1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
|
\documentclass [a4paper,12pt]{article}
\usepackage {graphicx}
\usepackage {intfpc}
\usepackage {longtable}
%\usepackage {float}
\usepackage{listings}
\lstset{language=Delphi}
\lstset{basicstyle=\sffamily\small}
\lstset{commentstyle=\itshape}
\lstset{keywordstyle=\bfseries}
\lstset{frame=tb}
% eats mem for longtable, but speeds up. Set to 10 for minimal mem req.
\setcounter{LTchunksize}{200}
% right aligned longtables
\setlength\LTleft{0pt}
\setlength\LTright\fill
%\restylefloat{table}
%\restylefloat{longtable}
%\squeezetable
\setcounter{totalnumber}{10}
% This comes from the MDWTOOLS package and should discourage floating.
\def\textfraction{0.1}
\def\topfraction{0.9}
\def\bottomfraction{0.9}
\def\floatpagefraction{0.7}
\def\fps@figure{htbp}
\def\fpc@longtable{h}
\title{FREE PASCAL}
\title{Free Pascal 1.0.x Internal documentation\\version 1.0}
\author{Carl Eric Cod\`{e}re}
\makeindex
\begin{document}
\maketitle
\tableofcontents
\newpage
\listoffigures
\newpage
\textbf{TODO:}
\begin{itemize}
\item Describe in detail tsymtable, including all methods and fields
\item Describe in detail procinfo (tprocinfo)
\item Explain how a symbol is inserted into the symbol table (and how alignment requirements are met)
\item Explain pparaitem
\item Explain all symbol table fields
\item Finish all internal routines definitions
\item Architecture of the assembler generators + API
\item Architecture of the PPU file and information
\item Explain systems.pas
\item routine parsing and code generation algorithm
\item (MvdV) OS specific stuff (like hardcoded linker includedirs)
\end{itemize}
\section{Introduction}
\label{sec:introductionappendix}
This document describes the internal architecture of the Free Pascal
Compiler version 1.0 release. This document is meant to be used as a guide
for those who wish to understand how the compiler was created. Most of the
architecture of the compiler described herein is based on the m68k version
on the compiler, the i386 version of the compiler ressembles closely the
m68k version, but there are subtle differences in the different interfaces.
The architecture, and the different passes of the compiler are shown in
figure \seefig{passesfig}.
\begin{figure}
\ifpdf
% \epsfig{file=arch1d.pdf,width=\textwidth}
\includegraphics{arch1.pdf}
\else
\includegraphics[width=6.45in,height=4.95in]{arch1.eps}
\fi
\caption{compiler overview}
\label{passesfig}
\end{figure}
\section{Scanner / Tokenizer}
The scanner and tokenizer is used to construct an input stream of tokens
which will be fed to the parser. It is in this stage that the preprocessing
is done, that all read compiler directives change the internal state
variables of the compiler, and that all illegal characters found in the
input stream cause an error.
\subsection{Architecture}
\label{subsec:architectureand}
The general architecture of the scanner is shown in figure \ref{fig2}
\begin{figure}
\ifpdf
%\epsfig{file=arch2.png,width=\textwidth}
\includegraphics{arch2.pdf}
\else
\includegraphics[width=5.87in,height=6.90in]{arch2.eps}
\fi
\caption{scanner interface overview}
\label{fig2}
\end{figure}
Several types can be read from the input stream, a string, handled by
\var{readstring()}, a numeric value, handled by \var{readnumeric()}, comments , compiler
and preprocessor directives.
\subsubsection{Input stream}
\label{subsubsec:input}
The input data is handled via the standard way of handling all the I/O in
the compiler. That is to say, that it is a hook which can be overriden in
\textbf{comphook.pas (do{\_}openinputfile)}, in case where another I/O
method wants to be used.
The default hook uses a non-buffered dos stream contained in
\textbf{files.pas}
\subsubsection{Preprocessor}
\label{subsubsec:preprocessorhook}
The scanner resolves all preprocessor directives and only gives to the
parser the visible parts of the code (such as those which are included in
conditional compilation). Compiler switches and directives are also saved in
global variables while in the preprocessor, therefore this is part is
completely independent of the parser.
\paragraph{Conditional compilation (scandir.inc, scanner.pas)}
The conditional compilation is handled via a preprocessor stack, where each
directive is pushed on a stack, and popped when it is resolved. The actual
implementation of the stack is a linked list of preprocessor directive
items.
\paragraph{Compiler switches (scandir.inc, switches.pas)}
The compiler switches are handled via a lookup table which is linearly
searched. Then another lookup table takes care of setting the appropriate
bit flags and variables in the switches for this compilation process.
\subsection{Scanner interface}
\label{subsec:scanner}
The parser only receives tokens as its input, where a token is a enumeration
which indicates the type of the token, either a reserved word, a special
character, an operator, a numeric constant, string, or an identifier.
Resolution of the string into a token is done via lookup which searches the
string table to find the equivalent token. This search is done using a
binary search algorithm through the string table.
In the case of identifiers, constants (including numeric values), the value
is returned in the \textbf{pattern} string variable , with the appropriate
return value of the token (numeric values are also returned as non-converted
strings, with any special prefix included). In the case of operators, and
reserved words, only the token itself must be assumed to be preserved. The
read input string is assmued to be lost.
Therefore the interface with the parser is with the \textbf{readtoken()}
routine and the \textbf{pattern} variable.
\subsubsection{Routines}
\label{subsubsec:routinese}
\begin{procedure}{ReadToken}
\Declaration
Procedure ReadToken;
\Description
Sets the global variable \textsf{token} to the current token read, and sets
the \textsf{pattern} variable appropriately (if required).
\end{procedure}
% ?? :
%\caption{: Symbol tables in memory}
%\label{tab2}
\subsubsection{Variables}
\label{subsubsec:variablesglobal}
\begin{variable}{Token}
\Description
Var Token : TToken;
\Description
Contains the contain token which was last read by a call to \seep{ReadToken}
\SeeAlso
\seep{ReadToken}
\end{variable}
%\caption{: Possible symbol table types (tsymboltabletype)}
%\label{tab3}
%\end{table}
\begin{variable}{Pattern}
\Declaration
var Pattern : String;
\Description
Contains the string of the last pattern read by a call to
\seep{ReadToken}
\SeeAlso
\seep{ReadToken}
\end{variable}
%\caption{: Symbol entry relationships (tsym)}
%\label{tab4}
\subsection{Assembler parser interface}
\label{subsec:assembler}
The inline assembler parser is completely separate from the pascal parser,
therefore its scanning process is also completely independent. The scanner
only takes care of the preprocessor part and comments, all the rest is
passed character per character to the assembler parser via the
\seef{AsmGetChar}() scanner routine.
\subsubsection{routines}
\begin{function}{AsmGetChar}
\Declaration
Function AsmGetChar: Char;
\Description
Returns the next character in the input stream.
\end{function}
%\caption{Possible symbol types (TSymTyp)}
%\label{tab5}
\section{The tree}
\label{sec:mylabel2}
\subsection{Architecture}
\label{subsec:architecturenext}
The tree is the basis of the compiler. When the compiler parses statements
and blocks of code, they are converted to a tree representation. This tree
representation is actually a doubly linked list. From this tree the code
generation can easily be implemented.
Assuming that you have the following pascal syntax:
%\lstinline!x := x * y + (6 shl x);!
