summaryrefslogtreecommitdiff
path: root/docs/reference/search/request/highlighting.asciidoc
blob: 00de5bc5e75aa7cf613534a16d3a118c89933a7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
[[search-request-highlighting]]
=== Highlighting

Allows to highlight search results on one or more fields. The
implementation uses either the lucene `highlighter`, `fast-vector-highlighter`
or `postings-highlighter`. The following is an example of the  search request
body:

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "fields" : {
            "content" : {}
        }
    }
}
--------------------------------------------------

In the above case, the `content` field will be highlighted for each
search hit (there will be another element in each search hit, called
`highlight`, which includes the highlighted fields and the highlighted
fragments).

In order to perform highlighting, the actual content of the field is
required. If the field in question is stored (has `store` set to `true`
in the mapping) it will be used, otherwise, the actual `_source` will
be loaded and the relevant field will be extracted from it.

The field name supports wildcard notation. For example, using `comment_*`
will cause all fields that match the expression to be highlighted.

==== Postings highlighter

If `index_options` is set to `offsets` in the mapping the postings highlighter
will be used instead of the plain highlighter. The postings highlighter:

* Is faster since it doesn't require to reanalyze the text to be highlighted:
the larger the documents the better the performance gain should be
* Requires less disk space than term_vectors, needed for the fast vector
highlighter
* Breaks the text into sentences and highlights them. Plays really well with
natural languages, not as well with fields containing for instance html markup
* Treats the document as the whole corpus, and scores individual sentences as
if they were documents in this corpus, using the  BM25 algorithm

Here is an example of setting the `content` field to allow for
highlighting using the postings highlighter on it:

[source,js]
--------------------------------------------------
{
    "type_name" : {
        "content" : {"index_options" : "offsets"}
    }
}
--------------------------------------------------

[NOTE]
Note that the postings highlighter is meant to perform simple query terms
highlighting, regardless of their positions. That means that when used for
instance in combination with a phrase query, it will highlight all the terms
that the query is composed of, regardless of whether they are actually part of
a query match, effectively ignoring their positions.

[WARNING]
The postings highlighter does support highlighting of multi term queries, like
prefix queries, wildcard queries and so on. On the other hand, this requires
the queries to be rewritten using a proper
<<query-dsl-multi-term-rewrite,rewrite method>> that supports multi term
extraction, which is a potentially expensive operation.


==== Fast vector highlighter

If `term_vector` information is provided by setting `term_vector` to
`with_positions_offsets` in the mapping then the fast vector highlighter
will be used instead of the plain highlighter.  The fast vector highlighter:

* Is faster especially for large fields (> `1MB`)
* Can be customized with `boundary_chars`, `boundary_max_scan`, and
 `fragment_offset` (see <<boundary-characters,below>>)
* Requires setting `term_vector` to `with_positions_offsets` which
  increases the size of the index
* Can combine matches from multiple fields into one result.  See
  `matched_fields`
* Can assign different weights to matches at different positions allowing
  for things like phrase matches being sorted above term matches when
  highlighting a Boosting Query that boosts phrase matches over term matches

Here is an example of setting the `content` field to allow for
highlighting using the fast vector highlighter on it (this will cause
the index to be bigger):

[source,js]
--------------------------------------------------
{
    "type_name" : {
        "content" : {"term_vector" : "with_positions_offsets"}
    }
}
--------------------------------------------------

==== Force highlighter type

The `type` field allows to force a specific highlighter type. This is useful
for instance when needing to use the plain highlighter on a field that has
`term_vectors` enabled. The allowed values are: `plain`, `postings` and `fvh`.
The following is an example that forces the use of the plain highlighter:

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "fields" : {
            "content" : {"type" : "plain"}
        }
    }
}
--------------------------------------------------

==== Force highlighting on source

added[1.0.0.RC1]

Forces the highlighting to highlight fields based on the source even if fields are
stored separately. Defaults to `false`.

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "fields" : {
            "content" : {"force_source" : true}
        }
    }
}
--------------------------------------------------

[[tags]]
==== Highlighting Tags

By default, the highlighting will wrap highlighted text in `<em>` and
`</em>`. This can be controlled by setting `pre_tags` and `post_tags`,
for example:

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "pre_tags" : ["<tag1>"],
        "post_tags" : ["</tag1>"],
        "fields" : {
            "_all" : {}
        }
    }
}
--------------------------------------------------

Using the fast vector highlighter there can be more tags, and the "importance"
is ordered.

