first 1 bit
- * in the exponent. Technically this opt is not required but it
- * does lower the # of trivial squaring/reductions used
- */
- if (mode == 0 && y == 0) {
- continue;
- }
-
- /* if the bit is zero and mode == 1 then we square */
- if (mode == 1 && y == 0) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
- continue;
- }
-
- /* else we add it to the window */
- bitbuf |= (y << (winsize - ++bitcpy));
- mode = 2;
-
- if (bitcpy == winsize) {
- /* ok window is filled so square as required and multiply */
- /* square first */
- for (x = 0; x < winsize; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
- /* then multiply */
- if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
-
- /* empty window and reset */
- bitcpy = 0;
- bitbuf = 0;
- mode = 1;
- }
- }
-
- /* if bits remain then square/multiply */
- if (mode == 2 && bitcpy > 0) {
- /* square then multiply if the bit is set */
- for (x = 0; x < bitcpy; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
-
- bitbuf <<= 1;
- if ((bitbuf & (1 << winsize)) != 0) {
- /* then multiply */
- if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, &mu)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- }
- }
-
- mp_exch (&res, Y);
- err = MP_OKAY;
-LBL_RES:mp_clear (&res);
-LBL_MU:mp_clear (&mu);
+static int
+basic_exponent_mod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
+{
+ mp_digit buf;
+ mp_int M[TAB_SIZE], res, mu;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+ int (*redux)(mp_int*,mp_int*,mp_int*);
+
+ winsize = find_window_size(X);
+
+ /* init M array */
+ /* init first cell */
+ if ((err = mp_init(&M[1])) != MP_OKAY) {
+ return err;
+ }
+
+ /* now init the second half of the array */
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ if ((err = mp_init(&M[x])) != MP_OKAY) {
+ for (y = 1<<(winsize-1); y < x; y++) {
+ mp_clear(&M[y]);
+ }
+ mp_clear(&M[1]);
+ return err;
+ }
+ }
+
+ /* create mu, used for Barrett reduction */
+ if ((err = mp_init(&mu)) != MP_OKAY) {
+ goto LBL_M;
+ }
+
+ if (redmode == 0) {
+ if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ redux = mp_reduce;
+ } else {
+ if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ redux = mp_reduce_2k_l;
+ }
+
+ /* create M table
+ *
+ * The M table contains powers of the base,
+ * e.g. M[x] = G**x mod P
+ *
+ * The first half of the table is not
+ * computed though accept for M[0] and M[1]
+ */
+ if ((err = modulo(G, P, &M[1])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring
+ * M[1] (winsize-1) times
+ */
+ if ((err = mp_copy( &M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ /* square it */
+ if ((err = square(&M[1 << (winsize - 1)],
+ &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+
+ /* reduce modulo P */
+ if ((err = redux(&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ }
+
+ /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
+ * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
+ */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = signed_multiply(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ if ((err = redux(&M[x], P, &mu)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ }
+
+ /* setup result */
+ if ((err = mp_init(&res)) != MP_OKAY) {
+ goto LBL_MU;
+ }
+ set_word(&res, 1);
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 1;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = 0;
+ bitbuf = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ /* if digidx == -1 we are out of digits */
+ if (digidx == -1) {
+ break;
+ }
+ /* read next digit and reset the bitcnt */
+ buf = X->dp[digidx--];
+ bitcnt = (int) DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (unsigned)(buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+ buf <<= (mp_digit)1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0) {
+ continue;
+ }
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = square(&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux(&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = square(&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux(&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = signed_multiply(&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux(&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = square(&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux(&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = signed_multiply(&res, &M[1], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = redux(&res, P, &mu)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+ }
+ }
+
+ mp_exch(&res, Y);
+ err = MP_OKAY;
+LBL_RES:
+ mp_clear(&res);
+LBL_MU:
+ mp_clear(&mu);
LBL_M:
- mp_clear(&M[1]);
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- mp_clear (&M[x]);
- }
- return err;
+ mp_clear(&M[1]);
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ mp_clear(&M[x]);
+ }
+ return err;
}
/* determines if a number is a valid DR modulus */
static int
-mp_dr_is_modulus(mp_int *a)
+is_diminished_radix_modulus(mp_int *a)
{
- int ix;
+ int ix;
- /* must be at least two digits */
- if (a->used < 2) {
- return 0;
- }
+ /* must be at least two digits */
+ if (a->used < 2) {
+ return 0;
+ }
- /* must be of the form b**k - a [a <= b] so all
- * but the first digit must be equal to -1 (mod b).
- */
- for (ix = 1; ix < a->used; ix++) {
- if (a->dp[ix] != MP_MASK) {
- return 0;
- }
- }
- return 1;
+ /* must be of the form b**k - a [a <= b] so all
+ * but the first digit must be equal to -1 (mod b).
+ */
+ for (ix = 1; ix < a->used; ix++) {
+ if (a->dp[ix] != MP_MASK) {
+ return 0;
+ }
+ }
+ return 1;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_dr_is_modulus.c,v $ */
@@ -3520,33 +3477,36 @@ mp_dr_is_modulus(mp_int *a)
/* Date: 2011/03/12 22:58:18 $ */
/* determines if mp_reduce_2k can be used */
-static int mp_reduce_is_2k(mp_int *a)
-{
- int ix, iy, iw;
- mp_digit iz;
-
- if (a->used == 0) {
- return MP_NO;
- } else if (a->used == 1) {
- return MP_YES;
- } else if (a->used > 1) {
- iy = mp_count_bits(a);
- iz = 1;
- iw = 1;
-
- /* Test every bit from the second digit up, must be 1 */
- for (ix = DIGIT_BIT; ix < iy; ix++) {
- if ((a->dp[iw] & iz) == 0) {
- return MP_NO;
- }
- iz <<= 1;
- if (iz > (mp_digit)MP_MASK) {
- ++iw;
- iz = 1;
- }
- }
- }
- return MP_YES;
+static int
+mp_reduce_is_2k(mp_int *a)
+{
+ int ix, iy, iw;
+ mp_digit iz;
+
+ if (a->used == 0) {
+ return MP_NO;
+ }
+ if (a->used == 1) {
+ return MP_YES;
+ }
+ if (a->used > 1) {
+ iy = mp_count_bits(a);
+ iz = 1;
+ iw = 1;
+
+ /* Test every bit from the second digit up, must be 1 */
+ for (ix = DIGIT_BIT; ix < iy; ix++) {
+ if ((a->dp[iw] & iz) == 0) {
+ return MP_NO;
+ }
+ iz <<= 1;
+ if (iz > (mp_digit)MP_MASK) {
+ ++iw;
+ iz = 1;
+ }
+ }
+ }
+ return MP_YES;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_is_2k.c,v $ */
@@ -3556,22 +3516,22 @@ static int mp_reduce_is_2k(mp_int *a)
/* d = a * b (mod c) */
static int
-mp_mulmod (mp_int *d, mp_int * a, mp_int * b, mp_int * c)
+multiply_modulo(mp_int *d, mp_int * a, mp_int * b, mp_int * c)
{
- int res;
- mp_int t;
+ mp_int t;
+ int res;
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
+ if ((res = mp_init(&t)) != MP_OKAY) {
+ return res;
+ }
- if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- res = mp_mod (&t, c, d);
- mp_clear (&t);
- return res;
+ if ((res = signed_multiply(a, b, &t)) != MP_OKAY) {
+ mp_clear(&t);
+ return res;
+ }
+ res = modulo(&t, c, d);
+ mp_clear(&t);
+ return res;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_mulmod.c,v $ */
@@ -3580,36 +3540,36 @@ mp_mulmod (mp_int *d, mp_int * a, mp_int * b, mp_int * c)
/* setups the montgomery reduction stuff */
static int
-mp_montgomery_setup (mp_int * n, mp_digit * rho)
+mp_montgomery_setup(mp_int * n, mp_digit * rho)
{
- mp_digit x, b;
+ mp_digit x, b;
-/* fast inversion mod 2**k
- *
- * Based on the fact that
- *
- * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
- * => 2*X*A - X*X*A*A = 1
- * => 2*(1) - (1) = 1
- */
- b = n->dp[0];
+ /* fast inversion mod 2**k
+ *
+ * Based on the fact that
+ *
+ * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
+ * => 2*X*A - X*X*A*A = 1
+ * => 2*(1) - (1) = 1
+ */
+ b = n->dp[0];
- if ((b & 1) == 0) {
- return MP_VAL;
- }
+ if ((b & 1) == 0) {
+ return MP_VAL;
+ }
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x *= 2 - b * x; /* here x*a==1 mod 2**8 */
- x *= 2 - b * x; /* here x*a==1 mod 2**16 */
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
- if (/*CONSTCOND*/sizeof(mp_digit) == 8) {
- x *= 2 - b * x; /* here x*a==1 mod 2**64 */
- }
+ x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**8 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**16 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**32 */
+ if (/*CONSTCOND*/sizeof(mp_digit) == 8) {
+ x *= 2 - b * x; /* here x*a==1 mod 2**64 */
+ }
- /* rho = -1/m mod b */
- *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
+ /* rho = -1/m mod b */
+ *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
- return MP_OKAY;
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_montgomery_setup.c,v $ */
@@ -3625,148 +3585,148 @@ mp_montgomery_setup (mp_int * n, mp_digit * rho)
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
static int
-fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-{
- int ix, res, olduse;
- /*LINTED*/
- mp_word W[MP_WARRAY];
-
- /* get old used count */
- olduse = x->used;
-
- /* grow a as required */
- if (x->alloc < n->used + 1) {
- if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- /* first we have to get the digits of the input into
- * an array of double precision words W[...]
- */
- {
- mp_word *_W;
- mp_digit *tmpx;
-
- /* alias for the W[] array */
- _W = W;
-
- /* alias for the digits of x*/
- tmpx = x->dp;
-
- /* copy the digits of a into W[0..a->used-1] */
- for (ix = 0; ix < x->used; ix++) {
- *_W++ = *tmpx++;
- }
-
- /* zero the high words of W[a->used..m->used*2] */
- for (; ix < n->used * 2 + 1; ix++) {
- *_W++ = 0;
- }
- }
-
- /* now we proceed to zero successive digits
- * from the least significant upwards
- */
- for (ix = 0; ix < n->used; ix++) {
- /* mu = ai * m' mod b
- *
- * We avoid a double precision multiplication (which isn't required)
- * by casting the value down to a mp_digit. Note this requires
- * that W[ix-1] have the carry cleared (see after the inner loop)
- */
- mp_digit mu;
- mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
-
- /* a = a + mu * m * b**i
- *
- * This is computed in place and on the fly. The multiplication
- * by b**i is handled by offseting which columns the results
- * are added to.