\begin{center}
$ x := x * y + (6\; shl \; x);$
\end{center}
The tree structure in picture \ref{fig3} will be built in memory, where each
circle represents an element (a node ) in the tree:
\begin{figure}
\begin{center}
\ifpdf
%\epsfig{file=arch3.png,width=\textwidth}
\includegraphics{arch3.pdf}
\else
\includegraphics[width=3.88in,height=3.65in]{arch3.eps}
\fi
\caption{Example tree structure}
\label{fig3}
\end{center}
\end{figure}
\subsection{Tree types}
The following tree nodes are possible (of type \textsf{TTreeTyp):}
\begin{longtable}{|l|p{10cm}|}
\caption{Possible node types (ttreetyp)}\label{tab6}\\
\hline
Tree type definition& Description \\
\hline
\endfirsthead
%{|p{125pt}|p{316pt}|}
\caption{Possible node types (ttreetyp) - continued}\\
\hline
\hline
Tree type definition&
Description \\
\hline
\endhead
\hline
\endfoot
\textsf{addn}&
\textsf{Represents the + operator} \\
\textsf{muln}&
\textsf{Represents the * operator} \\
\textsf{subn}&
\textsf{Represents the }\textsf{\textbf{-}}\textsf{ operator} \\
\textsf{divn}&
\textsf{Represents the }\textsf{\textbf{div}}\textsf{ operator} \\
\textsf{symdifn}&
\textsf{Represents the }\textsf{\textbf{><}}\textsf{ operator} \\
\textsf{modn}&
\textsf{Represents the }\textsf{\textbf{mod}}\textsf{ operator} \\
\textsf{assignn}&
\textsf{Represents the }\textsf{\textbf{:=}}\textsf{ operator (assignment)} \\
\textsf{loadn}&
\textsf{Represents the use of a variable} \\
\textsf{rangen}&
\textsf{Represents a numeric range (i.e 0..9)} \\
\textsf{ltn}&
\textsf{Represents the }\textsf{\textbf{<}}\textsf{ operator} \\
\textsf{lten}&
\textsf{Represents the }\textsf{\textbf{<=}}\textsf{ operator} \\
\textsf{gtn}&
\textsf{Represents the }\textsf{\textbf{>}}\textsf{ operator} \\
\textsf{gten}&
\textsf{Represents the }\textsf{\textbf{>=}}\textsf{ operator} \\
\textsf{equaln}&
\textsf{Represents the = operator} \\
\textsf{unequaln}&
\textsf{Represents the }\textsf{\textbf{<>}}\textsf{ operator} \\
\textsf{inn}&
\textsf{Represents the }\textsf{\textbf{in}}\textsf{ operator} \\
\textsf{orn}&
\textsf{Represents the }\textsf{\textbf{or}}\textsf{ operator} \\
\textsf{xorn}&
\textsf{Represents the }\textsf{\textbf{xor}}\textsf{ operator} \\
\textsf{shrn}&
\textsf{Represents the }\textsf{\textbf{shr}}\textsf{ operator} \\
\textsf{shln}&
\textsf{Represents the }\textsf{\textbf{shl}}\textsf{ operator} \\
\textsf{slashn}&
\textsf{Represents the / operator} \\
\textsf{andn}&
\textsf{Represents the }\textsf{\textbf{and}}\textsf{ operator} \\
\textsf{subscriptn}&
\textsf{Represents a field in an object or record} \\
\textsf{derefn}&
\textsf{Represents a pointer reference (such as the }\textsf{\textbf{\^}}\textsf{ operator)} \\
\textsf{addrn}&
\textsf{Represents the }\textsf{\textbf{@}}\textsf{ operator} \\
\textsf{doubleaddrn}&
\textsf{Represents the }\textsf{\textbf{@@}}\textsf{ operator} \\
\textsf{ordconstn}&
\textsf{Represents an ordinal constant} \\
\textsf{typeconvn}&
\textsf{Represents a typecast / type conversion} \\
\textsf{calln}&
\textsf{Represents a routine call} \\
\textsf{callparan}&
\textsf{Represents a parameter passed to a routine} \\
\textsf{realconstn}&
\textsf{Represents a floating point constant} \\
\textsf{fixconstn}&
\textsf{Represents a fixed point constant} \\
\textsf{unaryminusn}&
\textsf{Represents a sign change (e.g : -)} \\
\textsf{asmn}&
\textsf{Represents an assembler statement node} \\
\textsf{vecn}&
\textsf{Represents array indexing} \\
\textsf{pointerconstn}&
\textsf{Represents a pointer constant} \\
\textsf{stringconstn}&
\textsf{Represents a string constant} \\
\textsf{funcretn}&
\textsf{Represents the return function result variable (not loadn)} \\
\textsf{selfn}&
\textsf{Represents the self parameter} \\
\textsf{notn}&
\textsf{Represents the }\textsf{\textbf{not}}\textsf{ operator} \\
\textsf{inlinen}&
\textsf{Represents one of the internal routines (writeln,ord, etc.)} \\
\textsf{niln}&
\textsf{Represents the }\textsf{\textbf{nil}}\textsf{ pointer } \\
\textsf{erron}&
\textsf{Represents error in parsing this node (used for error detection and correction)} \\
\textsf{typen}&
\textsf{Represents a type name (i.e typeof(obj))} \\
\textsf{hnewn}&
\textsf{Represents the }\textsf{\textbf{new }}\textsf{routine call on objects} \\
\textsf{hdisposen}&
\textsf{Represents the }\textsf{\textbf{dispose}}\textsf{ routine call on objects} \\
\textsf{newn}&
\textsf{Represents the }\textsf{\textbf{new}}\textsf{ routine call on non-objects} \\
\textsf{simpledisposen}&
\textsf{Represents the }\textsf{\textbf{dispose}}\textsf{ routine call on non-objects} \\
\textsf{setelementn}&
\textsf{Represents set elements (i.e : [a..b], [a,b,c]) (non-constant)} \\
\textsf{setconstn}&
\textsf{Represents set element constants i.e : [1..9], [1,2,3])} \\
\textsf{blockn}&
\textsf{Represents a block of statements} \\
\textsf{statementn}&
\textsf{One statement in a block of nodes} \\
\textsf{loopn}&
\textsf{Represents a loop (for, while, repeat) node} \\
\textsf{ifn}&
\textsf{Represents an }\textsf{\textbf{if}}\textsf{ statement} \\
\textsf{breakn}&
\textsf{Represents a }\textsf{\textbf{break}}\textsf{ statement} \\
\textsf{continuen}&
\textsf{Represents a }\textsf{\textbf{continue}}\textsf{ statement} \\
\textsf{repeatn}&
\textsf{Represents a }\textsf{\textbf{repeat }}\textsf{statement} \\
\textsf{whilen}&
\textsf{Represents a }\textsf{\textbf{while}}\textsf{ statement} \\
\textsf{forn}&
\textsf{Represents a }\textsf{\textbf{for}}\textsf{ statement} \\
\textsf{exitn}&
\textsf{Represents an }\textsf{\textbf{exit}}\textsf{ statement} \\
\textsf{withn}&
\textsf{Represents a }\textsf{\textbf{with}}\textsf{ statement} \\
\textsf{casen}&
\textsf{Represents a }\textsf{\textbf{case}}\textsf{ statement} \\
\textsf{labeln}&
\textsf{Represents a label statement} \\
\textsf{goton}&
\textsf{Represents a }\textsf{\textbf{goto}}\textsf{ statement} \\
\textsf{simplenewn}&
\textsf{Represents a }\textsf{\textbf{new}}\textsf{ statement } \\
\textsf{tryexceptn}&
\textsf{Represents a }\textsf{\textbf{try}}\textsf{ statement} \\
\textsf{raisen}&
\textsf{Represents a }\textsf{\textbf{raise}}\textsf{ statement} \\
\textsf{\textit{switchesn}}&
\textsf{\textit{Unused}} \\
\textsf{tryfinallyn}&
\textsf{Represents a }\textsf{\textbf{try..finally}}\textsf{ statement} \\
\textsf{onn}&
\textsf{Represents an }\textsf{\textbf{on..do}}\textsf{ statement} \\
\textsf{isn}&
\textsf{Represents the }\textsf{\textbf{is}}\textsf{ operator} \\
\textsf{asn}&
\textsf{Represents the }\textsf{\textbf{as}}\textsf{ typecast operator} \\
\textsf{caretn}&
\textsf{Represents the \ operator} \\
\textsf{failn}&
\textsf{Represents the }\textsf{\textbf{fail}}\textsf{ statement} \\
\textsf{starstarn}&
\textsf{Represents the }\textsf{\textbf{**}}\textsf{ operator (exponentiation)} \\
\textsf{procinlinen}&
\textsf{Represents an }\textsf{\textbf{inline}}\textsf{ routine} \\
\textsf{arrayconstrucn}&
\textsf{Represents a }\textsf{\textbf{[..]}}\textsf{ statement (array or sets)} \\
\textsf{arrayconstructrangen}&
\textsf{Represents ranges in [..] statements (array or sets)} \\
\textsf{nothingn}&
\textsf{Empty node} \\
\textsf{loadvmtn}&
\textsf{Load method table register} \\
\hline
\end{longtable}
\subsection{Tree structure fields (tree.pas)}
\label{subsec:mylabel2}
Each element in a node is a pointer to a TTree structure, which is summarily
explained and defined as follows:
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.0cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pTree = & \^{} TTree; & \\
\xspace \textsf{TTree} = & \textbf{RECORD}& \\
& \textsf{Error : boolean;}& Set to TRUE if there was an error parsing this node\\
&\textsf{DisposeTyp : tdisposetyp;}&
\\
&\textsf{Swaped : boolean;}&
Set to TRUE if the left and right nodes (fields) of this node have been swaped. \\
& \textsf{VarStateSet : boolean;}&
\\
& \textsf{Location : tlocation;}&
Location information for this information (cf. Code generator) \\
& \textsf{Registers32 : longint;}&
Minimum number of general purpose registers required to evaluate this node \\
& \textsf{RegistersFpu : longint;}&
Minimum number of floating point registers required to evaluate this node \\
& \textsf{Left : pTree;}&
LEFT leaf of this node \\
& \textsf{Right : pTree;}&
RIGHT leaf of this node \\
& \textsf{ResultType : pDef;}&
Result type of this node \par (cf. Type definitions) \\
& \textsf{FileInfo : TFilePosInfo;}&
Line number information for this node creation in the original source code (for error management) \\
& \textsf{LocalSwitches : tlocalswitches;}&
Local compiler switches used for code generation \par (Cf. \ref{tlocalswitches}) \\
& \textsf{IsProperty : boolean;}&
TRUE if this is a property \\
& \textsf{TreeType : ttreetyp;}&
Type of this tree (cf. \ref{tab1}) \\
& \textsf{END;}& \\
\hline
\end{tabular*}
%\caption{Possible definition types (tdeftype)}
\begin{longtable}{|l|l|p{10cm}|}
% p{126pt}|p{45pt}|p{319pt}|}
\caption{local compiler switches (tlocalswitches)}\label{tlocalswitches}\\
\hline
tlocalswitches & Switch & Description \\
\hline
\endfirsthead
\hline
tlocalswitches & Switch & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{cs{\_}check{\_}overflow} & {\{}{\$}Q+{\}}&
Code generator should emit overflow checking code \\
\textsf{cs{\_}check{\_}range} & {\{}{\$}R+{\}}&
Code generator should emit range checking code \\
\textsf{cs{\_}check{\_}IO} & {\{}{\$}I+{\}}&
Code generator should emit I/O checking code \\
\textsf{cs{\_}check{\_}object{\_}ext} & N/A&
Code generator should emit extended object access checks \\
\textsf{\textit{cs{\_}omitstackframe}} & $N/A$ &
\textit{Code generator should not emit frame{\_}pointer setup code
in entry code} \\
\textsf{cs{\_}do{\_}assertion} & {\{}{\$}C+{\}} &
Code generator supports using the assert inline routine \\
\textsf{cs{\_}generate{\_}rtti} & {\{}{\$}M+{\}} &
Code generator should emit runtime type information \\
\textsf{cs{\_}typed{\_}addresses} & {\{}{\$}T+{\}}&
Parser emits typed pointer using the @ operator \\
\textsf{cs{\_}ansistrings} & {\{}{\$}H+{\}}&
Parser creates an \textsf{ansistring} when an unspecified
\textsf{String} type is declared instead of the default
\textsf{ShortString} \\
\textsf{cs{\_}strict{\_}var{\_}strings} & {\{}{\$}V+{\}}&
String types must be identical (same length) to be compatible \\
\hline
\end{longtable}
\subsubsection{Additional fields}
\label{subsubsec:additional}
Depending on the tree type, some additional fields may be present in the
tree node. This section describes these additional fields. Before accessing
these additional fields, a check on the \textsf{treetype} should always be
done to verify if not reading invalid memory ranges.