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "pre_tags" : ["<tag1>", "<tag2>"],
        "post_tags" : ["</tag1>", "</tag2>"],
        "fields" : {
            "_all" : {}
        }
    }
}
--------------------------------------------------

There are also built in "tag" schemas, with currently a single schema
called `styled` with the following `pre_tags`:

[source,js]
--------------------------------------------------
<em class="hlt1">, <em class="hlt2">, <em class="hlt3">,
<em class="hlt4">, <em class="hlt5">, <em class="hlt6">,
<em class="hlt7">, <em class="hlt8">, <em class="hlt9">,
<em class="hlt10">
--------------------------------------------------

and `</em>` as `post_tags`. If you think of more nice to have built in tag
schemas, just send an email to the mailing list or open an issue. Here
is an example of switching tag schemas:

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "tags_schema" : "styled",
        "fields" : {
            "content" : {}
        }
    }
}
--------------------------------------------------


==== Encoder

An `encoder` parameter can be used to define how highlighted text will
be encoded. It can be either `default` (no encoding) or `html` (will
escape html, if you use html highlighting tags).

==== Highlighted Fragments

Each field highlighted can control the size of the highlighted fragment
in characters (defaults to `100`), and the maximum number of fragments
to return (defaults to `5`).
For example:

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "fields" : {
            "content" : {"fragment_size" : 150, "number_of_fragments" : 3}
        }
    }
}
--------------------------------------------------

The `fragment_size` is ignored when using the postings highlighter, as it
outputs sentences regardless of their length.

On top of this it is possible to specify that highlighted fragments need
to be sorted by score:

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "order" : "score",
        "fields" : {
            "content" : {"fragment_size" : 150, "number_of_fragments" : 3}
        }
    }
}
--------------------------------------------------

If the `number_of_fragments` value is set to `0` then no fragments are
produced, instead the whole content of the field is returned, and of
course it is highlighted. This can be very handy if short texts (like
document title or address) need to be highlighted but no fragmentation
is required. Note that `fragment_size` is ignored in this case.

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "fields" : {
            "_all" : {},
            "bio.title" : {"number_of_fragments" : 0}
        }
    }
}
--------------------------------------------------

When using `fast-vector-highlighter` one can use `fragment_offset`
parameter to control the margin to start highlighting from.

In the case where there is no matching fragment to highlight, the default is
to not return anything. Instead, we can return a snippet of text from the
beginning of the field by setting `no_match_size` (default `0`) to the length
of the text that you want returned. The actual length may be shorter than
specified as it tries to break on a word boundary. When using the postings
highlighter it is not possible to control the actual size of the snippet,
therefore the first sentence gets returned whenever `no_match_size` is
greater than `0`.

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "fields" : {
            "content" : {
                "fragment_size" : 150,
                "number_of_fragments" : 3,
                "no_match_size": 150
            }
        }
    }
}
--------------------------------------------------


==== Highlight query

It is also possible to highlight against a query other than the search
query by setting `highlight_query`.  This is especially useful if you
use a rescore query because those are not taken into account by
highlighting by default.  Elasticsearch does not validate that
`highlight_query` contains the search query in any way so it is possible
to define it so legitimate query results aren't highlighted at all.
Generally it is better to include the search query in the
`highlight_query`.  Here is an example of including both the search
query and the rescore query in `highlight_query`.
[source,js]
--------------------------------------------------
{
    "fields": [ "_id" ],
    "query" : {
        "match": {
            "content": {
                "query": "foo bar"
            }
        }
    },
    "rescore": {
        "window_size": 50,
        "query": {
            "rescore_query" : {
                "match_phrase": {
                    "content": {
                        "query": "foo bar",
                        "phrase_slop": 1
                    }
                }
            },
            "rescore_query_weight" : 10
        }
    },
    "highlight" : {
        "order" : "score",
        "fields" : {
            "content" : {
                "fragment_size" : 150,
                "number_of_fragments" : 3,
                "highlight_query": {
                    "bool": {
                        "must": {
                            "match": {
                                "content": {
                                    "query": "foo bar"
                                }
                            }
                        },
                        "should": {
                            "match_phrase": {
                                "content": {
                                    "query": "foo bar",
                                    "phrase_slop": 1,
                                    "boost": 10.0
                                }
                            }
                        },
                        "minimum_should_match": 0
                    }
                }
            }
        }
    }
}
--------------------------------------------------

Note that the score of text fragment in this case is calculated by the Lucene
highlighting framework. For implementation details you can check the
`ScoreOrderFragmentsBuilder.java` class. On the other hand when using the
postings highlighter the fragments are scored using, as mentioned above,
the BM25 algorithm.