- *
- * Note the comba method normally doesn't handle carries in the
- * inner loop In this case we fix the carry from the previous
- * column since the Montgomery reduction requires digits of the
- * result (so far) [see above] to work. This is
- * handled by fixing up one carry after the inner loop. The
- * carry fixups are done in order so after these loops the
- * first m->used words of W[] have the carries fixed
- */
- {
- int iy;
- mp_digit *tmpn;
- mp_word *_W;
-
- /* alias for the digits of the modulus */
- tmpn = n->dp;
-
- /* Alias for the columns set by an offset of ix */
- _W = W + ix;
-
- /* inner loop */
- for (iy = 0; iy < n->used; iy++) {
- *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
- }
- }
-
- /* now fix carry for next digit, W[ix+1] */
- W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
- }
-
- /* now we have to propagate the carries and
- * shift the words downward [all those least
- * significant digits we zeroed].
- */
- {
- mp_digit *tmpx;
- mp_word *_W, *_W1;
-
- /* nox fix rest of carries */
-
- /* alias for current word */
- _W1 = W + ix;
-
- /* alias for next word, where the carry goes */
- _W = W + ++ix;
-
- for (; ix <= n->used * 2 + 1; ix++) {
- *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
- }
-
- /* copy out, A = A/b**n
- *
- * The result is A/b**n but instead of converting from an
- * array of mp_word to mp_digit than calling mp_rshd
- * we just copy them in the right order
- */
-
- /* alias for destination word */
- tmpx = x->dp;
-
- /* alias for shifted double precision result */
- _W = W + n->used;
-
- for (ix = 0; ix < n->used + 1; ix++) {
- *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
- }
-
- /* zero oldused digits, if the input a was larger than
- * m->used+1 we'll have to clear the digits
- */
- for (; ix < olduse; ix++) {
- *tmpx++ = 0;
- }
- }
-
- /* set the max used and clamp */
- x->used = n->used + 1;
- mp_clamp (x);
-
- /* if A >= m then A = A - m */
- if (mp_cmp_mag (x, n) != MP_LT) {
- return s_mp_sub (x, n, x);
- }
- return MP_OKAY;
+fast_mp_montgomery_reduce(mp_int * x, mp_int * n, mp_digit rho)
+{
+ int ix, res, olduse;
+ /*LINTED*/
+ mp_word W[MP_WARRAY];
+
+ /* get old used count */
+ olduse = x->used;
+
+ /* grow a as required */
+ if (x->alloc < n->used + 1) {
+ if ((res = mp_grow(x, n->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* first we have to get the digits of the input into
+ * an array of double precision words W[...]
+ */
+ {
+ mp_word *_W;
+ mp_digit *tmpx;
+
+ /* alias for the W[] array */
+ _W = W;
+
+ /* alias for the digits of x*/
+ tmpx = x->dp;
+
+ /* copy the digits of a into W[0..a->used-1] */
+ for (ix = 0; ix < x->used; ix++) {
+ *_W++ = *tmpx++;
+ }
+
+ /* zero the high words of W[a->used..m->used*2] */
+ for (; ix < n->used * 2 + 1; ix++) {
+ *_W++ = 0;
+ }
+ }
+
+ /* now we proceed to zero successive digits
+ * from the least significant upwards
+ */
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * m' mod b
+ *
+ * We avoid a double precision multiplication (which isn't required)
+ * by casting the value down to a mp_digit. Note this requires
+ * that W[ix-1] have the carry cleared (see after the inner loop)
+ */
+ mp_digit mu;
+ mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
+
+ /* a = a + mu * m * b**i
+ *
+ * This is computed in place and on the fly. The multiplication
+ * by b**i is handled by offseting which columns the results
+ * are added to.
+ *
+ * Note the comba method normally doesn't handle carries in the
+ * inner loop In this case we fix the carry from the previous
+ * column since the Montgomery reduction requires digits of the
+ * result (so far) [see above] to work. This is
+ * handled by fixing up one carry after the inner loop. The
+ * carry fixups are done in order so after these loops the
+ * first m->used words of W[] have the carries fixed
+ */
+ {
+ int iy;
+ mp_digit *tmpn;
+ mp_word *_W;
+
+ /* alias for the digits of the modulus */
+ tmpn = n->dp;
+
+ /* Alias for the columns set by an offset of ix */
+ _W = W + ix;
+
+ /* inner loop */
+ for (iy = 0; iy < n->used; iy++) {
+ *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
+ }
+ }
+
+ /* now fix carry for next digit, W[ix+1] */
+ W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+ }
+
+ /* now we have to propagate the carries and
+ * shift the words downward [all those least
+ * significant digits we zeroed].
+ */
+ {
+ mp_digit *tmpx;
+ mp_word *_W, *_W1;
+
+ /* nox fix rest of carries */
+
+ /* alias for current word */
+ _W1 = W + ix;
+
+ /* alias for next word, where the carry goes */
+ _W = W + ++ix;
+
+ for (; ix <= n->used * 2 + 1; ix++) {
+ *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+ }
+
+ /* copy out, A = A/b**n
+ *
+ * The result is A/b**n but instead of converting from an
+ * array of mp_word to mp_digit than calling rshift_digits
+ * we just copy them in the right order
+ */
+
+ /* alias for destination word */
+ tmpx = x->dp;
+
+ /* alias for shifted double precision result */
+ _W = W + n->used;
+
+ for (ix = 0; ix < n->used + 1; ix++) {
+ *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
+ }
+
+ /* zero oldused digits, if the input a was larger than
+ * m->used+1 we'll have to clear the digits
+ */
+ for (; ix < olduse; ix++) {
+ *tmpx++ = 0;
+ }
+ }
+
+ /* set the max used and clamp */
+ x->used = n->used + 1;
+ trim_unused_digits(x);
+
+ /* if A >= m then A = A - m */
+ if (compare_magnitude(x, n) != MP_LT) {
+ return basic_subtract(x, n, x);
+ }
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_mp_montgomery_reduce.c,v $ */
@@ -3775,99 +3735,97 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
static int
-mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-{
- int ix, res, digs;
- mp_digit mu;
-
- /* can the fast reduction [comba] method be used?
- *
- * Note that unlike in mul you're safely allowed *less*
- * than the available columns [255 per default] since carries
- * are fixed up in the inner loop.
- */
- digs = n->used * 2 + 1;
- if (((unsigned)digs < MP_WARRAY) &&
- n->used <
- (1 << (unsigned)((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_mp_montgomery_reduce (x, n, rho);
- }
-
- /* grow the input as required */
- if (x->alloc < digs) {
- if ((res = mp_grow (x, digs)) != MP_OKAY) {
- return res;
- }
- }
- x->used = digs;
-
- for (ix = 0; ix < n->used; ix++) {
- /* mu = ai * rho mod b
- *
- * The value of rho must be precalculated via
- * montgomery_setup() such that
- * it equals -1/n0 mod b this allows the
- * following inner loop to reduce the
- * input one digit at a time
- */
- mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
-
- /* a = a + mu * m * b**i */
- {
- int iy;
- mp_digit *tmpn, *tmpx, u;
- mp_word r;
-
- /* alias for digits of the modulus */
- tmpn = n->dp;
-
- /* alias for the digits of x [the input] */
- tmpx = x->dp + ix;
-
- /* set the carry to zero */
- u = 0;
-
- /* Multiply and add in place */
- for (iy = 0; iy < n->used; iy++) {
- /* compute product and sum */
- r = ((mp_word)mu) * ((mp_word)*tmpn++) +
- ((mp_word) u) + ((mp_word) * tmpx);
-
- /* get carry */
- u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-
- /* fix digit */
- *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
- }
- /* At this point the ix'th digit of x should be zero */
-
-
- /* propagate carries upwards as required*/
- while (u) {
- *tmpx += u;
- u = *tmpx >> DIGIT_BIT;
- *tmpx++ &= MP_MASK;
- }
- }
- }
-
- /* at this point the n.used'th least
- * significant digits of x are all zero
- * which means we can shift x to the
- * right by n.used digits and the
- * residue is unchanged.
- */
-
- /* x = x/b**n.used */
- mp_clamp(x);
- mp_rshd (x, n->used);
-
- /* if x >= n then x = x - n */
- if (mp_cmp_mag (x, n) != MP_LT) {
- return s_mp_sub (x, n, x);
- }
-
- return MP_OKAY;
+mp_montgomery_reduce(mp_int * x, mp_int * n, mp_digit rho)
+{
+ int ix, res, digs;
+ mp_digit mu;
+
+ /* can the fast reduction [comba] method be used?
+ *
+ * Note that unlike in mul you're safely allowed *less*
+ * than the available columns [255 per default] since carries
+ * are fixed up in the inner loop.
+ */
+ digs = n->used * 2 + 1;
+ if (can_use_fast_column_array(digs, n->used)) {
+ return fast_mp_montgomery_reduce(x, n, rho);
+ }
+
+ /* grow the input as required */
+ if (x->alloc < digs) {
+ if ((res = mp_grow(x, digs)) != MP_OKAY) {
+ return res;
+ }
+ }
+ x->used = digs;
+
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * rho mod b
+ *
+ * The value of rho must be precalculated via
+ * montgomery_setup() such that
+ * it equals -1/n0 mod b this allows the
+ * following inner loop to reduce the
+ * input one digit at a time
+ */
+ mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
+
+ /* a = a + mu * m * b**i */
+ {
+ int iy;
+ mp_digit *tmpn, *tmpx, carry;
+ mp_word r;
+
+ /* alias for digits of the modulus */
+ tmpn = n->dp;
+
+ /* alias for the digits of x [the input] */
+ tmpx = x->dp + ix;
+
+ /* set the carry to zero */
+ carry = 0;
+
+ /* Multiply and add in place */
+ for (iy = 0; iy < n->used; iy++) {
+ /* compute product and sum */
+ r = ((mp_word)mu) * ((mp_word)*tmpn++) +
+ ((mp_word) carry) + ((mp_word) * tmpx);
+
+ /* get carry */
+ carry = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+
+ /* fix digit */
+ *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
+ }
+ /* At this point the ix'th digit of x should be zero */
+
+
+ /* propagate carries upwards as required*/
+ while (carry) {
+ *tmpx += carry;
+ carry = *tmpx >> DIGIT_BIT;
+ *tmpx++ &= MP_MASK;
+ }
+ }
+ }
+
+ /* at this point the n.used'th least
+ * significant digits of x are all zero
+ * which means we can shift x to the
+ * right by n.used digits and the
+ * residue is unchanged.
