1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
|
$NetBSD: patch-src_misc_cmplx.h,v 1.1 2012/12/24 21:13:28 joerg Exp $
--- src/misc/cmplx.h.orig 2012-12-23 17:55:27.000000000 +0000
+++ src/misc/cmplx.h
@@ -43,7 +43,7 @@ typedef fftw_complex complex;
/*
* Complex multiplication.
*/
-extern __inline__ complex cmul(complex x, complex y)
+__attribute__((gnu_inline)) extern __inline__ complex cmul(complex x, complex y)
{
complex z;
@@ -56,7 +56,7 @@ extern __inline__ complex cmul(complex x
/*
* Complex addition.
*/
-extern __inline__ complex cadd(complex x, complex y)
+__attribute__((gnu_inline)) extern __inline__ complex cadd(complex x, complex y)
{
complex z;
@@ -69,7 +69,7 @@ extern __inline__ complex cadd(complex x
/*
* Complex subtraction.
*/
-extern __inline__ complex csub(complex x, complex y)
+__attribute__((gnu_inline)) extern __inline__ complex csub(complex x, complex y)
{
complex z;
@@ -82,7 +82,7 @@ extern __inline__ complex csub(complex x
/*
* Complex multiply-accumulate.
*/
-extern __inline__ complex cmac(complex *a, complex *b, int ptr, int len)
+__attribute__((gnu_inline)) extern __inline__ complex cmac(complex *a, complex *b, int ptr, int len)
{
complex z;
int i;
@@ -104,7 +104,7 @@ extern __inline__ complex cmac(complex *
* Complex ... yeah, what??? Returns a complex number that has the
* properties: |z| = |x| * |y| and arg(z) = arg(y) - arg(x)
*/
-extern __inline__ complex ccor(complex x, complex y)
+__attribute__((gnu_inline)) extern __inline__ complex ccor(complex x, complex y)
{
complex z;
@@ -117,7 +117,7 @@ extern __inline__ complex ccor(complex x
/*
* Real part of the complex ???
*/
-extern __inline__ double ccorI(complex x, complex y)
+__attribute__((gnu_inline)) extern __inline__ double ccorI(complex x, complex y)
{
return c_re(x) * c_re(y) + c_im(x) * c_im(y);
}
@@ -125,7 +125,7 @@ extern __inline__ double ccorI(complex x
/*
* Imaginary part of the complex ???
*/
-extern __inline__ double ccorQ(complex x, complex y)
+__attribute__((gnu_inline)) extern __inline__ double ccorQ(complex x, complex y)
{
return c_re(x) * c_im(y) - c_im(x) * c_re(y);
}
@@ -133,7 +133,7 @@ extern __inline__ double ccorQ(complex x
/*
* Modulo (absolute value) of a complex number.
*/
-extern __inline__ double cmod(complex x)
+__attribute__((gnu_inline)) extern __inline__ double cmod(complex x)
{
return sqrt(c_re(x) * c_re(x) + c_im(x) * c_im(x));
}
@@ -141,7 +141,7 @@ extern __inline__ double cmod(complex x)
/*
* Square of the absolute value (power).
*/
-extern __inline__ double cpwr(complex x)
+__attribute__((gnu_inline)) extern __inline__ double cpwr(complex x)
{
return (c_re(x) * c_re(x) + c_im(x) * c_im(x));
}
@@ -149,7 +149,7 @@ extern __inline__ double cpwr(complex x)
/*
* Argument of a complex number.
*/
-extern __inline__ double carg(complex x)
+__attribute__((gnu_inline)) extern __inline__ double carg(complex x)
{
return atan2(c_im(x), c_re(x));
}
@@ -157,7 +157,7 @@ extern __inline__ double carg(complex x)
/*
* Complex square root.
*/
-extern __inline__ complex csqrt(complex x)
+__attribute__((gnu_inline)) extern __inline__ complex csqrt(complex x)
{
complex z;
|