[[highlighting-settings]]
==== Global Settings

Highlighting settings can be set on a global level and then overridden
at the field level.

[source,js]
--------------------------------------------------
{
    "query" : {...},
    "highlight" : {
        "number_of_fragments" : 3,
        "fragment_size" : 150,
        "tag_schema" : "styled",
        "fields" : {
            "_all" : { "pre_tags" : ["<em>"], "post_tags" : ["</em>"] },
            "bio.title" : { "number_of_fragments" : 0 },
            "bio.author" : { "number_of_fragments" : 0 },
            "bio.content" : { "number_of_fragments" : 5, "order" : "score" }
        }
    }
}
--------------------------------------------------

[[field-match]]
==== Require Field Match

`require_field_match` can be set to `true` which will cause a field to
be highlighted only if a query matched that field. `false` means that
terms are highlighted on all requested fields regardless if the query
matches specifically on them.

[[boundary-characters]]
==== Boundary Characters

When highlighting a field using the fast vector highlighter,
`boundary_chars` can be configured to define what constitutes a boundary
for highlighting. It's a single string with each boundary character
defined in it. It defaults to `.,!? \t\n`.

The `boundary_max_scan` allows to control how far to look for boundary
characters, and defaults to `20`.


[[matched-fields]]
==== Matched Fields
The Fast Vector Highlighter can combine matches on multiple fields to
highlight a single field using `matched_fields`.  This is most
intuitive for multifields that analyze the same string in different
ways.  All `matched_fields` must have `term_vector` set to
`with_positions_offsets` but only the field to which the matches are
combined is loaded so only that field would benefit from having
`store` set to `yes`.

In the following examples `content` is analyzed by the `english`
analyzer and `content.plain` is analyzed by the `standard` analyzer.

[source,js]
--------------------------------------------------
{
    "query": {
        "query_string": {
            "query": "content.plain:running scissors",
            "fields": ["content"]
        }
    },
    "highlight": {
        "order": "score",
        "fields": {
            "content": {
                "matched_fields": ["content", "content.plain"],
                "type" : "fvh"
            }
        }
    }
}
--------------------------------------------------
The above matches both "run with scissors" and "running with scissors"
and would highlight "running" and "scissors" but not "run". If both
phrases appear in a large document then "running with scissors" is
sorted above "run with scissors" in the fragments list because there
are more matches in that fragment.

[source,js]
--------------------------------------------------
{
    "query": {
        "query_string": {
            "query": "running scissors",
            "fields": ["content", "content.plain^10"]
        }
    },
    "highlight": {
        "order": "score",
        "fields": {
            "content": {
                "matched_fields": ["content", "content.plain"],
                "type" : "fvh"
            }
        }
    }
}
--------------------------------------------------
The above highlights "run" as well as "running" and "scissors" but
still sorts "running with scissors" above "run with scissors" because
the plain match ("running") is boosted.

[source,js]
--------------------------------------------------
{
    "query": {
        "query_string": {
            "query": "running scissors",
            "fields": ["content", "content.plain^10"]
        }
    },
    "highlight": {
        "order": "score",
        "fields": {
            "content": {
                "matched_fields": ["content.plain"],
                "type" : "fvh"
            }
        }
    }
}
--------------------------------------------------
The above query wouldn't highlight "run" or "scissor" but shows that
it is just fine not to list the field to which the matches are combined
(`content`) in the matched fields.

[NOTE]
Technically it is also fine to add fields to `matched_fields` that
don't share the same underlying string as the field to which the matches
are combined.  The results might not make much sense and if one of the
matches is off the end of the text then the whole the query will fail.

[NOTE]
===================================================================
There is a small amount of overhead involved with setting
`matched_fields` to a non-empty array so always prefer
[source,js]
--------------------------------------------------
    "highlight": {
        "fields": {
            "content": {}
        }
    }
--------------------------------------------------
to
[source,js]
--------------------------------------------------
    "highlight": {
        "fields": {
            "content": {
                "matched_fields": ["content"],
                "type" : "fvh"
            }
        }
    }
--------------------------------------------------
===================================================================

[[phrase-limit]]
==== Phrase Limit
The `fast-vector-highlighter` has a `phrase_limit` parameter that prevents
it from analyzing too many phrases and eating tons of memory.  It defaults
to 256 so only the first 256 matching phrases in the document scored
considered.  You can raise the limit with the `phrase_limit` parameter but
keep in mind that scoring more phrases consumes more time and memory.

If using `matched_fields` keep in mind that `phrase_limit` phrases per
matched field are considered.