summaryrefslogtreecommitdiff
path: root/server/mpm/worker/fdqueue.c
blob: 8be7c9fa2da5ad63e16f14508e708ac175e443bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "fdqueue.h"
#include "apr_atomic.h"

typedef struct recycled_pool {
    apr_pool_t *pool;
    struct recycled_pool *next;
} recycled_pool;

struct fd_queue_info_t {
    apr_uint32_t idlers;
    apr_thread_mutex_t *idlers_mutex;
    apr_thread_cond_t *wait_for_idler;
    int terminated;
    int max_idlers;
    recycled_pool  *recycled_pools;
};

static apr_status_t queue_info_cleanup(void *data_)
{
    fd_queue_info_t *qi = data_;
    apr_thread_cond_destroy(qi->wait_for_idler);
    apr_thread_mutex_destroy(qi->idlers_mutex);

    /* Clean up any pools in the recycled list */
    for (;;) {
        struct recycled_pool *first_pool = qi->recycled_pools;
        if (first_pool == NULL) {
            break;
        }
        if (apr_atomic_casptr((volatile void**)&(qi->recycled_pools), first_pool->next,
                              first_pool) == first_pool) {
            apr_pool_destroy(first_pool->pool);
        }
    }

    return APR_SUCCESS;
}

apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info,
                                  apr_pool_t *pool, int max_idlers)
{
    apr_status_t rv;
    fd_queue_info_t *qi;

    qi = apr_pcalloc(pool, sizeof(*qi));

    rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT,
                                 pool);
    if (rv != APR_SUCCESS) {
        return rv;
    }
    rv = apr_thread_cond_create(&qi->wait_for_idler, pool);
    if (rv != APR_SUCCESS) {
        return rv;
    }
    qi->recycled_pools = NULL;
    qi->max_idlers = max_idlers;
    apr_pool_cleanup_register(pool, qi, queue_info_cleanup,
                              apr_pool_cleanup_null);

    *queue_info = qi;

    return APR_SUCCESS;
}

apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info,
                                    apr_pool_t *pool_to_recycle)
{
    apr_status_t rv;
    int prev_idlers;

    /* If we have been given a pool to recycle, atomically link
     * it into the queue_info's list of recycled pools
     */
    if (pool_to_recycle) {
        struct recycled_pool *new_recycle;
        new_recycle = (struct recycled_pool *)apr_palloc(pool_to_recycle,
                                                         sizeof(*new_recycle));
        new_recycle->pool = pool_to_recycle;
        for (;;) {
            new_recycle->next = queue_info->recycled_pools;
            if (apr_atomic_casptr((volatile void**)&(queue_info->recycled_pools),
                                  new_recycle, new_recycle->next) ==
                new_recycle->next) {
                break;
            }
        }
    }

    /* Atomically increment the count of idle workers */
    for (;;) {
        prev_idlers = queue_info->idlers;
        if (apr_atomic_cas32(&(queue_info->idlers), prev_idlers + 1,
                             prev_idlers) == prev_idlers) {
            break;
        }
    }

    /* If this thread just made the idle worker count nonzero,
     * wake up the listener. */
    if (prev_idlers == 0) {
        rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
        if (rv != APR_SUCCESS) {
            return rv;
        }
        rv = apr_thread_cond_signal(queue_info->wait_for_idler);
        if (rv != APR_SUCCESS) {
            apr_thread_mutex_unlock(queue_info->idlers_mutex);
            return rv;
        }
        rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
        if (rv != APR_SUCCESS) {
            return rv;
        }
    }

    return APR_SUCCESS;
}

apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info,
                                          apr_pool_t **recycled_pool)
{
    apr_status_t rv;

    *recycled_pool = NULL;

    /* Block if the count of idle workers is zero */
    if (queue_info->idlers == 0) {
        rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
        if (rv != APR_SUCCESS) {
            return rv;
        }
        /* Re-check the idle worker count to guard against a
         * race condition.  Now that we're in the mutex-protected
         * region, one of two things may have happened:
         *   - If the idle worker count is still zero, the
         *     workers are all still busy, so it's safe to
         *     block on a condition variable.
         *   - If the idle worker count is nonzero, then a
         *     worker has become idle since the first check
         *     of queue_info->idlers above.  It's possible
         *     that the worker has also signaled the condition
         *     variable--and if so, the listener missed it
         *     because it wasn't yet blocked on the condition
         *     variable.  But if the idle worker count is
         *     now nonzero, it's safe for this function to
         *     return immediately.
         */
        if (queue_info->idlers == 0) {
            rv = apr_thread_cond_wait(queue_info->wait_for_idler,
                                  queue_info->idlers_mutex);
            if (rv != APR_SUCCESS) {
                apr_status_t rv2;
                rv2 = apr_thread_mutex_unlock(queue_info->idlers_mutex);
                if (rv2 != APR_SUCCESS) {
                    return rv2;
                }
                return rv;
            }
        }
        rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
        if (rv != APR_SUCCESS) {
            return rv;
        }
    }

    /* Atomically decrement the idle worker count */
    apr_atomic_dec32(&(queue_info->idlers));

