diff options
Diffstat (limited to 'security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h')
-rw-r--r-- | security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h | 592 |
1 files changed, 0 insertions, 592 deletions
diff --git a/security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h b/security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h deleted file mode 100644 index 64a374e5a4a..00000000000 --- a/security/heimdal/patches/patch-lib_hcrypto_libtommath_tommath.h +++ /dev/null @@ -1,592 +0,0 @@ -$NetBSD: patch-lib_hcrypto_libtommath_tommath.h,v 1.3 2011/09/15 13:01:14 hans Exp $ - ---- lib/hcrypto/libtommath/tommath.h.orig 2011-09-15 09:31:23.190661136 +0200 -+++ lib/hcrypto/libtommath/tommath.h 2011-09-15 09:32:00.326647970 +0200 -@@ -0,0 +1,587 @@ -+/* LibTomMath, multiple-precision integer library -- Tom St Denis -+ * -+ * LibTomMath is a library that provides multiple-precision -+ * integer arithmetic as well as number theoretic functionality. -+ * -+ * The library was designed directly after the MPI library by -+ * Michael Fromberger but has been written from scratch with -+ * additional optimizations in place. -+ * -+ * The library is free for all purposes without any express -+ * guarantee it works. -+ * -+ * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com -+ */ -+#ifndef BN_H_ -+#define BN_H_ -+ -+#include <stdio.h> -+#include <string.h> -+#include <stdlib.h> -+#include <ctype.h> -+#include <limits.h> -+ -+#include <tommath_class.h> -+ -+#ifndef MIN -+ #define MIN(x,y) ((x)<(y)?(x):(y)) -+#endif -+ -+#ifndef MAX -+ #define MAX(x,y) ((x)>(y)?(x):(y)) -+#endif -+ -+#ifdef __cplusplus -+extern "C" { -+ -+/* C++ compilers don't like assigning void * to mp_digit * */ -+#define OPT_CAST(x) (x *) -+ -+#else -+ -+/* C on the other hand doesn't care */ -+#define OPT_CAST(x) -+ -+#endif -+ -+ -+/* detect 64-bit mode if possible */ -+#if defined(__x86_64__) -+ #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) -+ #define MP_64BIT -+ #endif -+#endif -+ -+/* some default configurations. -+ * -+ * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits -+ * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits -+ * -+ * At the very least a mp_digit must be able to hold 7 bits -+ * [any size beyond that is ok provided it doesn't overflow the data type] -+ */ -+#ifdef MP_8BIT -+ typedef unsigned char mp_digit; -+ typedef unsigned short mp_word; -+#elif defined(MP_16BIT) -+ typedef unsigned short mp_digit; -+ typedef unsigned long mp_word; -+#elif defined(MP_64BIT) -+ /* for GCC only on supported platforms */ -+#ifndef CRYPT -+ typedef unsigned long long ulong64; -+ typedef signed long long long64; -+#endif -+ -+ typedef unsigned long mp_digit; -+ typedef unsigned long mp_word __attribute__ ((mode(TI))); -+ -+ #define DIGIT_BIT 60 -+#else -+ /* this is the default case, 28-bit digits */ -+ -+ /* this is to make porting into LibTomCrypt easier :-) */ -+#ifndef CRYPT -+ #if defined(_MSC_VER) || defined(__BORLANDC__) -+ typedef unsigned __int64 ulong64; -+ typedef signed __int64 long64; -+ #else -+ typedef unsigned long long ulong64; -+ typedef signed long long long64; -+ #endif -+#endif -+ -+ typedef unsigned long mp_digit; -+ typedef ulong64 mp_word; -+ -+#ifdef MP_31BIT -+ /* this is an extension that uses 31-bit digits */ -+ #define DIGIT_BIT 31 -+#else -+ /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ -+ #define DIGIT_BIT 28 -+ #define MP_28BIT -+#endif -+#endif -+ -+/* define heap macros */ -+#ifndef CRYPT -+ /* default to libc stuff */ -+ #ifndef XMALLOC -+ #define XMALLOC malloc -+ #define XFREE free -+ #define XREALLOC realloc -+ #define XCALLOC calloc -+ #else -+ /* prototypes for our heap functions */ -+ extern void *XMALLOC(size_t n); -+ extern void *XREALLOC(void *p, size_t n); -+ extern void *XCALLOC(size_t n, size_t s); -+ extern void XFREE(void *p); -+ #endif -+#endif -+ -+ -+/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ -+#ifndef DIGIT_BIT -+ #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ -+#endif -+ -+#define MP_DIGIT_BIT DIGIT_BIT -+#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) -+#define MP_DIGIT_MAX MP_MASK -+ -+/* equalities */ -+#define MP_LT -1 /* less than */ -+#define MP_EQ 0 /* equal to */ -+#define MP_GT 1 /* greater than */ -+ -+#define MP_ZPOS 0 /* positive integer */ -+#define MP_NEG 1 /* negative */ -+ -+#define MP_OKAY 0 /* ok result */ -+#define MP_MEM -2 /* out of mem */ -+#define