+ */
+
+ /* x = x/b**n.used */
+ trim_unused_digits(x);
+ rshift_digits(x, n->used);
+
+ /* if x >= n then x = x - n */
+ if (compare_magnitude(x, n) != MP_LT) {
+ return basic_subtract(x, n, x);
+ }
+
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_montgomery_reduce.c,v $ */
@@ -3876,13 +3834,13 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
/* determines the setup value */
static void
-mp_dr_setup(mp_int *a, mp_digit *d)
+diminished_radix_setup(mp_int *a, mp_digit *d)
{
- /* the casts are required if DIGIT_BIT is one less than
- * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
- */
- *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
- ((mp_word)a->dp[0]));
+ /* the casts are required if DIGIT_BIT is one less than
+ * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
+ */
+ *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
+ ((mp_word)a->dp[0]));
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_dr_setup.c,v $ */
@@ -3904,62 +3862,62 @@ mp_dr_setup(mp_int *a, mp_digit *d)
* Input x must be in the range 0 <= x <= (n-1)**2
*/
static int
-mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
+diminished_radix_reduce(mp_int * x, mp_int * n, mp_digit k)
{
- int err, i, m;
- mp_word r;
- mp_digit mu, *tmpx1, *tmpx2;
+ int err, i, m;
+ mp_word r;
+ mp_digit mu, *tmpx1, *tmpx2;
- /* m = digits in modulus */
- m = n->used;
+ /* m = digits in modulus */
+ m = n->used;
- /* ensure that "x" has at least 2m digits */
- if (x->alloc < m + m) {
- if ((err = mp_grow (x, m + m)) != MP_OKAY) {
- return err;
- }
- }
+ /* ensure that "x" has at least 2m digits */
+ if (x->alloc < m + m) {
+ if ((err = mp_grow(x, m + m)) != MP_OKAY) {
+ return err;
+ }
+ }
-/* top of loop, this is where the code resumes if
- * another reduction pass is required.
- */
+ /* top of loop, this is where the code resumes if
+ * another reduction pass is required.
+ */
top:
- /* aliases for digits */
- /* alias for lower half of x */
- tmpx1 = x->dp;
+ /* aliases for digits */
+ /* alias for lower half of x */
+ tmpx1 = x->dp;
- /* alias for upper half of x, or x/B**m */
- tmpx2 = x->dp + m;
+ /* alias for upper half of x, or x/B**m */
+ tmpx2 = x->dp + m;
- /* set carry to zero */
- mu = 0;
+ /* set carry to zero */
+ mu = 0;
- /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
- for (i = 0; i < m; i++) {
- r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
- *tmpx1++ = (mp_digit)(r & MP_MASK);
- mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
- }
+ /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
+ for (i = 0; i < m; i++) {
+ r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+ *tmpx1++ = (mp_digit)(r & MP_MASK);
+ mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
+ }
- /* set final carry */
- *tmpx1++ = mu;
+ /* set final carry */
+ *tmpx1++ = mu;
- /* zero words above m */
- for (i = m + 1; i < x->used; i++) {
- *tmpx1++ = 0;
- }
+ /* zero words above m */
+ for (i = m + 1; i < x->used; i++) {
+ *tmpx1++ = 0;
+ }
- /* clamp, sub and return */
- mp_clamp (x);
+ /* clamp, sub and return */
+ trim_unused_digits(x);
- /* if x >= n then subtract and reduce again
- * Each successive "recursion" makes the input smaller and smaller.
- */
- if (mp_cmp_mag (x, n) != MP_LT) {
- s_mp_sub(x, n, x);
- goto top;
- }
- return MP_OKAY;
+ /* if x >= n then subtract and reduce again
+ * Each successive "recursion" makes the input smaller and smaller.
+ */
+ if (compare_magnitude(x, n) != MP_LT) {
+ basic_subtract(x, n, x);
+ goto top;
+ }
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_dr_reduce.c,v $ */
@@ -3970,27 +3928,27 @@ top:
static int
mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
- int res, p;
- mp_int tmp;
-
- if ((res = mp_init(&tmp)) != MP_OKAY) {
- return res;
- }
-
- p = mp_count_bits(a);
- if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
- mp_clear(&tmp);
- return res;
- }
-
- if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
- mp_clear(&tmp);
- return res;
- }
-
- *d = tmp.dp[0];
- mp_clear(&tmp);
- return MP_OKAY;
+ int res, p;
+ mp_int tmp;
+
+ if ((res = mp_init(&tmp)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(a);
+ if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ if ((res = basic_subtract(&tmp, a, &tmp)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ *d = tmp.dp[0];
+ mp_clear(&tmp);
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_2k_setup.c,v $ */
@@ -4001,40 +3959,40 @@ mp_reduce_2k_setup(mp_int *a, mp_digit *d)
static int
mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
- mp_int q;
- int p, res;
-
- if ((res = mp_init(&q)) != MP_OKAY) {
- return res;
- }
-
- p = mp_count_bits(n);
+ mp_int q;
+ int p, res;
+
+ if ((res = mp_init(&q)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(n);
top:
- /* q = a/2**p, a = a mod 2**p */
- if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
- goto ERR;
- }
-
- if (d != 1) {
- /* q = q * d */
- if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
- goto ERR;
- }
- }
-
- /* a = a + q */
- if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
- goto ERR;
- }
-
- if (mp_cmp_mag(a, n) != MP_LT) {
- s_mp_sub(a, n, a);
- goto top;
- }
-
+ /* q = a/2**p, a = a mod 2**p */
+ if ((res = rshift_bits(a, p, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (d != 1) {
+ /* q = q * d */
+ if ((res = multiply_digit(&q, d, &q)) != MP_OKAY) {
+ goto ERR;
+ }
+ }
+
+ /* a = a + q */
+ if ((res = basic_add(a, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (compare_magnitude(a, n) != MP_LT) {
+ basic_subtract(a, n, a);
+ goto top;
+ }
+
ERR:
- mp_clear(&q);
- return res;
+ mp_clear(&q);
+ return res;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_reduce_2k.c,v $ */
@@ -4048,36 +4006,36 @@ ERR:
* the leading bit of b. This saves alot of multiple precision shifting.
*/
static int
-mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
+mp_montgomery_calc_normalization(mp_int * a, mp_int * b)
{
- int x, bits, res;
+ int x, bits, res;
- /* how many bits of last digit does b use */
- bits = mp_count_bits (b) % DIGIT_BIT;
+ /* how many bits of last digit does b use */
+ bits = mp_count_bits(b) % DIGIT_BIT;
- if (b->used > 1) {
- if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
- return res;
- }
- } else {
- mp_set(a, 1);
- bits = 1;
- }
+ if (b->used > 1) {
+ if ((res = mp_2expt(a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
+ return res;
+ }
+ } else {
+ set_word(a, 1);
+ bits = 1;
+ }
- /* now compute C = A * B mod b */
- for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
- if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
- return res;
- }
- if (mp_cmp_mag (a, b) != MP_LT) {
- if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
- return res;
- }
- }
- }
+ /* now compute C = A * B mod b */
+ for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
+ if ((res = doubled(a, a)) != MP_OKAY) {
+ return res;
+ }
+ if (compare_magnitude(a, b) != MP_LT) {
+ if ((res = basic_subtract(a, b, a)) != MP_OKAY) {
+ return res;
+ }
+ }
+ }
- return MP_OKAY;
+ return MP_OKAY;
}
/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_montgomery_calc_normalization.c,v $ */
@@ -4095,259 +4053,242 @@ mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
#define TAB_SIZE 256
static int
-mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
-{
- mp_int M[TAB_SIZE], res;
- mp_digit buf, mp;
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-
- /* use a pointer to the reduction algorithm. This allows us to use
- * one of many reduction algorithms without modding the guts of
- * the code with if statements everywhere.
- */
- int (*redux)(mp_int*,mp_int*,mp_digit);
-
- /* find window size */
- x = mp_count_bits (X);
- if (x <= 7) {
- winsize = 2;
- } else if (x <= 36) {
- winsize = 3;
- } else if (x <= 140) {
- winsize = 4;
- } else if (x <= 450) {
- winsize = 5;
- } else if (x <= 1303) {
- winsize = 6;
- } else if (x <= 3529) {
- winsize = 7;
- } else {
- winsize = 8;
- }
-
- /* init M array */
- /* init first cell */
- if ((err = mp_init(&M[1])) != MP_OKAY) {
- return err;
- }
-
- /* now init the second half of the array */
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- if ((err = mp_init(&M[x])) != MP_OKAY) {
- for (y = 1<<(winsize-1); y < x; y++) {
- mp_clear (&M[y]);
- }
- mp_clear(&M[1]);
- return err;
- }
- }
-
- /* determine and setup reduction code */
- if (redmode == 0) {
- /* now setup montgomery */
- if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
- goto LBL_M;
- }
-
- /* automatically pick the comba one if available (saves quite a few calls/ifs) */
- if (((unsigned)(P->used * 2 + 1) < MP_WARRAY) &&
- P->used < (1 << (unsigned)((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- redux = fast_mp_montgomery_reduce;
- } else
- {
- /* use slower baseline Montgomery method */
- redux = mp_montgomery_reduce;
- }
- } else if (redmode == 1) {
- /* setup DR reduction for moduli of the form B**k - b */
- mp_dr_setup(P, &mp);
- redux = mp_dr_reduce;
- } else {
- /* setup DR reduction for moduli of the form 2**k - b */
- if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
- goto LBL_M;
- }
- redux = mp_reduce_2k;
- }
-
- /* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
- goto LBL_M;
- }
-
- /* create M table
- *
-
- *
- * The first half of the table is not computed though accept for M[0] and M[1]
- */
-
- if (redmode == 0) {
- /* now we need R mod m */
- if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
- goto LBL_RES;
- }
-
- /* now set M[1] to G * R mod m */
- if ((err = mp_mulmod (&M[1], G, &res, P)) != MP_OKAY) {
- goto LBL_RES;
- }
- } else {
- mp_set(&res, 1);
- if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
- /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
- if ((err = mp_copy ( &M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto LBL_RES;
- }
-
- for (x = 0; x < (winsize - 1); x++) {
- if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
- /* create upper table */
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
- if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
- /* set initial mode and bit cnt */
- mode = 0;
- bitcnt = 1;
- buf = 0;
- digidx = X->used - 1;
- bitcpy = 0;
- bitbuf = 0;
-
- for (;;) {
- /* grab next digit as required */
- if (--bitcnt == 0) {
- /* if digidx == -1 we are out of digits so break */
- if (digidx == -1) {
- break;
- }
- /* read next digit and reset bitcnt */
- buf = X->dp[digidx--];
- bitcnt = (int)DIGIT_BIT;
- }
-
- /* grab the next msb from the exponent */
- y = (int)(mp_digit)((mp_digit)buf >> (unsigned)(DIGIT_BIT - 1)) & 1;
- buf <<= (mp_digit)1;
-
- /* if the bit is zero and mode == 0 then we ignore it
- * These represent the leading zero bits before the first 1 bit
- * in the exponent. Technically this opt is not required but it
- * does lower the # of trivial squaring/reductions used
- */
- if (mode == 0 && y == 0) {
- continue;
- }
-
- /* if the bit is zero and mode == 1 then we square */
- if (mode == 1 && y == 0) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- continue;
- }
-
- /* else we add it to the window */
- bitbuf |= (y << (winsize - ++bitcpy));
- mode = 2;
-
- if (bitcpy == winsize) {
- /* ok window is filled so square as required and multiply */
- /* square first */
- for (x = 0; x < winsize; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
- /* then multiply */
- if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
-
- /* empty window and reset */
- bitcpy = 0;
- bitbuf = 0;
- mode = 1;
- }
- }
-
- /* if bits remain then square/multiply */
- if (mode == 2 && bitcpy > 0) {
- /* square then multiply if the bit is set */
- for (x = 0; x < bitcpy; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
-
- /* get next bit of the window */
- bitbuf <<= 1;
- if ((bitbuf & (1 << winsize)) != 0) {
- /* then multiply */
- if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
- goto LBL_RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
- }
- }
-
- if (redmode == 0) {
- /* fixup result if Montgomery reduction is used
- * recall that any value in a Montgomery system is
- * actually multiplied by R mod n. So we have
- * to reduce one more time to cancel out the factor
- * of R.