\paragraph{AddN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{\textit{Use{\_}StrConcat : Boolean;}}&
\textit{Currently unused (use for optimizations in future versions)} \\
\hline
\textsf{String{\_}Typ: TStringType;}&
In the case where the + operator is applied on a string, this field indicates the string type. \\
\hline
\end{longtable}
\paragraph{CallParaN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Is{\_}Colon{\_}Para : Boolean;}&
Used for internal routines which can use optional format parameters
(using colons). Is set to TRUE if this parameter was preceded by a
colon (i.e : :1) \\
\textsf{Exact{\_}Match{\_}Found : Boolean;}&
Set to TRUE if the parameter type is exactly the same as the one
expected by the routine. \\
\textsf{ConvLevel1Found : Boolean;}&
Set to TRUE if the parameter type requires a level 1 type conversion
to conform to the parameter expected by the routine. \\
\textsf{ConvLevel2Found : Boolean;}&
Set to TRUE if the parameter type requires a level 2 type conversion
to conform to the parameter expected by the routine. \\
\textsf{HighTree : pTree;}& \\
\hline
\end{longtable}
\paragraph{AssignN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{\textit{AssignTyp : TAssignTyp;}}&
\textit{Currently unused (Used to be used for C-like assigns)} \\
\textsf{\textit{Concat{\_}String : Boolean;}}&
\textit{Currently unused (use for optimizations in future versions)}\\
\hline
\end{longtable}
\paragraph{LoadN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{SymTableEntry : pSym;}&
Symbol table entry for this symbol \\
\textsf{SymTable : pSymTable;}&
Symbol table in which this symbol is stored \\
\textsf{Is{\_}Absolute : Boolean;}&
set to TRUE if this variable is absolute \\
\textsf{Is{\_}First : Boolean;}&
set to TRUE if this is the first occurrence of the load for this
variable (used with the varstate variable for optimizations) \\
\hline
\end{longtable}
\paragraph{CallN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{SymTableProcEntry : pProcSym;}&
Symbol table entry for this routine \\
\textsf{SymTableProc : pSymTable;}&
Symbol table associated with a call (object symbol table or routine
symbol table) \\
\textsf{ProcDefinition : pAbstractProcDef;}&
Type definition for this routine \\
\textsf{MethodPointer : pTree;}&
????????? \\
\textsf{\textit{No{\_}Check : Boolean;}}&
\textit{Currently unused} \\
\textsf{Unit{\_}Specific : Boolean;}&
set to TRUE if the routine is imported in a unit specific way (for
example: system.writeln()) \\
\textsf{Return{\_}Value{\_}Used : Boolean}&
set to TRUE if the routine is a function and that the return value
is not used (in extended syntax parsing - {\$}X+) \\
\textsf{\textit{Static{\_}Call : Boolean;}}&
\textit{unused} \\
\hline
\end{longtable}
\paragraph{addrn}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{ProcVarLoad : Boolean;}&
Set to TRUE if this is a procedural variable call \\
\hline
\end{longtable}
\paragraph{OrdConstN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Value : Longint;}&
The numeric value of this constant node \\
\hline
\end{longtable}
\paragraph{RealConstN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Value{\_}Real : Best{\_}Real;}&
The numeric value of this constant node \\
\textsf{Lab{\_}Real : pAsmLabel;}&
The assembler label reference to this constant \\
\hline
\end{longtable}
\paragraph{FixConstN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Value{\_}Fix : Longint;}&
The numeric value of this constant node \\
\hline
\end{longtable}
\paragraph{FuncRetN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{FuncRetProcInfo : Pointer; (pProcInfo)}&
Pointer to procedure information \\
\textsf{RetType : TType;}& Indicates the return type of the function \\
\textsf{Is{\_}First{\_}FuncRet : Boolean;}& \\
\hline
\end{longtable}
\paragraph{SubscriptN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{vs : pVarSym;}&
Symbol table entry for this variable (a field of
object/class/record) \\
\hline
\end{longtable}
\paragraph{RaiseN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{FrameTree : pTree;} & Exception frame tree (code in Raise statement)
\end{longtable}
\paragraph{VecN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{MemIndex : Boolean;} & Set to TRUE if Mem[Seg:Ofs] directive is parsed \\
\textsf{MemSeg : Boolean;} & Set to TRUE if Mem[Seg:Ofs] directive is parsed \\
\textsf{CallUnique: Boolean;} &
\end{longtable}
\paragraph{StringConstN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Value{\_}Str : pChar;} & The constant value of the string \\
\textsf{Length : Longint;} & Length of the string in bytes (or in characters???) \\
\textsf{Lab{\_}Str : pAsmLabel;} & The assembler label reference to this constant \\
\textsf{StringType : TStringType;}& The string type (short, long, ansi, wide)
\end{longtable}
\paragraph{TypeConvN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{ConvType: TConvertType;}& Indicates the conversion type to do \\
\textsf{Explizit : Boolean;}&
set to TRUE if this was an explicit conversion (with explicit
typecast, or calling one of the internal conversion routines)
\end{longtable}
\paragraph{TypeN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{TypeNodeType : pDef;}& The type definition for this node \\
\textsf{TypeNodeSym : pTypeSym;}& The type symbol information
\label{tab24}
\end{longtable}
\paragraph{InlineN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{InlineNumber: Byte;} & Indicates the internal routine called (Cf. code generator) \\
\textsf{InlineConst : Boolean;} &
One or more of the parameters to this inline routine call contains
constant values
\label{tab25}
\end{longtable}
\paragraph{ProcInlineN}\mbox{}
Inline nodes are created when a routine is declared as being inline. The
routine is actually inlined when the following conditions are satisfied:
It is called within the same module
The appropriate compiler switch to support inline is activated
It is a non-method routine (a standard procedure or function)
Otherwise a normal call is made, ignoring the inline directive. In the case
where a routine is inlined, all parameters , return values and local
variables of the inlined routine are actually allocated in the stack space
of the routine which called the inline routine.
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{InlineTree : pTree;}&
The complete tree for this inline procedure \\
\textsf{InlineProcsym : pProcSym;}&
Symbol table entry for this procedure \\
\textsf{RetOffset : Longint;}&
Return offset in parent routine stack space \\
\textsf{Para{\_}Offset : Longint;}&
Parameter start offset in parent routine stack space \\
\textsf{Para{\_}Size : Longint;}&
Parameter size in the parent routine stack space
\label{tab26}
\end{longtable}
\paragraph{SetConstN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Value{\_}Set : pConstSet;}& The numeric value of this constant node \\
\textsf{Lab{\_}Set : pAsmLabel;} & The assembler label reference to this constant
\label{tab27}
\end{longtable}
\paragraph{LoopN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
& \\
& \\
&
\end{longtable}
\paragraph{AsmN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{p{\_}Asm : pAasmOutput;}&
The instruction tree created by the assembler parser \\
\textsf{Object{\_}Preserved : Boolean;}&
set to FALSE if the Self{\_}Register was modified in the asm statement.
\label{tab29}
\end{longtable}
\paragraph{CaseN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Nodes : pCaserecord;}&
Tree for each of the possible case in the case statement \\
\textsf{ElseBlock : pTree;}&
Else statement block tree
\label{tab30}
\end{longtable}
\paragraph{LabelN, GotoN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{LabelNr : pAsmLabel;} & Assembler label associated with this statement \\
\textsf{ExceptionBlock : ptree;}& ? \\
\textsf{LabSym : pLabelSym;} & Symbol table entry for this label
\label{tab31}
\end{longtable}
\paragraph{WithN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{WithSymTables : pWithSymTable;} & \\
\textsf{TableCount : Longint;} & \\
\textsf{WithReference : pReference;} & \\
\textsf{IsLocal : Boolean;} &
\label{tab32}
\end{longtable}
\paragraph{OnN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{ExceptSymTable : pSymtable;}& \\
\textsf{ExceptType : pObjectdef;}&
\label{tab33}
\end{longtable}
\paragraph{ArrayConstructorN}\mbox{}
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{CArgs : Boolean;} & \\
\textsf{CArgSwap : Boolean;} & \\
\textsf{ForceVaria : Boolean;} & \\
\textsf{NoVariaAllowed : Boolean;} & \\
\textsf{ConstructorDef : pDef;} &
\label{tab34}
\end{longtable}
\section{Symbol tables}
\label{sec:symbol}
\subsection{Architecture}
\label{subsec:architecturesructord}
The symbol table contains all definitions for all symbols in the compiler.
It also contains all type information for all symbols encountered during the
parsing process. All symbols and definitions are streamable, and are used
within PPU files to avoid recompiling everything to verify if all symbols are valid.
There are different types of symbol tables, all of which maybe active at one
time or another depending on the context of the parser.
An architectural overview of the interaction between the symbol tables, the
symbol entries and the definition entries is displayed in figure \ref{fig4}
\begin{figure}
\ifpdf
\includegraphics{arch4.pdf}
%\epsfig{file=arch4.png,width=\textwidth}
\else
\includegraphics[width=6.29in,height=3.29in]{arch4.eps}
\fi
\label{fig4}
\caption{Interactions between symbol tables}
\end{figure}
As can be seen, the symbol table entries in the symbol table are done using
the fast hashing algorithm with a hash dictionary.
