summaryrefslogtreecommitdiff
path: root/security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h
diff options
context:
space:
mode:
Diffstat (limited to 'security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h')
-rw-r--r--security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h592
1 files changed, 0 insertions, 592 deletions
diff --git a/security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h b/security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h
deleted file mode 100644
index 64a374e5a4a..00000000000
--- a/security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h
+++ /dev/null
@@ -1,592 +0,0 @@
-$NetBSD: patch-lib_hcrypto_libtommath_tommath.h,v 1.3 2011/09/15 13:01:14 hans Exp $
-
---- lib/hcrypto/libtommath/tommath.h.orig 2011-09-15 09:31:23.190661136 +0200
-+++ lib/hcrypto/libtommath/tommath.h 2011-09-15 09:32:00.326647970 +0200
-@@ -0,0 +1,587 @@
-+/* LibTomMath, multiple-precision integer library -- Tom St Denis
-+ *
-+ * LibTomMath is a library that provides multiple-precision
-+ * integer arithmetic as well as number theoretic functionality.
-+ *
-+ * The library was designed directly after the MPI library by
-+ * Michael Fromberger but has been written from scratch with
-+ * additional optimizations in place.
-+ *
-+ * The library is free for all purposes without any express
-+ * guarantee it works.
-+ *
-+ * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
-+ */
-+#ifndef BN_H_
-+#define BN_H_
-+
-+#include <stdio.h>
-+#include <string.h>
-+#include <stdlib.h>
-+#include <ctype.h>
-+#include <limits.h>
-+
-+#include <tommath_class.h>
-+
-+#ifndef MIN
-+ #define MIN(x,y) ((x)<(y)?(x):(y))
-+#endif
-+
-+#ifndef MAX
-+ #define MAX(x,y) ((x)>(y)?(x):(y))
-+#endif
-+
-+#ifdef __cplusplus
-+extern "C" {
-+
-+/* C++ compilers don't like assigning void * to mp_digit * */
-+#define OPT_CAST(x) (x *)
-+
-+#else
-+
-+/* C on the other hand doesn't care */
-+#define OPT_CAST(x)
-+
-+#endif
-+
-+
-+/* detect 64-bit mode if possible */
-+#if defined(__x86_64__)
-+ #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT))
-+ #define MP_64BIT
-+ #endif
-+#endif
-+
-+/* some default configurations.
-+ *
-+ * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
-+ * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
-+ *
-+ * At the very least a mp_digit must be able to hold 7 bits
-+ * [any size beyond that is ok provided it doesn't overflow the data type]
-+ */
-+#ifdef MP_8BIT
-+ typedef unsigned char mp_digit;
-+ typedef unsigned short mp_word;
-+#elif defined(MP_16BIT)
-+ typedef unsigned short mp_digit;
-+ typedef unsigned long mp_word;
-+#elif defined(MP_64BIT)
-+ /* for GCC only on supported platforms */
-+#ifndef CRYPT
-+ typedef unsigned long long ulong64;
-+ typedef signed long long long64;
-+#endif
-+
-+ typedef unsigned long mp_digit;
-+ typedef unsigned long mp_word __attribute__ ((mode(TI)));
-+
-+ #define DIGIT_BIT 60
-+#else
-+ /* this is the default case, 28-bit digits */
-+
-+ /* this is to make porting into LibTomCrypt easier :-) */
-+#ifndef CRYPT
-+ #if defined(_MSC_VER) || defined(__BORLANDC__)
-+ typedef unsigned __int64 ulong64;
-+ typedef signed __int64 long64;
-+ #else
-+ typedef unsigned long long ulong64;
-+ typedef signed long long long64;
-+ #endif
-+#endif
-+
-+ typedef unsigned long mp_digit;
-+ typedef ulong64 mp_word;
-+
-+#ifdef MP_31BIT
-+ /* this is an extension that uses 31-bit digits */
-+ #define DIGIT_BIT 31
-+#else
-+ /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
-+ #define DIGIT_BIT 28
-+ #define MP_28BIT
-+#endif
-+#endif
-+
-+/* define heap macros */
-+#ifndef CRYPT
-+ /* default to libc stuff */
-+ #ifndef XMALLOC
-+ #define XMALLOC malloc
-+ #define XFREE free
-+ #define XREALLOC realloc
-+ #define XCALLOC calloc
-+ #else
-+ /* prototypes for our heap functions */
-+ extern void *XMALLOC(size_t n);
-+ extern void *XREALLOC(void *p, size_t n);
-+ extern void *XCALLOC(size_t n, size_t s);