- */
- if ((err = redux(&res, P, mp)) != MP_OKAY) {
- goto LBL_RES;
- }
- }
-
- /* swap res with Y */
- mp_exch (&res, Y);
- err = MP_OKAY;
-LBL_RES:mp_clear (&res);
+fast_exponent_modulo(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
+{
+ mp_int M[TAB_SIZE], res;
+ mp_digit buf, mp;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* use a pointer to the reduction algorithm. This allows us to use
+ * one of many reduction algorithms without modding the guts of
+ * the code with if statements everywhere.
+ */
+ int (*redux)(mp_int*,mp_int*,mp_digit);
+
+ winsize = find_window_size(X);
+
+ /* init M array */
+ /* init first cell */
+ if ((err = mp_init(&M[1])) != MP_OKAY) {
+ return err;
+ }
+
+ /* now init the second half of the array */
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ if ((err = mp_init(&M[x])) != MP_OKAY) {
+ for (y = 1<<(winsize-1); y < x; y++) {
+ mp_clear(&M[y]);
+ }
+ mp_clear(&M[1]);
+ return err;
+ }
+ }
+
+ /* determine and setup reduction code */
+ if (redmode == 0) {
+ /* now setup montgomery */
+ if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) {
+ goto LBL_M;
+ }
+
+ /* automatically pick the comba one if available (saves quite a few calls/ifs) */
+ if (can_use_fast_column_array(P->used + P->used + 1, P->used)) {
+ redux = fast_mp_montgomery_reduce;
+ } else {
+ /* use slower baseline Montgomery method */
+ redux = mp_montgomery_reduce;
+ }
+ } else if (redmode == 1) {
+ /* setup DR reduction for moduli of the form B**k - b */
+ diminished_radix_setup(P, &mp);
+ redux = diminished_radix_reduce;
+ } else {
+ /* setup DR reduction for moduli of the form 2**k - b */
+ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
+ goto LBL_M;
+ }
+ redux = mp_reduce_2k;
+ }
+
+ /* setup result */
+ if ((err = mp_init(&res)) != MP_OKAY) {
+ goto LBL_M;
+ }
+
+ /* create M table
+ *
+
+ *
+ * The first half of the table is not computed though accept for M[0] and M[1]
+ */
+
+ if (redmode == 0) {
+ /* now we need R mod m */
+ if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* now set M[1] to G * R mod m */
+ if ((err = multiply_modulo(&M[1], G, &res, P)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ } else {
+ set_word(&res, 1);
+ if ((err = modulo(G, P, &M[1])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+ if ((err = mp_copy( &M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = square(&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = (*redux)(&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* create upper table */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = signed_multiply(&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = (*redux)(&M[x], P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 1;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = 0;
+ bitbuf = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ /* if digidx == -1 we are out of digits so break */
+ if (digidx == -1) {
+ break;
+ }
+ /* read next digit and reset bitcnt */
+ buf = X->dp[digidx--];
+ bitcnt = (int)DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (int)(mp_digit)((mp_digit)buf >> (unsigned)(DIGIT_BIT - 1)) & 1;
+ buf <<= (mp_digit)1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0) {
+ continue;
+ }
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = square(&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = square(&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = signed_multiply(&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = square(&res, &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+
+ /* get next bit of the window */
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = signed_multiply(&res, &M[1], &res)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+ }
+ }
+
+ if (redmode == 0) {
+ /* fixup result if Montgomery reduction is used
+ * recall that any value in a Montgomery system is
+ * actually multiplied by R mod n. So we have
+ * to reduce one more time to cancel out the factor
+ * of R.
+ */
+ if ((err = (*redux)(&res, P, mp)) != MP_OKAY) {
+ goto LBL_RES;
+ }
+ }
+
+ /* swap res with Y */
+ mp_exch(&res, Y);
+ err = MP_OKAY;
+LBL_RES:
+ mp_clear(&res);
LBL_M:
- mp_clear(&M[1]);
- for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- mp_clear (&M[x]);
- }
- return err;
+ mp_clear(&M[1]);
+ for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
+ mp_clear(&M[x]);
+ }
+ return err;
}
-/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_mp_exptmod_fast.c,v $ */
+/* Source: /usr/cvsroot/libtommath/dist/libtommath/bn_fast_exponent_modulo.c,v $ */
/* Revision: 1.4 $ */
/* Date: 2011/03/18 16:43:04 $ */
@@ -4357,541 +4298,533 @@ LBL_M:
* for nothing (since 99% of the time the Montgomery code would be called)
*/
static int
-mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int *Y)
-{
- int dr;
-
- /* modulus P must be positive */
- if (P->sign == MP_NEG) {
- return MP_VAL;
- }
-
- /* if exponent X is negative we have to recurse */
- if (X->sign == MP_NEG) {
- mp_int tmpG, tmpX;
- int err;
-
- /* first compute 1/G mod P */
- if ((err = mp_init(&tmpG)) != MP_OKAY) {
- return err;
- }
- if ((err = mp_invmod(&tmpG, G, P)) != MP_OKAY) {
- mp_clear(&tmpG);
- return err;
- }
-
- /* now get |X| */
- if ((err = mp_init(&tmpX)) != MP_OKAY) {
- mp_clear(&tmpG);
- return err;
- }
- if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
- mp_clear_multi(&tmpG, &tmpX, NULL);
- return err;
- }
-
- /* and now compute (1/G)**|X| instead of G**X [X < 0] */
- err = mp_exptmod(&tmpG, &tmpX, P, Y);
- mp_clear_multi(&tmpG, &tmpX, NULL);
- return err;
- }
-
-/* modified diminished radix reduction */
- if (mp_reduce_is_2k_l(P) == MP_YES) {
- return s_mp_exptmod(G, X, P, Y, 1);
- }
-
- /* is it a DR modulus? */
- dr = mp_dr_is_modulus(P);
-
- /* if not, is it a unrestricted DR modulus? */
- if (dr == 0) {
- dr = mp_reduce_is_2k(P) << 1;
- }
-
- /* if the modulus is odd or dr != 0 use the montgomery method */
- if (BN_is_odd (P) == 1 || dr != 0) {
- return mp_exptmod_fast (G, X, P, Y, dr);
- } else {
- /* otherwise use the generic Barrett reduction technique */
- return s_mp_exptmod (G, X, P, Y, 0);
- }
+exponent_modulo(mp_int * G, mp_int * X, mp_int * P, mp_int *Y)
+{
+ int diminished_radix;
+
+ /* modulus P must be positive */
+ if (P->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ /* if exponent X is negative we have to recurse */
+ if (X->sign == MP_NEG) {
+ mp_int tmpG, tmpX;
+ int err;
+
+ /* first compute 1/G mod P */
+ if ((err = mp_init(&tmpG)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = modular_inverse(&tmpG, G, P)) != MP_OKAY) {
+ mp_clear(&tmpG);
+ return err;
+ }
+
+ /* now get |X| */
+ if ((err = mp_init(&tmpX)) != MP_OKAY) {
+ mp_clear(&tmpG);
+ return err;
+ }
+ if ((err = absolute(X, &tmpX)) != MP_OKAY) {
+ mp_clear_multi(&tmpG, &tmpX, NULL);
+ return err;
+ }
+
+ /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+ err = exponent_modulo(&tmpG, &tmpX, P, Y);
+ mp_clear_multi(&tmpG, &tmpX, NULL);
+ return err;
+ }
+
+ /* modified diminished radix reduction */
+ if (mp_reduce_is_2k_l(P) == MP_YES) {
+ return basic_exponent_mod(G, X, P, Y, 1);
+ }
+
+ /* is it a DR modulus? */
+ diminished_radix = is_diminished_radix_modulus(P);
+
+ /* if not, is it a unrestricted DR modulus? */
+ if (!diminished_radix) {
+ diminished_radix = mp_reduce_is_2k(P) << 1;
+ }
+
+ /* if the modulus is odd or diminished_radix, use the montgomery method */
+ if (BN_is_odd(P) == 1 || diminished_radix) {
+ return fast_exponent_modulo(G, X, P, Y, diminished_radix);
+ }
+ /* otherwise use the generic Barrett reduction technique */
+ return basic_exponent_mod(G, X, P, Y, 0);
}
/* reverse an array, used for radix code */
static void
bn_reverse(unsigned char *s, int len)
{
- int ix, iy;
- unsigned char t;
+ int ix, iy;
+ uint8_t t;
- ix = 0;
- iy = len - 1;
- while (ix < iy) {
- t = s[ix];
- s[ix] = s[iy];
- s[iy] = t;
- ++ix;
- --iy;
- }
+ for (ix = 0, iy = len - 1; ix < iy ; ix++, --iy) {
+ t = s[ix];
+ s[ix] = s[iy];
+ s[iy] = t;
+ }
}
-static int
-s_is_power_of_two(mp_digit b, int *p)
+static inline int
+is_power_of_two(mp_digit b, int *p)
{
- int x;
+ int x;
- /* fast return if no power of two */
- if ((b==0) || (b & (b-1))) {
- return 0;
- }
+ /* fast return if no power of two */
+ if ((b==0) || (b & (b-1))) {
+ return 0;
+ }
- for (x = 0; x < DIGIT_BIT; x++) {
- if (b == (((mp_digit)1)<<x)) {
- *p = x;
- return 1;
- }
- }
- return 0;
+ for (x = 0; x < DIGIT_BIT; x++) {
+ if (b == (((mp_digit)1)<<x)) {
+ *p = x;
+ return 1;
+ }
+ }
+ return 0;
}
/* single digit division (based on routine from MPI) */
static int
-mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
-{
- mp_int q;
- mp_word w;
- mp_digit t;
- int res, ix;
-
- /* cannot divide by zero */
- if (b == 0) {
- return MP_VAL;
- }
-
- /* quick outs */
- if (b == 1 || mp_iszero(a) == 1) {
- if (d != NULL) {
- *d = 0;
- }
- if (c != NULL) {
- return mp_copy(a, c);
- }
- return MP_OKAY;
