1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/* Copyright 2000-2005 The Apache Software Foundation or its licensors, as
* applicable.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*Read/Write locking implementation based on the MultiLock code from
* Stephen Beaulieu <hippo@be.com>
*/
#include "apr_arch_thread_mutex.h"
#include "apr_strings.h"
#include "apr_portable.h"
static apr_status_t _thread_mutex_cleanup(void * data)
{
apr_thread_mutex_t *lock = (apr_thread_mutex_t*)data;
if (lock->LockCount != 0) {
/* we're still locked... */
while (atomic_add(&lock->LockCount , -1) > 1){
/* OK we had more than one person waiting on the lock so
* the sem is also locked. Release it until we have no more
* locks left.
*/
release_sem (lock->Lock);
}
}
delete_sem(lock->Lock);
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_create(apr_thread_mutex_t **mutex,
unsigned int flags,
apr_pool_t *pool)
{
apr_thread_mutex_t *new_m;
apr_status_t stat = APR_SUCCESS;
new_m = (apr_thread_mutex_t *)apr_pcalloc(pool, sizeof(apr_thread_mutex_t));
if (new_m == NULL){
return APR_ENOMEM;
}
if ((stat = create_sem(0, "APR_Lock")) < B_NO_ERROR) {
_thread_mutex_cleanup(new_m);
return stat;
}
new_m->LockCount = 0;
new_m->Lock = stat;
new_m->pool = pool;
/* Optimal default is APR_THREAD_MUTEX_UNNESTED,
* no additional checks required for either flag.
*/
new_m->nested = flags & APR_THREAD_MUTEX_NESTED;
apr_pool_cleanup_register(new_m->pool, (void *)new_m, _thread_mutex_cleanup,
apr_pool_cleanup_null);
(*mutex) = new_m;
return APR_SUCCESS;
}
#if APR_HAS_CREATE_LOCKS_NP
APR_DECLARE(apr_status_t) apr_thread_mutex_create_np(apr_thread_mutex_t **mutex,
const char *fname,
apr_lockmech_e_np mech,
apr_pool_t *pool)
{
return APR_ENOTIMPL;
}
#endif
APR_DECLARE(apr_status_t) apr_thread_mutex_lock(apr_thread_mutex_t *mutex)
{
int32 stat;
thread_id me = find_thread(NULL);
if (mutex->nested && mutex->owner == me) {
mutex->owner_ref++;
return APR_SUCCESS;
}
if (atomic_add(&mutex->LockCount, 1) > 0) {
if ((stat = acquire_sem(mutex->Lock)) < B_NO_ERROR) {
/* Oh dear, acquire_sem failed!! */
atomic_add(&mutex->LockCount, -1);
return stat;
}
}
mutex->owner = me;
mutex->owner_ref = 1;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_trylock(apr_thread_mutex_t *mutex)
{
return APR_ENOTIMPL;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_unlock(apr_thread_mutex_t *mutex)
{
int32 stat;
if (mutex->nested && mutex->owner == find_thread(NULL)) {
mutex->owner_ref--;
if (mutex->owner_ref > 0)
return APR_SUCCESS;
}
if (atomic_add(&mutex->LockCount, -1) > 1) {
if ((stat = release_sem(mutex->Lock)) < B_NO_ERROR) {
atomic_add(&mutex->LockCount, 1);
return stat;
}
}
mutex->owner = -1;
mutex->owner_ref = 0;
return APR_SUCCESS;
}
APR_DECLARE(apr_status_t) apr_thread_mutex_destroy(apr_thread_mutex_t *mutex)
{
apr_status_t stat;
if ((stat = _thread_mutex_cleanup(mutex)) == APR_SUCCESS) {
apr_pool_cleanup_kill(mutex->pool, mutex, _thread_mutex_cleanup);
return APR_SUCCESS;
}
return stat;
}
APR_POOL_IMPLEMENT_ACCESSOR(thread_mutex)
|