-+ extern void XFREE(void *p);
-+ #endif
-+#endif
-+
-+
-+/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
-+#ifndef DIGIT_BIT
-+ #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */
-+#endif
-+
-+#define MP_DIGIT_BIT DIGIT_BIT
-+#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
-+#define MP_DIGIT_MAX MP_MASK
-+
-+/* equalities */
-+#define MP_LT -1 /* less than */
-+#define MP_EQ 0 /* equal to */
-+#define MP_GT 1 /* greater than */
-+
-+#define MP_ZPOS 0 /* positive integer */
-+#define MP_NEG 1 /* negative */
-+
-+#define MP_OKAY 0 /* ok result */
-+#define MP_MEM -2 /* out of mem */
-+#define MP_VAL -3 /* invalid input */
-+#define MP_RANGE MP_VAL
-+
-+#define MP_YES 1 /* yes response */
-+#define MP_NO 0 /* no response */
-+
-+/* Primality generation flags */
-+#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
-+#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
-+#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
-+
-+typedef int mp_err;
-+
-+/* you'll have to tune these... */
-+extern int KARATSUBA_MUL_CUTOFF,
-+ KARATSUBA_SQR_CUTOFF,
-+ TOOM_MUL_CUTOFF,
-+ TOOM_SQR_CUTOFF;
-+
-+/* define this to use lower memory usage routines (exptmods mostly) */
-+/* #define MP_LOW_MEM */
-+
-+/* default precision */
-+#ifndef MP_PREC
-+ #ifndef MP_LOW_MEM
-+ #define MP_PREC 32 /* default digits of precision */
-+ #else
-+ #define MP_PREC 8 /* default digits of precision */
-+ #endif
-+#endif
-+
-+/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
-+#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
-+
-+/* the infamous mp_int structure */
-+typedef struct {
-+ int used, alloc, sign;
-+ mp_digit *dp;
-+} mp_int;
-+
-+/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
-+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
-+
-+
-+#define USED(m) ((m)->used)
-+#define DIGIT(m,k) ((m)->dp[(k)])
-+#define SIGN(m) ((m)->sign)
-+
-+/* error code to char* string */
-+char *mp_error_to_string(int code);
-+
-+/* ---> init and deinit bignum functions <--- */
-+/* init a bignum */
-+int mp_init(mp_int *a);
-+
-+/* free a bignum */
-+void mp_clear(mp_int *a);
-+
-+/* init a null terminated series of arguments */
-+int mp_init_multi(mp_int *mp, ...);
-+
-+/* clear a null terminated series of arguments */
-+void mp_clear_multi(mp_int *mp, ...);
-+
-+/* exchange two ints */
-+void mp_exch(mp_int *a, mp_int *b);
-+
-+/* shrink ram required for a bignum */
-+int mp_shrink(mp_int *a);
-+
-+/* grow an int to a given size */
-+int mp_grow(mp_int *a, int size);
-+
-+/* init to a given number of digits */
-+int mp_init_size(mp_int *a, int size);
-+
-+/* ---> Basic Manipulations <--- */
-+#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
-+#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
-+#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
-+#define mp_isneg(a) (((a)->sign) ? MP_YES : MP_NO)
-+
-+/* set to zero */
-+void mp_zero(mp_int *a);
-+
-+/* set to zero, multi */
-+void mp_zero_multi(mp_int *a, ...);
-+
-+/* set to a digit */
-+void mp_set(mp_int *a, mp_digit b);
-+
-+/* set a 32-bit const */
-+int mp_set_int(mp_int *a, unsigned long b);
-+
-+/* get a 32-bit value */
-+unsigned long mp_get_int(mp_int * a);
-+
-+/* initialize and set a digit */
-+int mp_init_set (mp_int * a, mp_digit b);
-+
-+/* initialize and set 32-bit value */
-+int mp_init_set_int (mp_int * a, unsigned long b);
-+
-+/* copy, b = a */
-+int mp_copy(mp_int *a, mp_int *b);
-+
-+/* inits and copies, a = b */
-+int mp_init_copy(mp_int *a, mp_int *b);
-+
-+/* trim unused digits */
-+void mp_clamp(mp_int *a);
-+
-+/* ---> digit manipulation <--- */
-+
-+/* right shift by "b" digits */
-+void mp_rshd(mp_int *a, int b);
-+
-+/* left shift by "b" digits */
-+int mp_lshd(mp_int *a, int b);
-+
-+/* c = a / 2**b */
-+int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
-+
-+/* b = a/2 */
-+int mp_div_2(mp_int *a, mp_int *b);
-+
-+/* c = a * 2**b */
-+int mp_mul_2d(mp_int *a, int b, mp_int *c);