MP_VAL -3 /* invalid input */ -+#define MP_RANGE MP_VAL -+ -+#define MP_YES 1 /* yes response */ -+#define MP_NO 0 /* no response */ -+ -+/* Primality generation flags */ -+#define LTM_PRIME_BBS 0x0001 /* BBS style prime */ -+#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ -+#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ -+ -+typedef int mp_err; -+ -+/* you'll have to tune these... */ -+extern int KARATSUBA_MUL_CUTOFF, -+ KARATSUBA_SQR_CUTOFF, -+ TOOM_MUL_CUTOFF, -+ TOOM_SQR_CUTOFF; -+ -+/* define this to use lower memory usage routines (exptmods mostly) */ -+/* #define MP_LOW_MEM */ -+ -+/* default precision */ -+#ifndef MP_PREC -+ #ifndef MP_LOW_MEM -+ #define MP_PREC 32 /* default digits of precision */ -+ #else -+ #define MP_PREC 8 /* default digits of precision */ -+ #endif -+#endif -+ -+/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ -+#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) -+ -+/* the infamous mp_int structure */ -+typedef struct { -+ int used, alloc, sign; -+ mp_digit *dp; -+} mp_int; -+ -+/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ -+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); -+ -+ -+#define USED(m) ((m)->used) -+#define DIGIT(m,k) ((m)->dp[(k)]) -+#define SIGN(m) ((m)->sign) -+ -+/* error code to char* string */ -+char *mp_error_to_string(int code); -+ -+/* ---> init and deinit bignum functions <--- */ -+/* init a bignum */ -+int mp_init(mp_int *a); -+ -+/* free a bignum */ -+void mp_clear(mp_int *a); -+ -+/* init a null terminated series of arguments */ -+int mp_init_multi(mp_int *mp, ...); -+ -+/* clear a null terminated series of arguments */ -+void mp_clear_multi(mp_int *mp, ...); -+ -+/* exchange two ints */ -+void mp_exch(mp_int *a, mp_int *b); -+ -+/* shrink ram required for a bignum */ -+int mp_shrink(mp_int *a); -+ -+/* grow an int to a given size */ -+int mp_grow(mp_int *a, int size); -+ -+/* init to a given number of digits */ -+int mp_init_size(mp_int *a, int size); -+ -+/* ---> Basic Manipulations <--- */ -+#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) -+#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) -+#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) -+#define mp_isneg(a) (((a)->sign) ? MP_YES : MP_NO) -+ -+/* set to zero */ -+void mp_zero(mp_int *a); -+ -+/* set to zero, multi */ -+void mp_zero_multi(mp_int *a, ...); -+ -+/* set to a digit */ -+void mp_set(mp_int *a, mp_digit b); -+ -+/* set a 32-bit const */ -+int mp_set_int(mp_int *a, unsigned long b); -+ -+/* get a 32-bit value */ -+unsigned long mp_get_int(mp_int * a); -+ -+/* initialize and set a digit */ -+int mp_init_set (mp_int * a, mp_digit b); -+ -+/* initialize and set 32-bit value */ -+int mp_init_set_int (mp_int * a, unsigned long b); -+ -+/* copy, b = a */ -+int mp_copy(mp_int *a, mp_int *b); -+ -+/* inits and copies, a = b */ -+int mp_init_copy(mp_int *a, mp_int *b); -+ -+/* trim unused digits */ -+void mp_clamp(mp_int *a); -+ -+/* ---> digit manipulation <--- */ -+ -+/* right shift by "b" digits */ -+void mp_rshd(mp_int *a, int b); -+ -+/* left shift by "b" digits */ -+int mp_lshd(mp_int *a, int b); -+ -+/* c = a / 2**b */ -+int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); -+ -+/* b = a/2 */ -+int mp_div_2(mp_int *a, mp_int *b); -+ -+/* c = a * 2**b */ -+int mp_mul_2d(mp_int *a, int b, mp_int *c); -+ -+/* b = a*2 */ -+int mp_mul_2(mp_int *a, mp_int *b); -+ -+/* c = a mod 2**d */ -+int mp_mod_2d(mp_int *a, int b, mp_int *c); -+ -+/* computes a = 2**b */ -+int mp_2expt(mp_int *a, int b); -+ -+/* Counts the number of lsbs which are zero before the first zero bit */ -+int mp_cnt_lsb(mp_int *a); -+ -+/* I Love Earth! */ -+ -+/* makes a pseudo-random int of a given size */ -+int mp_rand(mp_int *a, int digits); -+ -+/* ---> binary operations <--- */ -+/* c = a XOR b */ -+int mp_xor(mp_int *a, mp_int *b, mp_int *c); -+ -+/* c = a OR b */ -+int mp_or(mp_int *a, mp_int *b, mp_int *c); -+ -+/* c = a AND b */ -+int mp_and(mp_int *a, mp_int *b, mp_int *c); -+ -+/* ---> Basic arithmetic <--- */ -+ -+/* b = -a */ -+int mp_neg(mp_int *a, mp_int *b); -+ -+/* b = |a| */ -+int mp_abs(mp_int *a, mp_int *b); -+ -+/* compare a to b */ -+int mp_cmp(mp_int *a, mp_int *b); -+ -+/* compare |a| to |b| */ -+int mp_cmp_mag(mp_int *a, mp_int *b); -+ -+/* c = a + b */ -+int mp_add(mp_int *a, mp_int *b, mp_int *c); -+ -+/* c = a - b */ -+int mp_sub(mp_int *a, mp_int *b, mp_int *c); -+ -+/* c = a * b */ -+int mp_mul(mp_int *a, mp_int *b, mp_int *c); -+ -+/* b = a*a */ -+int mp_sqr(mp_int *a, mp_int *b); -+ -+/* a/b => cb + d == a */ -+int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); -+ -+/* c = a mod b, 0 <= c < b */ -+int mp_mod(mp_int *a, mp_int *b, mp_int *c); -+ -+/* ---> single digit functions <--- */ -+ -+/* compare against a single digit */ -+int mp_cmp_d(mp_int *a, mp_digit b); -+ -+/* c = a + b */ -+int mp_add_d(mp_int *a, mp_digit b, mp_int *c); -+ -+/* c = a - b */ -+int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); -+ -+/* c = a * b */ -+int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); -+ -+/* a/b => cb + d == a */ -+int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); -+ -+/* a/3 => 3c + d == a */ -+int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); -+ -+/* c = a**b */ -+int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); -+ -+/* c = a mod b, 0 <= c < b */ -+int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); -+ -+/* ---> number theory <--- */ -+ -+/* d = a + b (mod c) */ -+int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); -+ -+/* d = a - b (mod c) */ -+int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); -+ -+/* d = a * b (mod c) */ -+int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); -+ -+/* c = a * a (mod b) */ -+int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); -+ -+/* c = 1/a (mod b) */ -+int mp_invmod(mp_int *a, mp_int *b, mp_int *c); -+ -+/* c = (a, b) */ -+int mp_gcd(mp_int *a, mp_int *b, mp_int *c); -+ -+/* produces value such that U1*a + U2*b = U3 */ -+int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); -+ -+/* c = [a, b] or (a*b)/(a, b) */ -+int mp_lcm(mp_int *a, mp_int *b, mp_int *c); -+ -+/* finds one of the b'th root of a, such that |c|**b <= |a| -+ * -+ * returns error if a < 0 and b is even -+ */ -+int mp_n_root(mp_int *a, mp_digit b, mp_int *c); -+ -+/* special sqrt algo */ -+int mp_sqrt(mp_int *arg, mp_int *ret); -+ -+/* is number a square? */ -+int mp_is_square(mp_int *arg, int *ret); -+ -+/* computes the jacobi c = (a | n) (or Legendre if b is prime) */ -+int mp_jacobi(mp_int *a, mp_int *n, int *c); -+ -+/* used to setup the Barrett reduction for a given modulus b */ -+int mp_reduce_setup(mp_int *a, mp_int *b); -+ -+/* Barrett Reduction, computes a (mod b) with a precomputed value c -+ * -+ * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely -+ * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. -+ */ -+int mp_reduce(mp_int *a, mp_int *b, mp_int *c); -+ -+/* setups the montgomery reduction */ -+int mp_montgomery_setup(mp_int *a, mp_digit *mp); -+ -+/* computes a = B**n mod b without division or multiplication useful for -+ * normalizing numbers in a Montgomery system. -+ */ -+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); -+ -+/* computes x/R == x (mod N) via Montgomery Reduction */ -+int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -+ -+/* returns 1 if a is a valid DR modulus */ -+int mp_dr_is_modulus(mp_int *a); -+ -+/* sets the value of "d" required for mp_dr_reduce */ -+void mp_dr_setup(mp_int *a, mp_digit *d); -+ -+/* reduces a modulo b using the Diminished Radix method */ -+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); -+ -+/* returns true if a can be reduced with mp_reduce_2k */ -+int mp_reduce_is_2k(mp_int *a); -+ -+/* determines k value for 2k reduction */ -+int mp_reduce_2k_setup(mp_int *a, mp_digit *d); -+ -+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); -+ -+/* returns true if a can be reduced with mp_reduce_2k_l */ -+int mp_reduce_is_2k_l(mp_int *a); -+ -+/* determines k value for 2k reduction */ -+int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); -+ -+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -+int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); -+ -+/* d = a**b (mod c) */ -+int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); -+ -+/* ---> Primes <--- */ -+ -+/* number of primes */ -+#ifdef MP_8BIT -+ #define PRIME_SIZE 31 -+#else -+ #define PRIME_SIZE 256 -+#endif -+ -+/* table of first PRIME_SIZE primes */ -+extern const mp_digit ltm_prime_tab[]; -+ -+/* result=1 if a is divisible by one of the first PRIME_SIZE primes */ -+int mp_prime_is_divisible(mp_int *a, int *result); -+ -+/* performs one Fermat test of "a" using base "b". -+ * Sets result to 0 if composite or 1 if probable prime -+ */ -+int mp_prime_fermat(mp_int *a, mp_int *b, int *result); -+ -+/* performs one Miller-Rabin test of "a" using base "b". -+ * Sets result to 0 if composite or 1 if probable prime -+ */ -+int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); -+ -+/* This gives [for a given bit size] the number of trials required -+ * such that Miller-Rabin gives a prob of failure lower than 2^-96 -+ */ -+int mp_prime_rabin_miller_trials(int size); -+ -+/* performs t rounds of Miller-Rabin on "a" using the first -+ * t prime bases. Also performs an initial sieve of trial -+ * division. Determines if "a" is prime with probability -+ * of error no more than (1/4)**t. -+ * -+ * Sets result to 1 if probably prime, 0 otherwise -+ */ -+int mp_prime_is_prime(mp_int *a, int t, int *result); -+ -+/* finds the next prime after the number "a" using "t" trials -+ * of Miller-Rabin. -+ * -+ * bbs_style = 1 means the prime must be congruent to 3 mod 4 -+ */ -+int mp_prime_next_prime(mp_int *a, int t, int bbs_style); -+ -+/* makes a truly random prime of a given size (bytes), -+ * call with bbs = 1 if you want it to be congruent to 3 mod 4 -+ * -+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can -+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself -+ * so it can be NULL -+ * -+ * The prime generated will be larger than 2^(8*size). -+ */ -+#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) -+ -+/* makes a truly random prime of a given size (bits), -+ * -+ * Flags are as follows: -+ * -+ * LTM_PRIME_BBS - make prime congruent to 3 mod 4 -+ * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) -+ * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero -+ * LTM_PRIME_2MSB_ON - make the 2nd highest bit one -+ * -+ * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can -+ * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself -+ * so it can be NULL -+ * -+ */ -+int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); -+ -+int mp_find_prime(mp_int *a); -+ -+int mp_isprime(mp_int *a); -+ -+/* ---> radix conversion <--- */ -+int mp_count_bits(mp_int *a); -+ -+int mp_unsigned_bin_size(mp_int *a); -+int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); -+int mp_to_unsigned_bin(mp_int *a, unsigned char *b); -+int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); -+ -+int mp_signed_bin_size(mp_int *a); -+int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); -+int mp_to_signed_bin(mp_int *a, unsigned char *b); -+int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); -+ -+int mp_read_radix(mp_int *a, const char *str, int radix); -+int mp_toradix(mp_int *a, char *str, int radix); -+int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); -+int mp_radix_size(mp_int *a, int radix, int *size); -+ -+int mp_fread(mp_int *a, int radix, FILE *stream); -+int mp_fwrite(mp_int *a, int radix, FILE *stream); -+ -+#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) -+#define mp_raw_size(mp) mp_signed_bin_size(mp) -+#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) -+#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) -+#define mp_mag_size(mp) mp_unsigned_bin_size(mp) -+#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) -+ -+#define mp_tobinary(M, S) mp_toradix((M), (S), 2) -+#define mp_tooctal(M, S) mp_toradix((M), (S), 8) -+#define mp_todecimal(M, S) mp_toradix((M), (S), 10) -+#define mp_tohex(M, S) mp_toradix((M), (S), 16) -+ -+/* lowlevel functions, do not call! */ -+int s_mp_add(mp_int *a, mp_int *b, mp_int *c); -+int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); -+#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) -+int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -+int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -+int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -+int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -+int fast_s_mp_sqr(mp_int *a, mp_int *b); -+int s_mp_sqr(mp_int *a, mp_int *b); -+int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); -+int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); -+int mp_karatsuba_sqr(mp_int *a, mp_int *b); -+int mp_toom_sqr(mp_int *a, mp_int *b); -+int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); -+int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); -+int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -+int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); -+int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); -+void bn_reverse(unsigned char *s, int len); -+ -+extern const char *mp_s_rmap; -+ -+#ifdef __cplusplus -+ } -+#endif -+ -+#endif |