\subsection{The Symbol table object}
\label{subsec:mylabel3}
All symbol tables in the compiler are from this type of object, which
contains fields for the total size of the data in the symbol table, and
methods to read and write the symbol table into a stream. The start of the
linked list of active symbol tables is the \textbf{symtablestack} variable.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6,5cm}|}
\hline
\textsf{TYPE} & & \\
\xspace \textsf{pSymTable} &= \^{} \textbf{TSymTable};& \\
\xspace \textsf{TSymTable} &= \textbf{object} & \\
& \textsf{Name : pString;}& \\
& \textsf{DataSize : Longint;}&
The total size of all the data in this symbol table (after the data has been aligned). Only valid for certain types of symbol tables. \\
& \textsf{DataAlignment : Longint;}& \\
& \textsf{SymIndex : pIndexArray;}& \\
& \textsf{DefIndex : pIndexArray;}& \\
& \textsf{SymSearch : pDictionary;}& \\
& \textsf{Next : pSymtable;}&
Points to the next symbol table in the linked list of active symbol tables. \\
& \textsf{DefOwner : pDef;}&
The owner definition (only valid in the cases of objects and records, this points to the definition of that object or record). \\
& \textsf{Address{\_}Fixup : Longint}& \\
& \textsf{UnitId : Word;}& \\
& \textsf{SymTableLevel : Byte;}& \\
& \textsf{SymTableType :TSymTableType;}&
Indicates the type of this symbol table (\ref{fig2}). \\
&\textsf{end;}& \\
\hline
\end{tabular*}
The type of possible symbol tables are shown in the following table:
\begin{longtable}{|l|p{10cm}|}
\hline
TSymTableType& Description \\
\hline
\endhead
\hline
\endfoot
\textsf{InvalidSymTable}&
Default value when the symbol table is created and its type is not defined. Used for debugging purposes \\
\textsf{WithSymTable}&
All symbols accessed in a with statement \\
\textsf{StaticSymTable}& \\
\textsf{GlobalSymTable}& \\
\textsf{UnitSymTable}&
Linked list of units symbol used (all or unit?). The linked list is
composed of \textsf{tunitsym} structures. \\
\textsf{ObjectSymTable}& \\
\textsf{RecordSymTable}&
Contains all symbols within a record statement \\
\textsf{MacroSymTable}&
Holds all macros currently in scope. \\
\textsf{LocalSymTable}&
Hold symbols for all local variables of a routine \\
\textsf{ParaSymTable}&
Holds symbols for all parameters of a routine (the actual parameter declaration symbols) \\
\textsf{InlineParaSymTable}&
Holds all parameter symbols for the current inline routine \\
\textsf{InlineLocalSymTable}&
Holds all local symbols for the current inline routine \\
\textsf{Stt{\_}ExceptSymTable}& \\
\textsf{StaticPPUSymTable}&
\label{tab36}
\end{longtable}
\subsection{Inserting symbols into a symbol table}
\label{subsec:inserting}
To add a symbol into a specific symbol table, that's symbol table's
\textsf{Insert} method is called, which in turns call the
\textsf{Insert{\_}In{\_}Data} method of that symbol.
\textsf{Insert{\_}In{\_}Data}, depending on the symbol type, adjusts the
alignment and sizes of the data and actually creates the data entry in the
correct segment.
\begin{figure}
\begin{center}
\ifpdf
%\epsfig{file=arch5.png,width=\textwidth}
\includegraphics{arch5.pdf}
\else
\includegraphics[width=1.51in,height=5.51in]{arch5.eps}
\fi
\label{fig5}
\caption{Inserting into the symbol table}
\end{center}
\end{figure}
\subsection{Symbol table interface}
\subsubsection{Routines}
\label{subsubsec:routinesable}
\begin{functionl}{Search{\_}a{\_}Symtable}{searchasymtable}
\Declaration
Function Search{\_}a{\_}Symtable(Const Symbol:String; \\
SymTableType : TSymTableType):pSym;
\Description
Search for a symbol \textsf{Symbol} in a specified symbol table
\textsf{SymTableType}. Returns \textsf{NIL} if the symbol table is not
found, and also if the symbol cannot be found in the desired symbol table.
\end{functionl}
\begin{procedure}{GetSym}
\Declaration
Procedure GetSym(Const S : StringId; NotFoundError: Boolean);
\Description
Search all the active symbol tables for the symbol \textsf{s},setting the
global variable \textsf{SrSym} to the found symbol, or to \textsf{nil} if
the symbol was not found. \textsf{notfounderror} should be set to TRUE if
the routine must give out an error when the symbol is not found.
\end{procedure}
\begin{function}{GlobalDef}
\Declaration
Function GlobalDef(Const S : String) : pDef;
\Description
Returns a pointer to the definition of the fully qualified type symbol
\textsf{S}, or \textsf{NIL} if not found.
\Notes
It is fully qualified, in that the symbol \textsf{system.byte}, for example,
will be fully resolved to a unit and byte type component The symbol must
have a global scope, and it must be a type symbol, otherwise \textsf{NIL}
will be returned..
\end{function}
\subsubsection{Variables}
\label{subsubsec:variablesly}
\begin{variable}{SrSym}
\Declaration
Var SrSym : pSym;
\Description
This points to the symbol entry found, when calling \textsf{getsym}.
\end{variable}
\begin{variable}{SrSymTable}
\Declaration
Var SrSymTable : pSymTable;
\Description
This points to the symbol table of the symbol \seevar{SrSym} when calling
\seep{GetSym}.
\end{variable}
\section{Symbol entries}
\label{sec:mylabel3}
\subsection{Architecture}
\label{subsec:architecturees}
There are different possible types of symbols, each one having different
fields then the others. Each symbol type has a specific signature to
indicate what kind of entry it is. Each entry in the symbol table is
actually one of the symbol entries described in the following sections. The
relationship between a symbol entry, a type definition, and the type name
symbol entry is shown in figure \ref{fig6}.
\begin{figure}
\begin{center}
\ifpdf
\includegraphics{arch6.pdf}
%\epsfig{file=arch6.png,width=\textwidth}
\else
\includegraphics[width=5.51in,height=4.51in]{arch6.eps}
\fi
\label{fig6}
\caption{relation between symbol entry and type definition and name}
\end{center}
\end{figure}
\subsection{Symbol entry types}
\label{subsec:symbol}
\subsubsection{Base symbol type (TSym)}
\label{subsubsec:mylabel1}
All entries in the symbol table are derived from this base object which
contains information on the symbol type as well as information on the owner
of this symbol entry.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pSym = & \^{} TSym; & \\
\xspace \textsf{TSym} = & \textbf{Object}(TSymTableEntry) & \\
& \textsf{SymOptions : TSymOptions;}& Indicate the access scope of the symbol \\
& \textsf{FileInfo : tFilePosInfo;}& \\
& \textsf{Refs : Longint;}&
Indicates how many times this label is refered in the parsed code (is only used with variable and assembler label symbols). \\
&\textsf{LastRef : pRef;}& \\
&\textsf{DefRef : pRef;}& \\
&\textsf{LastWritten : pRef;}& \\
&\textsf{RefCount : Longint;}& Browser information indicating the reference count\\
&\textsf{Typ : tSymTyp;}& Indicates the symbol type \\
&\textsf{IsStabWritten : Boolean;}& Set to TRUE if the stabs debugging information has been written for this symbol.\\
&\textsf{end; }&\\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\caption{tsymtyp}\label{tsymtyp}\\
\hline
TSymTyp & Description \\
\hline
\endfirsthead
\hline
TSymTyp & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{AbstractSym}&
This is a special abstract symbol (this should never occur) \\
\textsf{VarSym}&
This symbol is a variable declaration in the \textsf{var} section, or a \textsf{var} parameter. \\
\textsf{TypeSym}&
This symbol is a type name \\
\textsf{ProcSym}&
This symbol is a routine or method name \\
\textsf{UnitSym}&
This symbol is a unit name \\
\textsf{\textit{ProgramSym}}&
\textit{This symbol is the main program name} \\
\textsf{ConstSym}&
This symbol is a constant \\
\textsf{EnumSym}&
This symbol is an enumeration symbol (an element in an enumeration) \\
\textsf{TypedConstSym}&
This symbol is pre-initialized variable (pascal typed constant) \\
\textsf{ErrorSym}&
This symbol is created for error generation \\
\textsf{SysSym}&
This symbol represents an inlined system unit routine \\
\textsf{LabelSym}&
This symbol represents a label in a \textsf{label} pascal declaration \\
\textsf{AbsoluteSym}&
This symbol represents an the symbol following an \textsf{absolute} variable declaration \\
\textsf{PropertySym}&
This symbol is a property name \\
\textsf{FuncRetSym}&
This symbol is the name of the return value for functions \\
\textsf{MacroSym}&
This symbol is a macro symbol (just like {\#}define in C)
\end{longtable}
\subsubsection{label symbol (TLabelSym)}
\label{subsubsec:label}
The label symbol table entry is only created when a pascal label is declared
via the label keyword. The object has the following fields which are
available for use publicly:
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pLabelSym = & \^{} TLabelSym; & \\
\xspace \textsf{TLabelSym} = & \textbf{Object}(TSym) & \\
& \textsf{Used : Boolean}&
Set to TRUE if this pascal label is used using a \textsf{goto} or in an assembler statement \\
& \textsf{Defined: Boolean}&
Set to TRUE if this label has been declared \\
& \textsf{Lab : pAsmLabel}&
Points to the actual assembler label structure which will be emitted by the code generator \\
& \textsf{Code : Pointer}& \\
& \textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{unit symbol (TUnitSym)}
\label{subsubsec:mylabel2}
The unit symbol is created and added to the symbol table each time that the
uses clause is parsed and a unit name is found, it is also used when
compiling a unit, with the first entry in that symbol table being the unit
name being compiled. The unit symbol entry is actual part of a linked list
which is used in the unit symbol table.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{7cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pUnitSym = & \^{} TUnitSym; & \\
\xspace \textsf{TUnitSym} = & \textbf{Object}(TSym) & \\
& \textsf{UnitSymTable:pUnitSymTable}&
Pointer to the global symbol table for that unit, containing entries for each public? symbol in that unit \\
& \textsf{PrevSym : pUnitSym}&
Pointer to previous entry in the linked list \\
& \textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{macro symbol (TMacroSym)}
\label{subsubsec:macro}
The macro synbols are used in the preprocessor for conditional compilation
statements. There is one such entry created for each {\$}define directive,
it contains the value of the define (stored as a string).