-+
-+/* b = a*2 */
-+int mp_mul_2(mp_int *a, mp_int *b);
-+
-+/* c = a mod 2**d */
-+int mp_mod_2d(mp_int *a, int b, mp_int *c);
-+
-+/* computes a = 2**b */
-+int mp_2expt(mp_int *a, int b);
-+
-+/* Counts the number of lsbs which are zero before the first zero bit */
-+int mp_cnt_lsb(mp_int *a);
-+
-+/* I Love Earth! */
-+
-+/* makes a pseudo-random int of a given size */
-+int mp_rand(mp_int *a, int digits);
-+
-+/* ---> binary operations <--- */
-+/* c = a XOR b */
-+int mp_xor(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* c = a OR b */
-+int mp_or(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* c = a AND b */
-+int mp_and(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* ---> Basic arithmetic <--- */
-+
-+/* b = -a */
-+int mp_neg(mp_int *a, mp_int *b);
-+
-+/* b = |a| */
-+int mp_abs(mp_int *a, mp_int *b);
-+
-+/* compare a to b */
-+int mp_cmp(mp_int *a, mp_int *b);
-+
-+/* compare |a| to |b| */
-+int mp_cmp_mag(mp_int *a, mp_int *b);
-+
-+/* c = a + b */
-+int mp_add(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* c = a - b */
-+int mp_sub(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* c = a * b */
-+int mp_mul(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* b = a*a */
-+int mp_sqr(mp_int *a, mp_int *b);
-+
-+/* a/b => cb + d == a */
-+int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-+
-+/* c = a mod b, 0 <= c < b */
-+int mp_mod(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* ---> single digit functions <--- */
-+
-+/* compare against a single digit */
-+int mp_cmp_d(mp_int *a, mp_digit b);
-+
-+/* c = a + b */
-+int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
-+
-+/* c = a - b */
-+int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
-+
-+/* c = a * b */
-+int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
-+
-+/* a/b => cb + d == a */
-+int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
-+
-+/* a/3 => 3c + d == a */
-+int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
-+
-+/* c = a**b */
-+int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
-+
-+/* c = a mod b, 0 <= c < b */
-+int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
-+
-+/* ---> number theory <--- */
-+
-+/* d = a + b (mod c) */
-+int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-+
-+/* d = a - b (mod c) */
-+int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-+
-+/* d = a * b (mod c) */
-+int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-+
-+/* c = a * a (mod b) */
-+int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* c = 1/a (mod b) */
-+int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* c = (a, b) */
-+int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* produces value such that U1*a + U2*b = U3 */
-+int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
-+
-+/* c = [a, b] or (a*b)/(a, b) */
-+int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* finds one of the b'th root of a, such that |c|**b <= |a|
-+ *
-+ * returns error if a < 0 and b is even
-+ */
-+int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
-+
-+/* special sqrt algo */
-+int mp_sqrt(mp_int *arg, mp_int *ret);
-+
-+/* is number a square? */
-+int mp_is_square(mp_int *arg, int *ret);
-+
-+/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
-+int mp_jacobi(mp_int *a, mp_int *n, int *c);
-+
-+/* used to setup the Barrett reduction for a given modulus b */
-+int mp_reduce_setup(mp_int *a, mp_int *b);
-+
-+/* Barrett Reduction, computes a (mod b) with a precomputed value c
-+ *
-+ * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
-+ * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
-+ */
-+int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
-+
-+/* setups the montgomery reduction */
-+int mp_montgomery_setup(mp_int *a, mp_digit *mp);
-+
-+/* computes a = B**n mod b without division or multiplication useful for
-+ * normalizing numbers in a Montgomery system.