    /* Atomically pop a pool from the recycled list */
    for (;;) {
        struct recycled_pool *first_pool = queue_info->recycled_pools;
        if (first_pool == NULL) {
            break;
        }
        if (apr_atomic_casptr((volatile void**)&(queue_info->recycled_pools), first_pool->next,
                              first_pool) == first_pool) {
            *recycled_pool = first_pool->pool;
            break;
        }
    }

    if (queue_info->terminated) {
        return APR_EOF;
    }
    else {
        return APR_SUCCESS;
    }
}

apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info)
{
    apr_status_t rv;
    rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
    if (rv != APR_SUCCESS) {
        return rv;
    }
    queue_info->terminated = 1;
    apr_thread_cond_broadcast(queue_info->wait_for_idler);
    return apr_thread_mutex_unlock(queue_info->idlers_mutex);
}

/**
 * Detects when the fd_queue_t is full. This utility function is expected
 * to be called from within critical sections, and is not threadsafe.
 */
#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds)

/**
 * Detects when the fd_queue_t is empty. This utility function is expected
 * to be called from within critical sections, and is not threadsafe.
 */
#define ap_queue_empty(queue) ((queue)->nelts == 0)

/**
 * Callback routine that is called to destroy this
 * fd_queue_t when its pool is destroyed.
 */
static apr_status_t ap_queue_destroy(void *data)
{
    fd_queue_t *queue = data;

    /* Ignore errors here, we can't do anything about them anyway.
     * XXX: We should at least try to signal an error here, it is
     * indicative of a programmer error. -aaron */
    apr_thread_cond_destroy(queue->not_empty);
    apr_thread_mutex_destroy(queue->one_big_mutex);

    return APR_SUCCESS;
}

/**
 * Initialize the fd_queue_t.
 */
apr_status_t ap_queue_init(fd_queue_t *queue, int queue_capacity, apr_pool_t *a)
{
    int i;
    apr_status_t rv;

    if ((rv = apr_thread_mutex_create(&queue->one_big_mutex,
                                      APR_THREAD_MUTEX_DEFAULT, a)) != APR_SUCCESS) {
        return rv;
    }
    if ((rv = apr_thread_cond_create(&queue->not_empty, a)) != APR_SUCCESS) {
        return rv;
    }

    queue->data = apr_palloc(a, queue_capacity * sizeof(fd_queue_elem_t));
    queue->bounds = queue_capacity;
    queue->nelts = 0;

    /* Set all the sockets in the queue to NULL */
    for (i = 0; i < queue_capacity; ++i)
        queue->data[i].sd = NULL;

    apr_pool_cleanup_register(a, queue, ap_queue_destroy, apr_pool_cleanup_null);

    return APR_SUCCESS;
}

/**
 * Push a new socket onto the queue.
 *
 * precondition: ap_queue_info_wait_for_idler has already been called
 *               to reserve an idle worker thread
 */
apr_status_t ap_queue_push(fd_queue_t *queue, apr_socket_t *sd, apr_pool_t *p)
{
    fd_queue_elem_t *elem;
    apr_status_t rv;

    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }

    AP_DEBUG_ASSERT(!queue->terminated);
    AP_DEBUG_ASSERT(!ap_queue_full(queue));

    elem = &queue->data[queue->nelts];
    elem->sd = sd;
    elem->p = p;
    queue->nelts++;

    apr_thread_cond_signal(queue->not_empty);

    if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }

    return APR_SUCCESS;
}

/**
 * Retrieves the next available socket from the queue. If there are no
 * sockets available, it will block until one becomes available.
 * Once retrieved, the socket is placed into the address specified by
 * 'sd'.
 */
apr_status_t ap_queue_pop(fd_queue_t *queue, apr_socket_t **sd, apr_pool_t **p)
{
    fd_queue_elem_t *elem;
    apr_status_t rv;

    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }

    /* Keep waiting until we wake up and find that the queue is not empty. */
    if (ap_queue_empty(queue)) {
        if (!queue->terminated) {
            apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex);
        }
        /* If we wake up and it's still empty, then we were interrupted */
        if (ap_queue_empty(queue)) {
            rv = apr_thread_mutex_unlock(queue->one_big_mutex);
            if (rv != APR_SUCCESS) {
                return rv;
            }
            if (queue->terminated) {
                return APR_EOF; /* no more elements ever again */
            }
            else {
                return APR_EINTR;
            }
        }
    }

    elem = &queue->data[--queue->nelts];
    *sd = elem->sd;
    *p = elem->p;
#ifdef AP_DEBUG
    elem->sd = NULL;
    elem->p = NULL;
#endif /* AP_DEBUG */

    rv = apr_thread_mutex_unlock(queue->one_big_mutex);
    return rv;
}

apr_status_t ap_queue_interrupt_all(fd_queue_t *queue)
{
    apr_status_t rv;

    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }
    apr_thread_cond_broadcast(queue->not_empty);
    return apr_thread_mutex_unlock(queue->one_big_mutex);
}

apr_status_t ap_queue_term(fd_queue_t *queue)
{
    apr_status_t rv;

    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }
    /* we must hold one_big_mutex when setting this... otherwise,
     * we could end up setting it and waking everybody up just after a
     * would-be popper checks it but right before they block
     */
    queue->terminated = 1;
    if ((rv = apr_thread_mutex_unlock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }
    return ap_queue_interrupt_all(queue);
}