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pMacroSym = & \^{} TMacroSym; & \\
\xspace \textsf{TMacroSym} = & \textbf{Object}(TSym) & \\
& \textsf{Defined : Boolean;}&
TRUE if the symbol has been defined with a \textsf{{\$}define}
directive, or false if it has been undefined with a
\textsf{{\$}undef} directive \\
& \textsf{Defined{\_}At{\_}Startup : Boolean;}&
TRUE if the symbol is a system wide define \\
& \textsf{Is{\_}Used: Boolean;}&
TRUE if the define has been used such as in a \textsf{{\$}ifdef}
directive. \\
& \textsf{BufText : pChar;}&
The actual string text of the define \\
& \textsf{BufLength : Longint;}&
The actual string length of the define \\
& \textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{error symbol (TErrorSym)}
\label{subsubsec:error}
This symbol is actually an empty symbol table entry. When the parser
encounters an error when parsing a symbol, instead of putting nothing in the
symbol table, it puts this symbol entry. This avoids illegal memory accesses
later in parsing.
\subsubsection{procedure symbol (TProcSym)}
\label{subsubsec:procedure}
The procedure symbol is created each time a routine is defined in the code.
This can be either a forward definition or the actual implementation of the
routine. After creation, the symbol is added into the appropriate symbol
table stack.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pProcSym = & \^{} TProcSym; & \\
\xspace \textsf{TProcSym} = & \textbf{Object}(TSym) & \\
& \textsf{Is{\_}Global : Boolean}&
Set if the routine is exported by the unit \\
& \textsf{Definition : pProcDef}&
Procedure definition, including parameter information and return
values \\
& \textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{type symbol (TTypeSym)}
\label{subsubsec:mylabel3}
The type symbol is created each time a new type declaration is done, the
current symbol table stack is then inserted with this symbol. Furthermore,
each time the compiler compiles a module, the default base types are
initialized and added into the symbol table (\textbf{psystem.pas}) The type
symbol contains the name of a type, as well as a pointer to its type
definition.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pTypeSym = & \^{} TTypeSym; & \\
\xspace \textsf{TTypeSym} = & \textbf{Object}(TSym) & \\
& \textsf{ResType : TType}&
Contains base type information as well as the type definition \\
& \textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{variable symbol (TVarSym)}
\label{subsubsec:variable}
Variable declarations, as well as parameters which are passed onto routines
are declared as variable symbol types. Access information, as well as type
information and optimization information are stored in this symbol type.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.5cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pVarSym = & \^{} TVarSym; & \\
\xspace \textsf{TVarSym} = & \textbf{Object}(TSym) & \\
& \textsf{Reg: TRegister;}&
If the value is a register variable, the \textsf{reg} field will be
different then R{\_}NO \\
& \textsf{VarSpez : TVarSpez;}&
Indicates the variable type (parameters only) (Cf. \ref{tvarspez}). \\
& \textsf{Address : Longint;}&
In the case where the variable is a routine parameter, this
indicates the positive offset from the \textsf{frame{\_}pointer }to
access this variable. In the case of a local variable, this field
indicates the negative offset from the \textsf{frame{\_}pointer}. to
access this variable. \\
& \textsf{LocalVarSym : pVarSym;}& \\
& \textsf{VarType : TType;}&
Contains base type information as well as the type definition \\
& \textsf{VarOptions : TVarOptions;}&
Flags for this variable (Cf. \ref{tvaroptions}) \\
& \textsf{VarState : TVarState}&
Indicates the state of the variable, if it's used or declared \\
& \textsf{end;}& \\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\caption{tvaroptions}\label{tvaroptions}\\
\hline
TVarOptions & Description \\
\hline
\endfirsthead
\caption{tvaroptions (continued)}\\
\hline
TVarOptions & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{vo{\_}regable}&
The variable can be put into a hardware general purpose register \\
\textsf{vo{\_}is{\_}c{\_}var}&
The variable is imported from a C module \\
\textsf{vo{\_}is{\_}external}&
The variable is declared external \\
\textsf{vo{\_}is{\_}Dll{\_}var}&
The variable is a shared library variable \\
\textsf{vo{\_}is{\_}thread{\_}var}&
The variable is declared as being thread safe \\
\textsf{vo{\_}fpuregable}&
The variable can be put into a hardware floating point register \\
\textsf{vo{\_}is{\_}local{\_}copy}& \\
\textsf{\textit{vo{\_}is{\_}const}}&
\textit{unused and useless} \\
\textsf{vo{\_}is{\_}exported}&
The variable is declared as exported in a dynamic link library
\end{longtable}
\begin{longtable}{|l|p{10cm}|}
\caption{parameter type}\label{tvarspez}\\
\hline
TVarSpez & Description \\
\hline
\endfirsthead
\caption{parameter type (continued)}\\
\hline
TVarSpez & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{vs{\_}value}&
This is a value parameter \\
\textsf{vs{\_}const}&
This is a constant parameter, property or array \\
\textsf{vs{\_}var}&
This is a variable parameter
\end{longtable}
\subsubsection{property symbol (TPropertySym)}
\label{subsubsec:property}
\begin{tabular*}{6.25in}{|l@{\extracolsep{\fill}}lp{4cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pPropertySym = & \^{} TPropertySym; & \\
\xspace \textsf{TPropertySym} = & \textbf{Object}(TSym) & \\
& \textsf{propoptions: tpropertyoptions;}&
??? \\
& \textsf{proptype : ttype;}&
Indicates the type of the property\\
& \textsf{propoverriden : ppropertysym;}&
??? \\
& \textsf{indextype : ttype;}& \\
& \textsf{index : longint;}&
???? \\
& \textsf{default : longint}&
??? \\
& \textsf{readaccess : psymlist}&
??? \\
& \textsf{writeaccess : psymlist}&
??? \\
& \textsf{storedaccess : psymlist}&
??? \\
& \textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{return value of function symbol}
\label{subsubsec:return}
\subsubsection{absolute declared symbol (TAbsoluteSym)}
\label{subsubsec:absolute}
This symbol represents a variable declared with the \var{absolute} keyword. The
\var{address} of the \var{TVarSym} object holds the address of the variable
in the case of an absolute address variable.
The possible types of absolute symbols, are from an external object
reference, an absolute address (for certain targets only), or on top
of another declared variable. For the possible types, \ref{tabsolutetyp}.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.5cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pAbsoluteSym = & \^{} TAbsoluteSym; & \\
\xspace \textsf{TAbsoluteSym} = & \textbf{Object}(TVarSym) & \\
& \textsf{abstyp : absolutetyp;}&
Indicates the type of absolute symbol it is (Cf. \ref{tabsolutetyp}) \\
& \textsf{absseg : boolean;}&
???\\
& \textsf{ref : psym;}&
In case \var{abstyp} is \var{tovar}, this field indicates
the symbol which is overlaid with this symbol. Otherwise
this field is unused.\\
& \textsf{asmname : pstring;}& In case \var{abstyp} is \var{toasm},
this field indicates label name for the variable.\\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\caption{possible absolute variable types}\label{tabsolutetyp}\\
\hline
tabsolutetyp & Description \\
\hline
\endfirsthead
\hline
tabsolutetyp & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{tovar}&
The symbol will be declared on top of another symbol (variable or typed constant)\\
\textsf{toasm}&
The variable is imported from an external module \\
\textsf{toaddr}&
The variable is declared as being at an absolute address \\
\end{longtable}
\subsubsection{typed constant symbol}
\label{subsubsec:typed}
\subsubsection{constant symbol (TConstSym)}
\label{subsubsec:constant}
This symbol type will contain all constants defined and encountered
during the parsing. The values of the constants are also set in
this symbol type entry.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.5cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pConstSym = & \^{} TConstSym; & \\
\xspace \textsf{TConstSym} = & \textbf{Object}(TSym) & \\
& \textsf{consttype : ttype;}&
Type information for this constant (?). \\
& \textsf{consttyp : tconsttyp}&
Indicates the type of the constant\\
& \textsf{resstrindex : longint}& If this is a resource
string constant, it indicates the index in the resource
table \\
& \textsf{value : longint}& In certain cases, contains
the value of the constant \\
& \textsf{len : longint}&
\\
\hline
\end{tabular*}
\subsubsection{enumeration symbol}
\label{subsubsec:enumeration}
\subsubsection{program symbol}
\label{subsubsec:program}
The program symbol type (\var{tprogramsym}) is used to store the name
of the program, which is declared using \var{program} in the pascal source.
This symbol type is currently unused in FreePascal.
\subsubsection{sys symbol}
\label{subsubsec:mylabel4}
The \var{tsyssym} symbol type is used to load indexes into the symbol
table of the internal routines which are inlined directly by the compiler.
It has a single field, which is the index of the inline routine.
\subsection{Symbol interface}
\label{subsec:mylabel5}
\section{Type information}
\label{sec:mylabel4}
\subsection{Architecture}
\label{subsec:architecturetionolbo}
A type declaration , which is the basis for the symbol table, since
inherently everything comes down to a type after parsing is a special
structure with two principal fields, which point to a symbol table entry
which is the type name, and the actual definition which gives the
information on other symbols in the type, the size of the type and other
such information.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
\hline
\textsf{TYPE} & & \\
\xspace \textsf{TType} = & \textbf{Object} & \\
&\textsf{Sym : pSym;}&
Points to the symbol table of this type \\
& \textsf{Def : pDef;}&
Points to the actual definition of this type \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\begin{center}
\begin{figure}
\ifpdf
\includegraphics{arch7.pdf}
%\epsfig{file=arch7.png,width=\textwidth}
\else
\includegraphics[width=4.39in,height=3.56in]{arch7.eps}
\fi
\caption{Type symbol and definition relations}
\label{fig7}
\end{figure}
\end{center}
\subsection{Definition types}
Definitions represent the type information for all possible symbols which
can be encountered by the parser. The definition types are associated with
symbols in the symbol table, and are used by the parsing process (among
other things) to perform type checking.