- }
-
- /* power of two ? */
- if (s_is_power_of_two(b, &ix) == 1) {
- if (d != NULL) {
- *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
- }
- if (c != NULL) {
- return mp_div_2d(a, ix, c, NULL);
- }
- return MP_OKAY;
- }
-
-#ifdef BN_MP_DIV_3_C
- /* three? */
- if (b == 3) {
- return mp_div_3(a, c, d);
- }
-#endif
+signed_divide_word(mp_int *a, mp_digit b, mp_int *c, mp_digit *d)
+{
+ mp_int q;
+ mp_word w;
+ mp_digit t;
+ int res, ix;
- /* no easy answer [c'est la vie]. Just division */
- if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
- return res;
- }
-
- q.used = a->used;
- q.sign = a->sign;
- w = 0;
- for (ix = a->used - 1; ix >= 0; ix--) {
- w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
-
- if (w >= b) {
- t = (mp_digit)(w / b);
- w -= ((mp_word)t) * ((mp_word)b);
- } else {
- t = 0;
- }
- q.dp[ix] = (mp_digit)t;
- }
-
- if (d != NULL) {
- *d = (mp_digit)w;
- }
-
- if (c != NULL) {
- mp_clamp(&q);
- mp_exch(&q, c);
- }
- mp_clear(&q);
-
- return res;
-}
+ /* cannot divide by zero */
+ if (b == 0) {
+ return MP_VAL;
+ }
-static int
-mp_mod_d(mp_int *a, mp_digit b, mp_digit *c)
-{
- return mp_div_d(a, b, NULL, c);
+ /* quick outs */
+ if (b == 1 || MP_ISZERO(a) == 1) {
+ if (d != NULL) {
+ *d = 0;
+ }
+ if (c != NULL) {
+ return mp_copy(a, c);
+ }
+ return MP_OKAY;
+ }
+
+ /* power of two ? */
+ if (is_power_of_two(b, &ix) == 1) {
+ if (d != NULL) {
+ *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
+ }
+ if (c != NULL) {
+ return rshift_bits(a, ix, c, NULL);
+ }
+ return MP_OKAY;
+ }
+
+ /* three? */
+ if (b == 3) {
+ return third(a, c, d);
+ }
+
+ /* no easy answer [c'est la vie]. Just division */
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= b) {
+ t = (mp_digit)(w / b);
+ w -= ((mp_word)t) * ((mp_word)b);
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = (mp_digit)t;
+ }
+
+ if (d != NULL) {
+ *d = (mp_digit)w;
+ }
+
+ if (c != NULL) {
+ trim_unused_digits(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
+ return res;
}
static const mp_digit ltm_prime_tab[] = {
- 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
- 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
- 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
- 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
+ 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+ 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+ 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+ 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
#ifndef MP_8BIT
- 0x0083,
- 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
- 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
- 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
- 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
-
- 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
- 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
- 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
- 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
- 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
- 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
- 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
- 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
-
- 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
- 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
- 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
- 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
- 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
- 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
- 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
- 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
-
- 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
- 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
- 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
- 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
- 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
- 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
- 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
- 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+ 0x0083,
+ 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+ 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+ 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+ 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+
+ 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+ 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+ 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+ 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+ 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+ 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+ 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+ 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+
+ 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+ 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+ 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+ 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+ 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+ 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+ 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+ 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+
+ 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+ 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+ 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+ 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+ 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+ 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+ 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+ 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
#endif
};
#define PRIME_SIZE __arraycount(ltm_prime_tab)
-static int
+static inline int
mp_prime_is_divisible(mp_int *a, int *result)
{
- int err, ix;
- mp_digit res;
+ int err, ix;
+ mp_digit res;
- /* default to not */
- *result = MP_NO;
+ /* default to not */
+ *result = MP_NO;
- for (ix = 0; ix < (int)PRIME_SIZE; ix++) {
- /* what is a mod LBL_prime_tab[ix] */
- if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
- return err;
- }
+ for (ix = 0; ix < (int)PRIME_SIZE; ix++) {
+ /* what is a mod LBL_prime_tab[ix] */
+ if ((err = signed_divide_word(a, ltm_prime_tab[ix], NULL, &res)) != MP_OKAY) {
+ return err;
+ }
- /* is the residue zero? */
- if (res == 0) {
- *result = MP_YES;
- return MP_OKAY;
- }
- }
+ /* is the residue zero? */
+ if (res == 0) {
+ *result = MP_YES;
+ return MP_OKAY;
+ }
+ }
- return MP_OKAY;
+ return MP_OKAY;
}
/* single digit addition */
static int
-mp_add_d(mp_int *a, mp_digit b, mp_int *c)
-{
- int res, ix, oldused;
- mp_digit *tmpa, *tmpc, mu;
-
- /* grow c as required */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- /* if a is negative and |a| >= b, call c = |a| - b */
- if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
- /* temporarily fix sign of a */
- a->sign = MP_ZPOS;
-
- /* c = |a| - b */
- res = mp_sub_d(a, b, c);
-
- /* fix sign */
- a->sign = c->sign = MP_NEG;
-
- /* clamp */
- mp_clamp(c);
-
- return res;
- }
-
- /* old number of used digits in c */
- oldused = c->used;
-
- /* sign always positive */
- c->sign = MP_ZPOS;
-
- /* source alias */
- tmpa = a->dp;
-
- /* destination alias */
- tmpc = c->dp;
-
- /* if a is positive */
- if (a->sign == MP_ZPOS) {
- /* add digit, after this we're propagating
- * the carry.
- */
- *tmpc = *tmpa++ + b;
- mu = *tmpc >> DIGIT_BIT;
- *tmpc++ &= MP_MASK;
-
- /* now handle rest of the digits */
- for (ix = 1; ix < a->used; ix++) {
- *tmpc = *tmpa++ + mu;
- mu = *tmpc >> DIGIT_BIT;
- *tmpc++ &= MP_MASK;
- }
- /* set final carry */
- ix++;
- *tmpc++ = mu;
-
- /* setup size */
- c->used = a->used + 1;
- } else {
- /* a was negative and |a| < b */
- c->used = 1;
-
- /* the result is a single digit */
- if (a->used == 1) {
- *tmpc++ = b - a->dp[0];
- } else {
- *tmpc++ = b;
- }
-
- /* setup count so the clearing of oldused
- * can fall through correctly
- */
- ix = 1;
- }
-
- /* now zero to oldused */
- while (ix++ < oldused) {
- *tmpc++ = 0;
- }
- mp_clamp(c);
-
- return MP_OKAY;
+add_single_digit(mp_int *a, mp_digit b, mp_int *c)
+{
+ int res, ix, oldused;
+ mp_digit *tmpa, *tmpc, mu;
+
+ /* grow c as required */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* if a is negative and |a| >= b, call c = |a| - b */
+ if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
+ /* temporarily fix sign of a */
+ a->sign = MP_ZPOS;
+
+ /* c = |a| - b */
+ res = signed_subtract_word(a, b, c);
+
+ /* fix sign */
+ a->sign = c->sign = MP_NEG;
+
+ /* clamp */
+ trim_unused_digits(c);
+
+ return res;
+ }
+
+ /* old number of used digits in c */
+ oldused = c->used;
+
+ /* sign always positive */
+ c->sign = MP_ZPOS;
+
+ /* source alias */
+ tmpa = a->dp;
+
+ /* destination alias */
+ tmpc = c->dp;
+
+ /* if a is positive */
+ if (a->sign == MP_ZPOS) {
+ /* add digit, after this we're propagating
+ * the carry.