-+ */
-+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
-+
-+/* computes x/R == x (mod N) via Montgomery Reduction */
-+int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-+
-+/* returns 1 if a is a valid DR modulus */
-+int mp_dr_is_modulus(mp_int *a);
-+
-+/* sets the value of "d" required for mp_dr_reduce */
-+void mp_dr_setup(mp_int *a, mp_digit *d);
-+
-+/* reduces a modulo b using the Diminished Radix method */
-+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
-+
-+/* returns true if a can be reduced with mp_reduce_2k */
-+int mp_reduce_is_2k(mp_int *a);
-+
-+/* determines k value for 2k reduction */
-+int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
-+
-+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
-+
-+/* returns true if a can be reduced with mp_reduce_2k_l */
-+int mp_reduce_is_2k_l(mp_int *a);
-+
-+/* determines k value for 2k reduction */
-+int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
-+
-+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-+int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
-+
-+/* d = a**b (mod c) */
-+int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-+
-+/* ---> Primes <--- */
-+
-+/* number of primes */
-+#ifdef MP_8BIT
-+ #define PRIME_SIZE 31
-+#else
-+ #define PRIME_SIZE 256
-+#endif
-+
-+/* table of first PRIME_SIZE primes */
-+extern const mp_digit ltm_prime_tab[];
-+
-+/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
-+int mp_prime_is_divisible(mp_int *a, int *result);
-+
-+/* performs one Fermat test of "a" using base "b".
-+ * Sets result to 0 if composite or 1 if probable prime
-+ */
-+int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
-+
-+/* performs one Miller-Rabin test of "a" using base "b".
-+ * Sets result to 0 if composite or 1 if probable prime
-+ */
-+int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
-+
-+/* This gives [for a given bit size] the number of trials required
-+ * such that Miller-Rabin gives a prob of failure lower than 2^-96
-+ */
-+int mp_prime_rabin_miller_trials(int size);
-+
-+/* performs t rounds of Miller-Rabin on "a" using the first
-+ * t prime bases. Also performs an initial sieve of trial
-+ * division. Determines if "a" is prime with probability
-+ * of error no more than (1/4)**t.
-+ *
-+ * Sets result to 1 if probably prime, 0 otherwise
-+ */
-+int mp_prime_is_prime(mp_int *a, int t, int *result);
-+
-+/* finds the next prime after the number "a" using "t" trials
-+ * of Miller-Rabin.
-+ *
-+ * bbs_style = 1 means the prime must be congruent to 3 mod 4
-+ */
-+int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
-+
-+/* makes a truly random prime of a given size (bytes),
-+ * call with bbs = 1 if you want it to be congruent to 3 mod 4
-+ *
-+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
-+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
-+ * so it can be NULL
-+ *
-+ * The prime generated will be larger than 2^(8*size).
-+ */
-+#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
-+
-+/* makes a truly random prime of a given size (bits),
-+ *
-+ * Flags are as follows:
-+ *
-+ * LTM_PRIME_BBS - make prime congruent to 3 mod 4
-+ * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
-+ * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
-+ * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
-+ *
-+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
-+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
-+ * so it can be NULL
-+ *
-+ */
-+int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
-+
-+int mp_find_prime(mp_int *a);
-+
-+int mp_isprime(mp_int *a);
-+
-+/* ---> radix conversion <--- */
-+int mp_count_bits(mp_int *a);
-+
-+int mp_unsigned_bin_size(mp_int *a);
-+int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
-+int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-+int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
-+
-+int mp_signed_bin_size(mp_int *a);
-+int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
-+int mp_to_signed_bin(mp_int *a, unsigned char *b);
-+int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
-+
-+int mp_read_radix(mp_int *a, const char *str, int radix);
-+int mp_toradix(mp_int *a, char *str, int radix);
-+int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
-+int mp_radix_size(mp_int *a, int radix, int *size);
-+
-+int mp_fread(mp_int *a, int radix, FILE *stream);
-+int mp_fwrite(mp_int *a, int radix, FILE *stream);
-+
-+#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
-+#define mp_raw_size(mp) mp_signed_bin_size(mp)
-+#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
-+#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
-+#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
-+#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
-+
-+#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
-+#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
-+#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
-+#define mp_tohex(M, S) mp_toradix((M), (S), 16)
-+
-+/* lowlevel functions, do not call! */
-+int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
-+int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
-+#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
-+int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-+int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-+int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-+int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-+int fast_s_mp_sqr(mp_int *a, mp_int *b);
-+int s_mp_sqr(mp_int *a, mp_int *b);
-+int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
-+int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
-+int mp_karatsuba_sqr(mp_int *a, mp_int *b);
-+int mp_toom_sqr(mp_int *a, mp_int *b);
-+int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
-+int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-+int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
-+int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);
-+void bn_reverse(unsigned char *s, int len);
-+
-+extern const char *mp_s_rmap;
-+
-+#ifdef __cplusplus
-+ }
-+#endif
-+
-+#endif