The current possible definition types are enumerated in \textsf{TDefType}
and can have one of the following symbolic values:
\begin{longtable}{|l|p{10cm}|}
\hline
deftype of TDef object & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{AbstractDef} & \\
\textsf{ArrayDef} & array type definition \\
\textsf{RecordDef} & record type definition \\
\textsf{PointerDef} & pointer type definition \\
\textsf{OrdDef} & ordinal (numeric value) type definition \\
\textsf{StringDef} & string type definition \\
\textsf{EnumDef} & enumeration type definition \\
\textsf{ProcDef} & procedure type definition \\
\textsf{ObjectDef} & object or class type definition \\
\textsf{ErrorDef} & error definition (empty, used for error recovery) \\
\textsf{FileDef} & file type definition \\
\textsf{FormalDef} & \\
\textsf{SetDef} & set type definition \\
\textsf{ProcVarDef} & procedure variable type definition \\
\textsf{FloatDef} & floating point type definition \\
\textsf{ClassrefDef} & \\
\textsf{ForwardDef} & \\
\end{longtable}
\subsubsection{base definition (TDef)}
\label{subsubsec:mylabel5}
All type definitions are based on this object. Therefore all derived object
all posess the fields in this object in addition to their own private
fields.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{7cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pDef = & \^{} TDef; & \\
\xspace \textsf{TDef} = & \textbf{Object}(TSymTableEntry) & \\
&\textsf{TypeSym : pTypeSym;}&
Pointer to symbol table entry for this type definition \\
&\textsf{InitTable{\_}Label : pAsmLabel;}&
Label to initialization information (required for some complex types) \\
&\textsf{Rtti{\_}Label : pAsmLabel;}&
Label to the runtime type information. \\
&\textsf{NextGlobal : pDef;}& \\
&\textsf{PreviousGlobal : pDef;}& \\
&\textsf{SaveSize : Longint;}&
Size in bytes of the data definition \\
&\textsf{DefType : tDefType;}&
Indicates the definition type (see table \ref{tab5}). \\
&\textsf{Has{\_}InitTable : Boolean;}& \\
&\textsf{Has{\_}Rtti : Boolean;}& \\
&\textsf{Is{\_}Def{\_}Stab{\_}Written : TDefStabStatus}&
Can be one of the following states : (\textsf{Not{\_}Written,
written, Being{\_}Written}) which indicates if the debug information
for this type has been defined or not. \\
&\textsf{GlobalNb : Longint;}&
Internal stabs debug information type signature (each type definition has a
numeric signature). \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{file definition (TFileDef)}
\label{subsubsec:mylabel6}
The file definition can occur in only some rare instances, when a
\textsf{file of }\textsf{\textit{type}} is parsed, a file definition of that
type will be created. Furthermore, internally, a definition for a
\textbf{Text} file type and \textbf{untyped} File type are created when the
system unit is loaded. These types are always defined when compiling any
unit or program.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.5cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pFileDef = & \^{} TFileDef; & \\
\xspace \textsf{TFileDef} = & \textbf{Object}(TDef) & \\
&\textsf{FileTyp : TFileTyp;}&
Indicates what type of file definition it is (\textsf{text},
\textsf{untyped} or \textsf{typed}). \\
&\textsf{TypedFileType : TType;}&
In the case of a typed file definition, definition of the type of
the file \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{formal definition (TFormalDef)}
\label{subsubsec:formal}
\subsubsection{forward definition (TForwardDef)}
\label{subsubsec:forward}
The forward definition is created, when a type is declared before an actual
definition exists. This is the case, when, for example \textsf{type
pmyobject = \ tmyobject}, while \textsf{tmyobject} has yet to be defined.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6.5cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pForwardDef = & \^{} TForwardDef; & \\
\xspace \textsf{TForwardDef} = & \textbf{Object}(TDef) & \\
&\textsf{toSymName : String;}&
The symbol name for this forward declaration (the actual real
definition does not exist yet) \\
&\textsf{ForwardPos : TFilePosInfo;}&
Indicates file position where this forward definition was declared. \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{error definition (TErrorDef)}
\label{subsubsec:mylabel7}
This definition is actually an empty definition entry. When the parser
encounters an error when parsing a definition instead of putting nothing in
the type for a symbol, it puts this entry. This avoids illegal memory
accesses later in parsing.
\subsubsection{pointer definition (TPointerDef)}
\label{subsubsec:pointer}
The pointer definition is used for distinguishing between different types of
pointers in the compiler, and are created at each \textsf{\ typename}
parsing construct found.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pPointerDef = & \^{} TPointerDef; & \\
\xspace \textsf{TPointerDef} = & \textbf{Object}(TDef) & \\
&\textsf{Is{\_}Far : Boolean;}&
Used to indicate if this is a far pointer or not (this flag is
cpu-specific) \\
&\textsf{PointerType : TType;}&
This indicates to what type definition this pointer points to. \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{object definition (TObjectDef)}
\label{subsubsec:object}
The object definition is created each time an object declaration is found in
the type declaration section.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{5.5cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pObjectDef = & \^{} TObjectDef; & \\
\xspace \textsf{TObjectDef} = & \textbf{Object}(TDef) & \\
&\textsf{ChildOf : pObjectDef;}&
This is a pointer to the parent object definition. It is set to nil,
if this object definition has no parent. \\
&\textsf{ObjName : pString;}&
This is the object name \\
&\textsf{SymTable : pSymTable;}&
This is a pointer to the symbol table entries within this object. \\
&\textsf{PbjectOptions : TObjectOptions;}&
The options for this object, see the following table for the
possible options for the object. \\
&\textsf{VMT{\_}Offset : Longint;}&
This is the offset from the start of the object image in memory
where the virtual method table is located. \\
&\textsf{Writing{\_}Class{\_}Record{\_}Stab : Boolean;}& \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\hline
Object Options(TObjectOptions) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{oo{\_}is{\_}class}&
This is a delphi styled class declaration, and not a Turbo Pascal
object. \\
\textsf{oo{\_}is{\_}forward}&
This flag is set to indicate that the object has been declared in a
type section, but there is no implementation yet. \\
\textsf{oo{\_}has{\_}virtual}&
This object / class contains virtual methods \\
\textsf{oo{\_}has{\_}private}&
This object / class contains private fields or methods \\
\textsf{oo{\_}has{\_}protected}&
This object / class contains protected fields or methods \\
\textsf{oo{\_}has{\_}constructor}&
This object / class has a constructor method \\
\textsf{oo{\_}has{\_}destructor}&
This object / class has a destructor method \\
\textsf{oo{\_}has{\_}vmt}&
This object / class has a virtual method table \\
\textsf{oo{\_}has{\_}msgstr}&
This object / class contains one or more message handlers \\
\textsf{oo{\_}has{\_}msgint}&
This object / class contains one or more message handlers \\
\textsf{oo{\_}has{\_}abstract}&
This object / class contains one or more abstract methods \\
\textsf{oo{\_}can{\_}have{\_}published}&
the class has runtime type information, i.e. you can publish
properties \\
\textsf{oo{\_}cpp{\_}class}&
the object/class uses an C++ compatible class layout \\
\textsf{oo{\_}interface}&
this class is a delphi styled interface
\end{longtable}
\subsubsection{class reference definition (TClassRefDef)}
\label{subsubsec:class}
\subsubsection{array definition (TArrayDef)}
\label{subsubsec:array}
This definition is created when an array type declaration is parsed. It
contains all the information necessary for array type checking and code
generation.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.4cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pArrayDef = & \^{} TArrayDef; & \\
\xspace \textsf{TArrayDef} = & \textbf{Object}(TDef) & \\
&\textsf{IsVariant : Boolean;}& \\
&\textsf{IsConstructor : Boolean;}& \\
&\textsf{RangeNr: Longint;}&
Label number associated with the index values when range checking is
on \\
&\textsf{LowRange : Longint;}&
The lower index range of the array definition \\
&\textsf{HighRange : Longint;}&
The higher index range of the array definition \\
&\textsf{ElementType : TType;}&
The type information for the elements of the array \\
&\textsf{RangeType : TType;}&
The type information for the index ranges of the array \\
&\textsf{IsArrayofConst : Boolean;}& \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{record definition (TRecordDef)}
\label{subsubsec:record}
The record definition entry is created each time a record type declaration
is parsed. It contains the symbol table to the elements in the record.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8.7cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pRecordDef = & \^{} TRecordDef; & \\
\xspace \textsf{TRecordDef} = & \textbf{Object}(TDef) & \\
&\textsf{SymTable : PSymTable;}&
This is a pointer to the symbol table entries within this record. \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{ordinal definition (TOrdDef)}
\label{subsubsec:ordinal}
This type definition is the one used for all ordinal values such as char,
bytes and other numeric integer type values. Some of the predefined type
definitions are automatically created and loaded when the compiler starts.