+ */
+ *tmpc = *tmpa++ + b;
+ mu = *tmpc >> DIGIT_BIT;
+ *tmpc++ &= MP_MASK;
+
+ /* now handle rest of the digits */
+ for (ix = 1; ix < a->used; ix++) {
+ *tmpc = *tmpa++ + mu;
+ mu = *tmpc >> DIGIT_BIT;
+ *tmpc++ &= MP_MASK;
+ }
+ /* set final carry */
+ ix++;
+ *tmpc++ = mu;
+
+ /* setup size */
+ c->used = a->used + 1;
+ } else {
+ /* a was negative and |a| < b */
+ c->used = 1;
+
+ /* the result is a single digit */
+ if (a->used == 1) {
+ *tmpc++ = b - a->dp[0];
+ } else {
+ *tmpc++ = b;
+ }
+
+ /* setup count so the clearing of oldused
+ * can fall through correctly
+ */
+ ix = 1;
+ }
+
+ /* now zero to oldused */
+ while (ix++ < oldused) {
+ *tmpc++ = 0;
+ }
+ trim_unused_digits(c);
+
+ return MP_OKAY;
}
/* single digit subtraction */
static int
-mp_sub_d(mp_int *a, mp_digit b, mp_int *c)
-{
- mp_digit *tmpa, *tmpc, mu;
- int res, ix, oldused;
-
- /* grow c as required */
- if (c->alloc < a->used + 1) {
- if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
- return res;
- }
- }
-
- /* if a is negative just do an unsigned
- * addition [with fudged signs]
- */
- if (a->sign == MP_NEG) {
- a->sign = MP_ZPOS;
- res = mp_add_d(a, b, c);
- a->sign = c->sign = MP_NEG;
-
- /* clamp */
- mp_clamp(c);
-
- return res;
- }
-
- /* setup regs */
- oldused = c->used;
- tmpa = a->dp;
- tmpc = c->dp;
-
- /* if a <= b simply fix the single digit */
- if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
- if (a->used == 1) {
- *tmpc++ = b - *tmpa;
- } else {
- *tmpc++ = b;
- }
- ix = 1;
-
- /* negative/1digit */
- c->sign = MP_NEG;
- c->used = 1;
- } else {
- /* positive/size */
- c->sign = MP_ZPOS;
- c->used = a->used;
-
- /* subtract first digit */
- *tmpc = *tmpa++ - b;
- mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
- *tmpc++ &= MP_MASK;
-
- /* handle rest of the digits */
- for (ix = 1; ix < a->used; ix++) {
- *tmpc = *tmpa++ - mu;
- mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
- *tmpc++ &= MP_MASK;
- }
- }
-
- /* zero excess digits */
- while (ix++ < oldused) {
- *tmpc++ = 0;
- }
- mp_clamp(c);
- return MP_OKAY;
+signed_subtract_word(mp_int *a, mp_digit b, mp_int *c)
+{
+ mp_digit *tmpa, *tmpc, mu;
+ int res, ix, oldused;
+
+ /* grow c as required */
+ if (c->alloc < a->used + 1) {
+ if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+
+ /* if a is negative just do an unsigned
+ * addition [with fudged signs]
+ */
+ if (a->sign == MP_NEG) {
+ a->sign = MP_ZPOS;
+ res = add_single_digit(a, b, c);
+ a->sign = c->sign = MP_NEG;
+
+ /* clamp */
+ trim_unused_digits(c);
+
+ return res;
+ }
+
+ /* setup regs */
+ oldused = c->used;
+ tmpa = a->dp;
+ tmpc = c->dp;
+
+ /* if a <= b simply fix the single digit */
+ if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
+ if (a->used == 1) {
+ *tmpc++ = b - *tmpa;
+ } else {
+ *tmpc++ = b;
+ }
+ ix = 1;
+
+ /* negative/1digit */
+ c->sign = MP_NEG;
+ c->used = 1;
+ } else {
+ /* positive/size */
+ c->sign = MP_ZPOS;
+ c->used = a->used;
+
+ /* subtract first digit */
+ *tmpc = *tmpa++ - b;
+ mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+ *tmpc++ &= MP_MASK;
+
+ /* handle rest of the digits */
+ for (ix = 1; ix < a->used; ix++) {
+ *tmpc = *tmpa++ - mu;
+ mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+ *tmpc++ &= MP_MASK;
+ }
+ }
+
+ /* zero excess digits */
+ while (ix++ < oldused) {
+ *tmpc++ = 0;
+ }
+ trim_unused_digits(c);
+ return MP_OKAY;
}
static const int lnz[16] = {
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
+ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/* Counts the number of lsbs which are zero before the first zero bit */
static int
mp_cnt_lsb(mp_int *a)
{
- int x;
- mp_digit q, qq;
+ int x;
+ mp_digit q, qq;
- /* easy out */
- if (mp_iszero(a) == 1) {
- return 0;
- }
-
- /* scan lower digits until non-zero */
- for (x = 0; x < a->used && a->dp[x] == 0; x++);
- q = a->dp[x];
- x *= DIGIT_BIT;
+ /* easy out */
+ if (MP_ISZERO(a) == 1) {
+ return 0;
+ }
- /* now scan this digit until a 1 is found */
- if ((q & 1) == 0) {
- do {
- qq = q & 15;
- /* LINTED previous op ensures range of qq */
- x += lnz[qq];
- q >>= 4;
- } while (qq == 0);
- }
- return x;
+ /* scan lower digits until non-zero */
+ for (x = 0; x < a->used && a->dp[x] == 0; x++) {
+ }
+ q = a->dp[x];
+ x *= DIGIT_BIT;
+
+ /* now scan this digit until a 1 is found */
+ if ((q & 1) == 0) {
+ do {
+ qq = q & 15;
+ /* LINTED previous op ensures range of qq */
+ x += lnz[qq];
+ q >>= 4;
+ } while (qq == 0);
+ }
+ return x;
}
/* c = a * a (mod b) */
static int
-mp_sqrmod(mp_int *a, mp_int *b, mp_int *c)
+square_modulo(mp_int *a, mp_int *b, mp_int *c)
{
- int res;
- mp_int t;
+ int res;
+ mp_int t;
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
+ if ((res = mp_init(&t)) != MP_OKAY) {
+ return res;
+ }
- if ((res = mp_sqr (a, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- res = mp_mod (&t, b, c);
- mp_clear (&t);
- return res;
+ if ((res = square(a, &t)) != MP_OKAY) {
+ mp_clear(&t);
+ return res;
+ }
+ res = modulo(&t, b, c);
+ mp_clear(&t);
+ return res;
}
+
static int
mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result)
{
- mp_int n1, y, r;
- int s, j, err;
-
- /* default */
- *result = MP_NO;
-
- /* ensure b > 1 */
- if (mp_cmp_d(b, 1) != MP_GT) {
- return MP_VAL;
- }
-
- /* get n1 = a - 1 */
- if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
- return err;
- }
- if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
- goto LBL_N1;
- }
-
- /* set 2**s * r = n1 */
- if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
- goto LBL_N1;
- }
-
- /* count the number of least significant bits
- * which are zero
- */
- s = mp_cnt_lsb(&r);
-
- /* now divide n - 1 by 2**s */
- if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
- goto LBL_R;
- }
-
- /* compute y = b**r mod a */
- if ((err = mp_init (&y)) != MP_OKAY) {
- goto LBL_R;
- }
- if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- /* if y != 1 and y != n1 do */
- if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
- j = 1;
- /* while j <= s-1 and y != n1 */
- while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
- if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
- goto LBL_Y;
- }
-
- /* if y == 1 then composite */
- if (mp_cmp_d (&y, 1) == MP_EQ) {
- goto LBL_Y;
- }
-
- ++j;
- }
-
- /* if y != n1 then composite */
- if (mp_cmp (&y, &n1) != MP_EQ) {
- goto LBL_Y;
- }
- }
-
- /* probably prime now */
- *result = MP_YES;
-LBL_Y:mp_clear (&y);
-LBL_R:mp_clear (&r);
-LBL_N1:mp_clear (&n1);
- return err;
+ mp_int n1, y, r;
+ int s, j, err;
+
+ /* default */
+ *result = MP_NO;
+
+ /* ensure b > 1 */
+ if (compare_digit(b, 1) != MP_GT) {
+ return MP_VAL;
+ }
+
+ /* get n1 = a - 1 */
+ if ((err = mp_init_copy(&n1, a)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = signed_subtract_word(&n1, 1, &n1)) != MP_OKAY) {
+ goto LBL_N1;
+ }
+
+ /* set 2**s * r = n1 */
+ if ((err = mp_init_copy(&r, &n1)) != MP_OKAY) {
+ goto LBL_N1;
+ }
+
+ /* count the number of least significant bits
+ * which are zero
+ */
+ s = mp_cnt_lsb(&r);
+
+ /* now divide n - 1 by 2**s */
+ if ((err = rshift_bits(&r, s, &r, NULL)) != MP_OKAY) {
+ goto LBL_R;
+ }
+
+ /* compute y = b**r mod a */
+ if ((err = mp_init(&y)) != MP_OKAY) {
+ goto LBL_R;
+ }
+ if ((err = exponent_modulo(b, &r, a, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if y != 1 and y != n1 do */
+ if (compare_digit(&y, 1) != MP_EQ && signed_compare(&y, &n1) != MP_EQ) {
+ j = 1;
+ /* while j <= s-1 and y != n1 */
+ while ((j <= (s - 1)) && signed_compare(&y, &n1) != MP_EQ) {
+ if ((err = square_modulo(&y, a, &y)) != MP_OKAY) {
+ goto LBL_Y;
+ }
+
+ /* if y == 1 then composite */
+ if (compare_digit(&y, 1) == MP_EQ) {
+ goto LBL_Y;
+ }
+
+ ++j;
+ }
+
+ /* if y != n1 then composite */
+ if (signed_compare(&y, &n1) != MP_EQ) {
+ goto LBL_Y;
+ }
+ }
+
+ /* probably prime now */
+ *result = MP_YES;
+LBL_Y:
+ mp_clear(&y);
+LBL_R:
+ mp_clear(&r);
+LBL_N1:
+ mp_clear(&n1);
+ return err;
}
/* performs a variable number of rounds of Miller-Rabin
@@ -4904,114 +4837,115 @@ LBL_N1:mp_clear (&n1);
static int
mp_prime_is_prime(mp_int *a, int t, int *result)
{
- mp_int b;
- int ix, err, res;
+ mp_int b;
+ int ix, err, res;
- /* default to no */
- *result = MP_NO;
+ /* default to no */
+ *result = MP_NO;
- /* valid value of t? */
- if (t <= 0 || t > (int)PRIME_SIZE) {
- return MP_VAL;
- }
+ /* valid value of t? */
+ if (t <= 0 || t > (int)PRIME_SIZE) {
+ return MP_VAL;
+ }
- /* is the input equal to one of the primes in the table? */
- for (ix = 0; ix < (int)PRIME_SIZE; ix++) {
- if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
- *result = 1;
- return MP_OKAY;
- }
- }
+ /* is the input equal to one of the primes in the table? */