Others are created at compile time, when declared.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pOrdDef = & \^{} TOrdDef; & \\
\xspace \textsf{TOrdDef} = & \textbf{Object}(TDef) & \\
&\textsf{Low : Longint;}&
The minimum value of this ordinal type \\
&\textsf{High : Longint;}&
The maximum value of this ordinal type \\
&\textsf{Typ : TBaseType;}&
The type of ordinal value (cf. table \ref{tbasetype}) \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\caption{Base types}\label{tbasetyp}\\
\hline
Base ordinal type (TBaseType) & Description \\
\hline
\endfirsthead
\caption{Base types (continued)}\\
\hline
Base ordinal type (TBaseType) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{uauto} & user defined ordinal type definition \\
\textsf{uvoid} & Represents a void return value or node \\
\textsf{uchar} & ASCII character (1 byte) \\
\textsf{u8bit} & unsigned 8-bit value \\
\textsf{u16bit}& unsigned 16-bit value \\
\textsf{u32bit}& unsigned 32-bit value \\
\textsf{s16bit}& signed 16-bit value \\
\textsf{s32bit}& signed 32-bit value \\
\textsf{bool8bit}& boolean 8-bit value \\
\textsf{bool16bit}& boolean 16-bit value \\
\textsf{bool32bit}& boolean 32-bit value \\
\textsf{\textit{u64bit}}&
\textit{unsigned 64-bit value (not fully supported/tested)} \\
\textsf{s64bit}& signed 64-bit value \\\textsf{\textit{uwidechar}}&
\textit{Currently not supported and unused} \\
\end{longtable}
\subsubsection{float definition (TFloatDef)}
\label{subsubsec:float}
This type definition is the one used for all floating point values such as
SINGLE, DOUBLE. Some of the predefined type definitions are automatically
created and loaded when the compiler starts.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{9cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pFloatDef = & \^{} TFloatDef; & \\
\xspace \textsf{TFloatDef} = & \textbf{Object}(TDef) & \\
&\textsf{Typ : TFloatType;}&
The type of floating point value (cf. table \ref{tfloattype}). \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\caption{Floating point types}\label{tfloattype}\\
\hline
Base floating point type (TFloatType) & Description \\
\hline
\endfirsthead
\hline
Base floating point type (TFloatType) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{s32real}& IEEE Single precision floating point value \\
\textsf{s64real}& IEEE Double precision floating point value \\
\textsf{s80real}&
Extended precision floating point value (cpu-specific,
usually maps to double) \\
\textsf{s64comp}& 63-bit signed value, using 1 bit for sign indication \\
\textsf{\textit{f16bit}}& \textit{Unsupported} \\
\textsf{\textit{f32bit}}& \textit{Unsupported} \\
\end{longtable}
\subsubsection{abstract procedure definition (tabstractprocdef)}
\label{subsubsec:abstract}
This is the base of all routine type definitions. This object is abstract,
and is not directly used in a useful way. The derived object of this object
are used for the actual parsing process.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{5.2cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pAbstractProcDef = & \^{} TAbstractProcDef; & \\
\xspace \textsf{TAbstractProcDef} = & \textbf{Object}(TDef) & \\
&\textsf{SymtableLevel : byte;}& \\
&\textsf{Fpu{\_}Used : Byte;}&
Number of floating point registers used in this routine \\
&\textsf{RetType : TType;}&
Type information for the return value \par (uvoid if it returns nothing) \\
&\textsf{ProcTypeOption : TProcTypeOption;} &
Indicates the type of routine it is (cf table \ref{tproctypeoption}). \\
&\textsf{ProcCallOptions : TProcCallOptions;} &
Indicates the calling convention of the routine (cf. table \ref{tproccalloptions}). \\
&\textsf{ProcOptions : TProcOptions;}&
Indicates general procedure options. \par (cf. table \ref{tprocoptions}). \\
&\textsf{Para : pLinkedList;}&
This is a linked list of parameters (pparaitem list) \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\caption{Procedure type options}\label{tproctypeoption}\\
\hline
Procedure options \par (TProcTypeOption)& Description \\
\hline
\endfirsthead
\caption{Procedure type options (continued)}\\
\hline
Procedure options \par (TProcTypeOption)& Description \\
\hline
\endhead
\hline
\endfoot
\textsf{poType{\_}ProgInit}&
Routine is the program entry point (defined as `\textsf{main}' in
the compiler). \\
\textsf{poType{\_}UnitInit}&
Routine is the unit initialization code \par (defined as
unitname\textsf{{\_}init} in the compiler \\
\textsf{poType{\_}UnitFinalize}&
Routine is the unit exit code \par (defined as
unitname\textsf{{\_}finalize} in the compiler) \\
\textsf{poType{\_}Constructor}&
Routine is an object or class constructor \\
\textsf{poType{\_}Destructor}&
Routine is an object or class destructor \\
\textsf{poType{\_}Operator}&
Procedure is an operator \\
\end{longtable}
\begin{longtable}{|l|p{10cm}|}
\caption{Procedure call options}\label{tproccalloptions}\\
\hline
call options \par (TProcCallOptions) & Description \\
\hline
\endfirsthead
\caption{Procedure call options (continued)}\\
\hline
call options \par (TProcCallOptions) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{pocall{\_}clearstack}&
The routine caller clears the stack upon return \\
\textsf{pocall{\_}leftright}&
Send parameters to routine from left to right \\
\textsf{pocall{\_}cdecl}&
Passing parameters is done using the GCC alignment scheme, passing
parameter values is directly copied into the stack space \\
\textsf{\textit{pocall{\_}register}}&
\textit{unused (Send parameters via registers)} \\
\textsf{pocall{\_}stdcall}&
Passing parameters is done using GCC alignment scheme, standard GCC registers
are saved \\
\textsf{\textit{pocall{\_}safecall}}&
Standard GCC registers are saved\\
\textsf{\textit{pocall{\_}palmsssyscall}}&
This is a special syscall macro for embedded system \\
\textsf{\textit{pocall{\_}system}}&
\textit{unused} \\
\textsf{pocall{\_}inline}&
Routine is an inline assembler macro (not a true call) \\
\textsf{pocall{\_}internproc}&
System unit code generator helper routine \\
\textsf{pocall{\_}internconst}&
System unit code generator helper macro routine \\
\end{longtable}
\begin{longtable}{|l|p{10cm}|}
\caption{Procedure options}\label{tprocoptions}\\
\hline
routine options (TProcOptions) & Description \\
\hline
\endfirsthead
\caption{Procedure options (continued)}\\
\hline
routine options (TProcOptions) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{po{\_}classmethod} & This is a class method \\
\textsf{po{\_}virtualmethod }& This is a virtual method \\
\textsf{po{\_}abstractmethod}& This is an abstract method \\
\textsf{po{\_}staticmethod} & This is a static method \\
\textsf{po{\_}overridingmethod}&
This is an overriden method (with po{\_}virtual flag usually) \\
\textsf{po{\_}methodpointer}&
This is a method pointer (not a normal routine pointer) \\
\textsf{po{\_}containsself}&
self is passed explicitly as a parameter to the method \\
\textsf{po{\_}interrupt}&
This routine is an interrupt handler \\
\textsf{po{\_}iocheck}&
IO checking should be done after a call to the procedure \\
\textsf{po{\_}assembler}&
The routine is in assembler \\
\textsf{po{\_}msgstr}&
method for string message handling \\
\textsf{po{\_}msgint}&
method for int message handling \\
\textsf{po{\_}exports}&
Routine has export directive \\
\textsf{po{\_}external}&
Routine is external (in other object or lib) \\
\textsf{po{\_}savestdregs}&
Routine entry should save all registers used by GCC \\
\textsf{po{\_}saveregisters}&
Routine entry should save all registers \\
\textsf{po{\_}overload}&
Routine is declared as being overloaded \\
\end{longtable}
\subsubsection{procedural variable definition (TProcVarDef)}
\label{subsubsec:procedural}
This definition is created when a procedure variable type is declared. It
gives information on the type of a procedure, and is used when assigning and
directly calling a routine through a pointer.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{7.8cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pProcVarDef = & \^{} TProcVarDef; & \\
\xspace \textsf{TProcVarDef} = & \textbf{Object}(TAbstractProcDef) & \\
& \textsf{end;}&\\
\hline
\end{tabular*}
\subsubsection{procedure definition (TProcDef)}
\label{subsubsec:mylabel8}
When a procedure head is parsed, the definition of the routine is created.
Thereafter, other fields containing information on the definition of the
routine are populated as required.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{7.8cm}|}
\hline
\textsf{TYPE} & & \\
\xspace pProcDef = & \^{} TProcDef; & \\
\xspace \textsf{TProcDef} = & \textbf{Object}(TAbstractProcDef) & \\
&\textsf{ForwardDef : Boolean;}& TRUE if this is a forward definition \\
&\textsf{InterfaceDef: Boolean;} & \\
&\textsf{ExtNumber : Longint;} & \\
&\textsf{MessageInf : TMessageInf;} & \\
&\textsf{NextOverloaded : pProcDef;} & \\
&\textsf{FileInfo : TFilePosInfo;} &
Position in source code for the declaration of this routine. Used
for error management. \\
&\textsf{Localst : pSymTable;} & The local variables symbol table \\
&\textsf{Parast: pSymTable;}& The parameter symbol table \\
&\textsf{ProcSym : pProcSym;}& Points to owner of this definition \\
&\textsf{LastRef : pRef;}& \\
&\textsf{DefRef: pRef;}& \\
&\textsf{CrossRef : pRef;}& \\
&\textsf{LastWritten : pRef;}& \\
&\textsf{RefCount : Longint;}& \\
&\textsf{{\_}Class : ProbjectDef;}& \\
&\textsf{Code : Pointer;}&
The actual code for the routine (only for inlined routines) \\
&\textsf{UsedRegisters : TRegisterSet;}&
The set of registers used in this routine \\
&\textsf{HasForward : Boolean;}& \\
&\textsf{Count: Boolean;}& \\
&\textsf{Is{\_}Used : Boolean;}& \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{string definition (TStringDef)}
\label{subsubsec:string}
This definition represents all string types as well as derived types. Some
of the default string type definitions are loaded when the compiler starts
up. Others are created at compile time as they are declared with a specific
length type.
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{8cm}|}
\hline
\textsf{TYPE}& & \\
\xspace pStringDef = & \^{} TStringDef; & \\
\xspace \textsf{TStringDef} = & \textbf{Object}(TDef) & \\
&\textsf{String{\_}Typ : TStringType;}&
Indicates the string type definition (cf. \ref{tstringtype}) \\
&\textsf{Len : Longint;}&
This is the maximum length which can have the string \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\caption{string types}\label{tstringtype}\\
\hline
String type \par (TStringType) & Description \\
\hline
\endfirsthead
\caption{string types (continued)}\\
\hline
String type \par (TStringType) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{st{\_}default}&
Depends on current compiler switches, can either be a
st{\_}ShortString or st{\_}AnsiString \\
\textsf{st{\_}shortstring}&
short string (length byte followed by actual ASCII characters (1
byte/char)) \\
\textsf{st{\_}longstring}&
long string (length longint followed by actual ASCII characters (1
byte/char)) \\
\textsf{st{\_}ansistring}&
long string garbage collected (pointer to a length, reference count
followed by actual ASCII characters (1 byte/char)) \\
\textsf{\textit{st{\_}widestring}}&
\textit{long string garbage collected (pointer to a length,
reference count followed by actual unicode characters (1
word/char (utf16)))} \\
\end{longtable}
\subsubsection{enumeration definition (TEnumDef)}
\label{subsubsec:mylabel9}
An enumeration definition is created each time an enumeration is declared
and parsed. Each element in the enumeration will be added to the linked list
of symbols associated with this enumeration, and this symbol table will then
be attached to the enumeration definition.
\begin{tabular*}{6,5in}{|l@{\extracolsep{\fill}}lp{6,5cm}|}
\hline
\textsf{TYPE} & & \\
\xspace \textsf{pEnumDef} &= \^{} \textbf{TEnumDef};& \\
\xspace \textsf{TEnumDef} &= \textbf{object}(TDef) & \\
&\textsf{\textit{Has{\_}Jumps : Boolean;}}&
\textit{Currently unused} \\
&\textsf{MinVal : Longint;}&
Value of the first element in the enumeration \\
&\textsf{MaxVal : Longint;}&
Value of the last element in the enumeration \\
&\textsf{FirstEnum : pEnumSym;}&
Pointer to a linked list of elements in the enumeration, each with
its name and value. \\
&\textsf{BaseDef : pEnumDef;}&
In the case where the enumeration is a subrange of another enumeration,
this gives information on the base range of the elements \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\subsubsection{set definition (TSetDef)}
\label{subsubsec:mylabel10}
This definition is created when a set type construct is parsed (\textsf{set
of declaration}).