+ for (ix = 0; ix < (int)PRIME_SIZE; ix++) {
+ if (compare_digit(a, ltm_prime_tab[ix]) == MP_EQ) {
+ *result = 1;
+ return MP_OKAY;
+ }
+ }
- /* first perform trial division */
- if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
- return err;
- }
+ /* first perform trial division */
+ if ((err = mp_prime_is_divisible(a, &res)) != MP_OKAY) {
+ return err;
+ }
- /* return if it was trivially divisible */
- if (res == MP_YES) {
- return MP_OKAY;
- }
+ /* return if it was trivially divisible */
+ if (res == MP_YES) {
+ return MP_OKAY;
+ }
- /* now perform the miller-rabin rounds */
- if ((err = mp_init (&b)) != MP_OKAY) {
- return err;
- }
+ /* now perform the miller-rabin rounds */
+ if ((err = mp_init(&b)) != MP_OKAY) {
+ return err;
+ }
- for (ix = 0; ix < t; ix++) {
- /* set the prime */
- mp_set (&b, ltm_prime_tab[ix]);
+ for (ix = 0; ix < t; ix++) {
+ /* set the prime */
+ set_word(&b, ltm_prime_tab[ix]);
- if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
- goto LBL_B;
- }
+ if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
+ goto LBL_B;
+ }
- if (res == MP_NO) {
- goto LBL_B;
- }
- }
+ if (res == MP_NO) {
+ goto LBL_B;
+ }
+ }
- /* passed the test */
- *result = MP_YES;
-LBL_B:mp_clear (&b);
- return err;
+ /* passed the test */
+ *result = MP_YES;
+LBL_B:
+ mp_clear(&b);
+ return err;
}
/* returns size of ASCII reprensentation */
static int
-mp_radix_size (mp_int *a, int radix, int *size)
+mp_radix_size(mp_int *a, int radix, int *size)
{
- int res, digs;
- mp_int t;
- mp_digit d;
+ int res, digs;
+ mp_int t;
+ mp_digit d;
- *size = 0;
+ *size = 0;
- /* special case for binary */
- if (radix == 2) {
- *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
- return MP_OKAY;
- }
+ /* special case for binary */
+ if (radix == 2) {
+ *size = mp_count_bits(a) + (a->sign == MP_NEG ? 1 : 0) + 1;
+ return MP_OKAY;
+ }
- /* make sure the radix is in range */
- if (radix < 2 || radix > 64) {
- return MP_VAL;
- }
+ /* make sure the radix is in range */
+ if (radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
- if (mp_iszero(a) == MP_YES) {
- *size = 2;
- return MP_OKAY;
- }
+ if (MP_ISZERO(a) == MP_YES) {
+ *size = 2;
+ return MP_OKAY;
+ }
- /* digs is the digit count */
- digs = 0;
+ /* digs is the digit count */
+ digs = 0;
- /* if it's negative add one for the sign */
- if (a->sign == MP_NEG) {
- ++digs;
- }
+ /* if it's negative add one for the sign */
+ if (a->sign == MP_NEG) {
+ ++digs;
+ }
- /* init a copy of the input */
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
- return res;
- }
+ /* init a copy of the input */
+ if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
+ return res;
+ }
- /* force temp to positive */
- t.sign = MP_ZPOS;
+ /* force temp to positive */
+ t.sign = MP_ZPOS;
- /* fetch out all of the digits */
- while (mp_iszero (&t) == MP_NO) {
- if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- ++digs;
- }
- mp_clear (&t);
+ /* fetch out all of the digits */
+ while (MP_ISZERO(&t) == MP_NO) {
+ if ((res = signed_divide_word(&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear(&t);
+ return res;
+ }
+ ++digs;
+ }
+ mp_clear(&t);
- /* return digs + 1, the 1 is for the NULL byte that would be required. */
- *size = digs + 1;
- return MP_OKAY;
+ /* return digs + 1, the 1 is for the NULL byte that would be required. */
+ *size = digs + 1;
+ return MP_OKAY;
}
static const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
@@ -5023,65 +4957,65 @@ static const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkl
static int
mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
{
- int res, digs;
- mp_int t;
- mp_digit d;
- char *_s = str;
-
- /* check range of the maxlen, radix */
- if (maxlen < 2 || radix < 2 || radix > 64) {
- return MP_VAL;
- }
-
- /* quick out if its zero */
- if (mp_iszero(a) == MP_YES) {
- *str++ = '0';
- *str = '\0';
- return MP_OKAY;
- }
-
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
- return res;
- }
-
- /* if it is negative output a - */
- if (t.sign == MP_NEG) {
- /* we have to reverse our digits later... but not the - sign!! */
- ++_s;
-
- /* store the flag and mark the number as positive */
- *str++ = '-';
- t.sign = MP_ZPOS;
-
- /* subtract a char */
- --maxlen;
- }
-
- digs = 0;
- while (mp_iszero (&t) == 0) {
- if (--maxlen < 1) {
- /* no more room */
- break;
- }
- if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- /* LINTED -- radix' range is checked above, limits d's range */
- *str++ = mp_s_rmap[d];
- ++digs;
- }
-
- /* reverse the digits of the string. In this case _s points
- * to the first digit [exluding the sign] of the number
- */
- bn_reverse ((unsigned char *)_s, digs);
-
- /* append a NULL so the string is properly terminated */
- *str = '\0';
-
- mp_clear (&t);
- return MP_OKAY;
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+ char *_s = str;
+
+ /* check range of the maxlen, radix */
+ if (maxlen < 2 || radix < 2 || radix > 64) {
+ return MP_VAL;
+ }
+
+ /* quick out if its zero */
+ if (MP_ISZERO(a) == MP_YES) {
+ *str++ = '0';
+ *str = '\0';
+ return MP_OKAY;
+ }
+
+ if ((res = mp_init_copy(&t, a)) != MP_OKAY) {
+ return res;
+ }
+
+ /* if it is negative output a - */
+ if (t.sign == MP_NEG) {
+ /* we have to reverse our digits later... but not the - sign!! */
+ ++_s;
+
+ /* store the flag and mark the number as positive */
+ *str++ = '-';
+ t.sign = MP_ZPOS;
+
+ /* subtract a char */
+ --maxlen;
+ }
+
+ digs = 0;
+ while (MP_ISZERO(&t) == 0) {
+ if (--maxlen < 1) {
+ /* no more room */
+ break;
+ }
+ if ((res = signed_divide_word(&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
+ mp_clear(&t);
+ return res;
+ }
+ /* LINTED -- radix' range is checked above, limits d's range */
+ *str++ = mp_s_rmap[d];
+ ++digs;
+ }
+
+ /* reverse the digits of the string. In this case _s points
+ * to the first digit [exluding the sign] of the number
+ */
+ bn_reverse((unsigned char *)_s, digs);
+
+ /* append a NULL so the string is properly terminated */
+ *str = '\0';
+
+ mp_clear(&t);
+ return MP_OKAY;
}
static char *
@@ -5093,9 +5027,9 @@ formatbn(const BIGNUM *a, const int radix)
if (mp_radix_size(__UNCONST(a), radix, &len) != MP_OKAY) {
return NULL;
}
- if ((s = netpgp_allocate(1, (size_t)len)) != NULL) {
+ if ((s = allocate(1, (size_t)len)) != NULL) {
if (mp_toradix_n(__UNCONST(a), s, radix, len) != MP_OKAY) {
- netpgp_deallocate(s, (size_t)len);
+ deallocate(s, (size_t)len);
return NULL;
}
}
@@ -5105,45 +5039,45 @@ formatbn(const BIGNUM *a, const int radix)
static int
mp_getradix_num(mp_int *a, int radix, char *s)
{
- int err, ch, neg, y;
-
- /* clear a */
- mp_zero(a);
-
- /* if first digit is - then set negative */
- if ((ch = *s++) == '-') {
- neg = MP_NEG;
- ch = *s++;
- } else {
- neg = MP_ZPOS;
- }
-
- for (;;) {
- /* find y in the radix map */
- for (y = 0; y < radix; y++) {
- if (mp_s_rmap[y] == ch) {
- break;
- }
- }
- if (y == radix) {
- break;
- }
-
- /* shift up and add */
- if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
- return err;
- }
- if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
- return err;
- }
-
- ch = *s++;
- }
- if (mp_cmp_d(a, 0) != MP_EQ) {
- a->sign = neg;
- }
-
- return MP_OKAY;
+ int err, ch, neg, y;
+
+ /* clear a */
+ mp_zero(a);
+
+ /* if first digit is - then set negative */
+ if ((ch = *s++) == '-') {
+ neg = MP_NEG;
+ ch = *s++;
+ } else {
+ neg = MP_ZPOS;
+ }
+
+ for (;;) {
+ /* find y in the radix map */
+ for (y = 0; y < radix; y++) {
+ if (mp_s_rmap[y] == ch) {
+ break;
+ }
+ }
+ if (y == radix) {
+ break;
+ }
+
+ /* shift up and add */
+ if ((err = multiply_digit(a, radix, a)) != MP_OKAY) {
+ return err;
+ }
+ if ((err = add_single_digit(a, y, a)) != MP_OKAY) {
+ return err;
+ }
+
+ ch = *s++;
+ }
+ if (compare_digit(a, 0) != MP_EQ) {
+ a->sign = neg;
+ }
+
+ return MP_OKAY;
}
static int
@@ -5157,29 +5091,29 @@ getbn(BIGNUM **a, const char *str, int radix)
if (mp_getradix_num(*a, radix, __UNCONST(str)) != MP_OKAY) {
return 0;
}
- mp_radix_size(__UNCONST(a), radix, &len);
+ mp_radix_size(__UNCONST(*a), radix, &len);
return len - 1;
}
/* d = a - b (mod c) */
static int
-mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
+subtract_modulo(mp_int *a, mp_int *b, mp_int *c, mp_int *d)
{
- int res;
- mp_int t;
+ int res;
+ mp_int t;
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
+ if ((res = mp_init(&t)) != MP_OKAY) {
+ return res;
+ }
- if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
- res = mp_mod (&t, c, d);
- mp_clear (&t);
- return res;
+ if ((res = signed_subtract(a, b, &t)) != MP_OKAY) {
+ mp_clear(&t);
+ return res;
+ }
+ res = modulo(&t, c, d);
+ mp_clear(&t);
+ return res;
}
/**************************************************************************/
@@ -5218,7 +5152,7 @@ BN_bn2bin(const BIGNUM *a, unsigned char *b)
}
for (x = 0; !BN_is_zero(&t) ; ) {
b[x++] = (unsigned char) (t.dp[0] & 0xff);
- if (mp_div_2d (&t, 8, &t, NULL) != MP_OKAY) {
+ if (rshift_bits(&t, 8, &t, NULL) != MP_OKAY) {
mp_clear(&t);
return -1;
}
@@ -5241,7 +5175,7 @@ BN_new(void)
{
BIGNUM *a;
- if ((a = netpgp_allocate(1, sizeof(*a))) != NULL) {
+ if ((a = allocate(1, sizeof(*a))) != NULL) {
mp_init(a);
}
return a;
@@ -5286,7 +5220,7 @@ BN_lshift(BIGNUM *r, const BIGNUM *a, int n)
return 0;
}
BN_copy(r, a);
- return mp_lshd(r, n) == MP_OKAY;
+ return lshift_digits(r, n) == MP_OKAY;
}
int
@@ -5296,7 +5230,7 @@ BN_lshift1(BIGNUM *r, BIGNUM *a)
return 0;
}
BN_copy(r, a);
- return mp_lshd(r, 1) == MP_OKAY;
+ return lshift_digits(r, 1) == MP_OKAY;
}
int
@@ -5306,7 +5240,7 @@ BN_rshift(BIGNUM *r, const BIGNUM *a, int n)
return MP_VAL;
}
BN_copy(r, a);
- return mp_rshd(r, n) == MP_OKAY;
+ return rshift_digits(r, n) == MP_OKAY;
}
int
@@ -5316,7 +5250,7 @@ BN_rshift1(BIGNUM *r, BIGNUM *a)
return 0;
}
BN_copy(r, a);
- return mp_rshd(r, 1) == MP_OKAY;
+ return rshift_digits(r, 1) == MP_OKAY;
}
int
@@ -5325,7 +5259,7 @@ BN_set_word(BIGNUM *a, BN_ULONG w)
if (a == NULL) {
return 0;
}
- mp_set(a, w);
+ set_word(a, w);
return 1;
}
@@ -5335,7 +5269,7 @@ BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
if (a == NULL || b == NULL || r == NULL) {
return 0;
}
- return mp_add(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
+ return signed_add(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
}
int
@@ -5344,7 +5278,7 @@ BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
if (a == NULL || b == NULL || r == NULL) {
return 0;
}
- return mp_sub(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
+ return signed_subtract(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
}
int
@@ -5354,7 +5288,7 @@ BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
return 0;
}
USE_ARG(ctx);
- return mp_mul(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
+ return signed_multiply(__UNCONST(a), __UNCONST(b), r) == MP_OKAY;
}
int
@@ -5364,7 +5298,46 @@ BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx)
return 0;
}
USE_ARG(ctx);
- return mp_div(dv, rem, __UNCONST(a), __UNCONST(d)) == MP_OKAY;
+ return signed_divide(dv, rem, __UNCONST(a), __UNCONST(d)) == MP_OKAY;
+}
+
+/* perform a bit operation on the 2 bignums */
+int
+BN_bitop(BIGNUM *r, const BIGNUM *a, char op, const BIGNUM *b)
+{
+ unsigned ndigits;
+ mp_digit ad;
+ mp_digit bd;
+ int i;
+
+ if (a == NULL || b == NULL || r == NULL) {
+ return 0;
+ }
+ if (BN_cmp(__UNCONST(a), __UNCONST(b)) >= 0) {
+ BN_copy(r, a);
+ ndigits = a->used;
+ } else {
+ BN_copy(r, b);
+ ndigits = b->used;
+ }
+ for (i = 0 ; i < (int)ndigits ; i++) {
+ ad = (i > a->used) ? 0 : a->dp[i];
+ bd = (i > b->used) ? 0 : b->dp[i];
+ switch(op) {
+ case '&':
+ r->dp[i] = (ad & bd);
+ break;
+ case '|':
+ r->dp[i] = (ad | bd);
+ break;
+ case '^':
+ r->dp[i] = (ad ^ bd);
+ break;
+ default:
+ break;
+ }
+ }
+ return 1;
}
void
@@ -5423,7 +5396,7 @@ BN_cmp(BIGNUM *a, BIGNUM *b)
if (a == NULL || b == NULL) {
return MP_VAL;
}
- switch(mp_cmp(a, b)) {
+ switch(signed_compare(a, b)) {
case MP_LT:
return -1;
case MP_GT:
@@ -5441,7 +5414,7 @@ BN_mod_exp(BIGNUM *Y, BIGNUM *G, BIGNUM *X, BIGNUM *P, BN_CTX *ctx)
return MP_VAL;
}
USE_ARG(ctx);
- return mp_exptmod(G, X, P, Y) == MP_OKAY;
+ return exponent_modulo(G, X, P, Y) == MP_OKAY;
}
BIGNUM *
@@ -5451,7 +5424,7 @@ BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
if (r == NULL || a == NULL || n == NULL) {
return NULL;
}
- return (mp_invmod(r, a, __UNCONST(n)) == MP_OKAY) ? r : NULL;
+ return (modular_inverse(r, a, __UNCONST(n)) == MP_OKAY) ? r : NULL;
}
int
@@ -5461,13 +5434,13 @@ BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
if (ret == NULL || a == NULL || b == NULL || m == NULL) {
return 0;
}
- return mp_mulmod(ret, a, b, __UNCONST(m)) == MP_OKAY;
+ return multiply_modulo(ret, a, b, __UNCONST(m)) == MP_OKAY;
}
BN_CTX *
BN_CTX_new(void)
{
- return netpgp_allocate(1, sizeof(BN_CTX));
+ return allocate(1, sizeof(BN_CTX));
}
void
@@ -5475,7 +5448,7 @@ BN_CTX_init(BN_CTX *c)
{
if (c != NULL) {
c->arraysize = 15;
- if ((c->v = netpgp_allocate(sizeof(*c->v), c->arraysize)) == NULL) {
+ if ((c->v = allocate(sizeof(*c->v), c->arraysize)) == NULL) {
c->arraysize = 0;
}
}
@@ -5505,7 +5478,7 @@ BN_CTX_free(BN_CTX *c)
for (i = 0 ; i < c->count ; i++) {
BN_clear_free(c->v[i]);
}
- netpgp_deallocate(c->v, sizeof(*c->v) * c->arraysize);
+ deallocate(c->v, sizeof(*c->v) * c->arraysize);
}
}
@@ -5527,6 +5500,12 @@ BN_bn2dec(const BIGNUM *a)
return (a == NULL) ? NULL : formatbn(a, 10);
}
+char *
+BN_bn2radix(const BIGNUM *a, unsigned radix)
+{
+ return (a == NULL) ? NULL : formatbn(a, (int)radix);
+}
+
#ifndef _KERNEL
int
BN_print_fp(FILE *fp, const BIGNUM *a)
@@ -5539,7 +5518,7 @@ BN_print_fp(FILE *fp, const BIGNUM *a)
}
s = BN_bn2hex(a);
ret = fprintf(fp, "%s", s);
- netpgp_deallocate(s, strlen(s) + 1);
+ deallocate(s, strlen(s) + 1);
return ret;
}
#endif
@@ -5582,7 +5561,7 @@ BN_rand_range(BIGNUM *rnd, BIGNUM *range)
return 0;
}
BN_rand(rnd, BN_num_bits(range), 1, 0);
- return mp_mod(rnd, range, rnd) == MP_OKAY;
+ return modulo(rnd, range, rnd) == MP_OKAY;
}
#endif
@@ -5622,13 +5601,19 @@ BN_dec2bn(BIGNUM **a, const char *str)
}
int
+BN_radix2bn(BIGNUM **a, const char *str, unsigned radix)
+{
+ return getbn(a, str, (int)radix);
+}
+
+int
BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx)
{
USE_ARG(ctx);
if (r == NULL || a == NULL || b == NULL || m == NULL) {
return 0;
}
- return mp_submod(a, b, __UNCONST(m), r) == MP_OKAY;
+ return subtract_modulo(a, b, __UNCONST(m), r) == MP_OKAY;
}
int
@@ -5639,3 +5624,55 @@ BN_is_bit_set(const BIGNUM *a, int n)
}
return (a->dp[n / DIGIT_BIT] & (1 << (n % DIGIT_BIT))) ? 1 : 0;
}
+
+/* raise 'a' to power of 'b' */
+int
+BN_raise(BIGNUM *res, BIGNUM *a, BIGNUM *b)
+{
+ uint64_t exponent;
+ BIGNUM *power;
+ BIGNUM *temp;
+ char *t;
+
+ t = BN_bn2dec(b);
+ exponent = (uint64_t)strtoull(t, NULL, 10);
+ free(t);
+ if (exponent == 0) {
+ BN_copy(res, BN_value_one());
+ } else {
+ power = BN_dup(a);
+ for ( ; (exponent & 1) == 0 ; exponent >>= 1) {
+ BN_mul(power, power, power, NULL);
+ }
+ temp = BN_dup(power);
+ for (exponent >>= 1 ; exponent > 0 ; exponent >>= 1) {
+ BN_mul(power, power, power, NULL);
+ if (exponent & 1) {
+ BN_mul(temp, power, temp, NULL);
+ }
+ }
+ BN_copy(res, temp);
+ BN_free(power);
+ BN_free(temp);
+ }
+ return 1;
+}
+
+/* compute the factorial */
+int
+BN_factorial(BIGNUM *res, BIGNUM *f)
+{
+ BIGNUM *one;
+ BIGNUM *i;
+
+ i = BN_dup(f);
+ one = __UNCONST(BN_value_one());
+ BN_sub(i, i, one);
+ BN_copy(res, f);
+ while (BN_cmp(i, one) > 0) {
+ BN_mul(res, res, i, NULL);
+ BN_sub(i, i, one);
+ }
+ BN_free(i);
+ return 1;
+}
diff --git a/security/netpgpverify/files/bn.h b/security/netpgpverify/files/bn.h
index fdc49d8760a..c4e772f583c 100644
--- a/security/netpgpverify/files/bn.h
+++ b/security/netpgpverify/files/bn.h
@@ -100,8 +100,10 @@ BIGNUM *BN_bin2bn(const uint8_t */*buf*/, int /*size*/, BIGNUM */*bn*/);
int BN_bn2bin(const BIGNUM */*a*/, unsigned char */*b*/);
char *BN_bn2hex(const BIGNUM */*a*/);
char *BN_bn2dec(const BIGNUM */*a*/);
+char *BN_bn2radix(const BIGNUM */*a*/, unsigned /*radix*/);
int BN_hex2bn(BIGNUM **/*a*/, const char */*str*/);
int BN_dec2bn(BIGNUM **/*a*/, const char */*str*/);
+int BN_radix2bn(BIGNUM **/*a*/, const char */*str*/, unsigned /*radix*/);
#ifndef _KERNEL
int BN_print_fp(FILE */*fp*/, const BIGNUM */*a*/);
#endif
@@ -111,6 +113,7 @@ int BN_sub(BIGNUM */*r*/, const BIGNUM */*a*/, const BIGNUM */*b*/);
int BN_mul(BIGNUM */*r*/, const BIGNUM */*a*/, const BIGNUM */*b*/, BN_CTX */*ctx*/);
int BN_div(BIGNUM */*q*/, BIGNUM */*r*/, const BIGNUM */*a*/, const BIGNUM */*b*/, BN_CTX */*ctx*/);
void BN_swap(BIGNUM */*a*/, BIGNUM */*b*/);
+int BN_bitop(BIGNUM */*r*/, const BIGNUM */*a*/, char /*op*/, const BIGNUM */*b*/);
int BN_lshift(BIGNUM */*r*/, const BIGNUM */*a*/, int /*n*/);
int BN_lshift1(BIGNUM */*r*/, BIGNUM */*a*/);
int BN_rshift(BIGNUM */*r*/, const BIGNUM */*a*/, int /*n*/);
@@ -126,6 +129,9 @@ BIGNUM *BN_mod_inverse(BIGNUM */*ret*/, BIGNUM */*a*/, const BIGNUM */*n*/, BN_C
int BN_mod_mul(BIGNUM */*ret*/, BIGNUM */*a*/, BIGNUM */*b*/, const BIGNUM */*m*/, BN_CTX */*ctx*/);
int BN_mod_sub(BIGNUM */*r*/, BIGNUM */*a*/, BIGNUM */*b*/, const BIGNUM */*m*/, BN_CTX */*ctx*/);
+int BN_raise(BIGNUM */*res*/, BIGNUM */*a*/, BIGNUM */*b*/);
+int BN_factorial(BIGNUM */*fact*/, BIGNUM */*f*/);
+
BN_CTX *BN_CTX_new(void);
BIGNUM *BN_CTX_get(BN_CTX */*ctx*/);
void BN_CTX_start(BN_CTX */*ctx*/);