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6,5cm}|}
\hline
\textsf{TYPE} & & \\
\xspace \textsf{pSetDef} &= \^{} \textbf{TSetDef};& \\
\xspace \textsf{TSetDef} &= \textbf{object}(TDef) & \\
&\textsf{SetType : TSetType;}&
Indicates the storage type of the set (Cf. table \ref{tsettype}). \\
&\textsf{ElementType : TType;}&
Points the type definition and symbol table to the elements in the set. \\
&\textsf{end;}& \\
\hline
\end{tabular*}
\begin{longtable}{|l|p{10cm}|}
\caption{set types}\label{tsettype}\\
\hline
set type (TSetType) & Description \\
\hline
\endfirsthead
\caption{set types (continued)}\\
\hline
set type (TSetType) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{NormSet}&
Normal set of up to 256 elements (32 byte storage space required) \\
\textsf{SmallSet}&
Small set of up to 32 elements (4 byte storage space) \\
\textsf{\textit{VarSet}}&
\textit{Variable number of element set (storage size is dependent on number
of elements) (currently unused and unsupported)} \\
\end{longtable}
\subsection{Definition interface}
\label{subsec:definition}
\subsubsection{routines}
\begin{function}{TDef.Size}
\Declaration
Function TDef.Size : Longint;
\Description
This method returns the true size of the memory space required in bytes for
this type definition (after alignment considerations).
\end{function}
\begin{function}{TDef.Alignment}
\Declaration
Function TDef.Alignment : Longint;
\Description
This method returns the alignment of the data for complex types such as
records and objects, otherwise returns 0 or 1 (no alignment).
\end{function}
\section{The parser}
\label{sec:mylabel5}
The task of the parser is to read the token fed by the scanner, and make
sure that the pascal syntax is respected. It also populates the symbol
table, and creates the intermediate nodes (the tree) which will be used by
the code generator.
An overview of the parsing process, as well as its relationship with the
tree the type checker and the code generator is shown in the following
diagram:
\subsection{Module information}
\label{subsec:module}
Each module being compiled, be it a library , unit or main program has some
information which is required. This is stored in the tmodule object in
memory. To avoid recompilation of already compiled module, the dependencies
of the modules is stored in a PPU file, which makes it easier to determine
which modules to recompile.
\begin{longtable}{|l@{\extracolsep{\fill}}lp{6cm}|}
\hline
\endhead
\hline
\endfoot
%\begin{tabular*}
\textsf{TYPE}& & \\
\xspace pModule = & \^{} TModule; & \\
\xspace \textsf{TModule} = & \textbf{Object}(TLinkedList\_Item) & \\
&\textsf{PPUFile : pPPUFile;}& Pointer to PPU file object (unit file) \\
&\textsf{Crc : Longint;}& CRC-32 bit of the whole PPU file \\
&\textsf{Interface{\_}CRC : Longint;}& CRC-32 bit of the interface part of the PPU file \\
&\textsf{Flags: Longint;}& Unit file flags \\
&\textsf{Compiled: Boolean;}& TRUE if module is already compiled \\
&\textsf{Do{\_}Reload : Boolean;} & TRUE if the PPU file must be reloaded \\
&\textsf{Do{\_}Assemble : Boolean;} & Only assemble, don't recompile unit \\
&\textsf{Sources{\_}Avail : Boolean;} & TRUE if all sources of module are available \\
&\textsf{Sources{\_}Checked : Boolean;} & TRUE if the sources has already been checked \\
&\textsf{Is{\_}Unit: Boolean;} & TRUE if this is a unit (otherwise a library or a main program) \\
&\textsf{In{\_}Compile: Boolean;} & module is currently being recompiled \\
&\textsf{In{\_}Second{\_}Compile: Boolean;}& module is being compiled for second time \\
&\textsf{In{\_}Second{\_}Load: Boolean;} & module is being reloaded a second time \\
&\textsf{In{\_}Implementation : Boolean;}& currently compiling implementation part (units only) \\
&\textsf{In{\_}Global : Boolean;} & currently compiling implementation part (units only) \\
&\textsf{Recompile{\_}Reason : TRecompile{\_}Reason;}& Reason why module should be recompiled \\
&\textsf{Islibrary : Boolean;}& TRUE if this module is a shared library \\
&\textsf{Map : pUnitMap;} & Map of all used units for this unit \\
&\textsf{Unitcount : Word;} & Internal identifier of unit (for GDB support) \\
&\textsf{Unit{\_}index : Eord;} & \\
&\textsf{Globalsymtable : Pointer;} & Symbol table for this module of externally visible symbols \\
&\textsf{Localsymtable : Pointer;} & Symbol table for this module of locally visible symbols \\
&\textsf{Scanner : Pointer;} & Scanner object pointer \\
&\textsf{Loaded{\_}From : pModule;} & Module which referred to this module \\
&\textsf{Uses{\_}Imports : Boolean;} & TRUE if this module imports symbols from a shared library \\
&\textsf{Imports : pLinkedList} & Linked list of imported symbols \\
&\textsf{{\_}Exports : pLinkedList;} & Linked list of exported symbols (libraries only) \\
&\textsf{SourceFiles : pFileManager;} & List of all source files for this module \\
&\textsf{ResourceFiles : TStringContainer;} & List of all resource files for this module \\
&\textsf{Used{\_}Units : TLinkedList; } & Information on units used by this module (pused{\_}unit) \\
&\textsf{Dependent{\_}Units : TLinkedList;}& \\
&\textsf{LocalUnitSearchPath,}& Search path for obtaining module source code \\
&\textsf{LocalObjectSearchPath,}& \\
&\textsf{LocalIncludeSearchPath,}& Search path for includes for this module \\
&\textsf{LocalLibrarySearchPath:TSearchPathList;}& \\
&\textsf{Path : pString;}& Path were module is located or created \\
&\textsf{OutputPath : pString;}& Path where object files (unit), executable (program) or shared library (library) is created \\
&\textsf{ModuleName : pString;}& Name of the module in uppercase \\
&\textsf{ObjFileName : pString;}& Full name of object file or executable file \\
&\textsf{AsmFileName : pString;}& Full name of the assembler file \\
&\textsf{PPUFileName : pString;}& Full name of the PPU file \\
&\textsf{StaticLibFilename : pString;}& Full name of the static library name (used when smart linking is used) \\
&\textsf{SharedLibFilename : pString;}& Filename of the output shared library (in the case of a library) \\
&\textsf{ExeFileName : pString;}& Filename of the output executable (in the case of a program) \\
&\textsf{AsmPrefix : pString;}& Filename prefix of output assembler files when using smartlinking \\
&\textsf{MainSource : pString;}& Name of the main source file \\
&\textsf{end;}& \\
%\end{tabular*}
\end{longtable}
\subsection{Parse types}
\label{subsec:parse}
\subsubsection{Entry}
\label{subsubsec:entry}
\begin{figure}
\begin{center}
\ifpdf
\includegraphics{arch8.pdf}
%\epsfig{file=arch8.png,width=\textwidth}
\else
\includegraphics[width=4.99in,height=8.36in]{arch8.eps}
\fi
\label{fig8}
\caption{Parser - Scanner flow}
\end{center}
\end{figure}
\subsubsection{program or library parsing }
\subsubsection{unit parsing }
\label{subsubsec:mylabel12}
\subsubsection{routine parsing }
\label{subsubsec:routine}
\subsubsection{label declarations }
\label{subsubsec:mylabel13}
\subsubsection{constant declarations}
\label{subsubsec:mylabel14}
\subsubsection{type declarations}
\label{subsubsec:mylabel15}
\subsubsection{variable declarations}
\label{subsubsec:mylabel16}
\subsubsection{thread variable declarations}
\label{subsubsec:thread}
\subsubsection{resource string declarations}
\label{subsubsec:resource}
\subsubsection{exports declaration}
\label{subsubsec:exports}
\subsubsection{expression parsing }
\label{subsubsec:expression}
\subsubsection{typed constant declarations}
\label{subsubsec:mylabel17}
\subsection{Parser interface}
\label{subsec:parser}
\subsubsection{variables}
\begin{variable}{AktProcSym}
\Declaration
Var AktProcSym : pProcSym;
\Description
Pointer to the symbol information for the routine currently being parsed.
\end{variable}
\begin{variable}{LexLevel}
\Declaration
var LexLevel : longint;
\Description
Level of code currently being parsed and compiled \par 0 = for main program
\par 1 = for subroutine \par 2 = for local / nested subroutines.
\end{variable}
\begin{variablel}{Current{\_}Module}{currentmodule}
\Declaration
Var Current{\_}Module : pModule;
\Description
Information on the current module (program, library or unit) being compiled.
\end{variablel}
The following variables are default type definitions which are created each
time compilation begins (default system-unit definitions), these definitions
should always be valid:
\begin{variable}{VoidDef}
\Declaration
Var VoidDef : pOrdDef;
\Description
Pointer to nothing type
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{cCharDef}
\Declaration
Var cCharDef : pOrdDef;
\Description
Type definition for a character (\textsf{char})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{cWideCharDef}
\Declaration
Var cWideCharDef : pOrdDef;
\Description
Type definition for a unicode character (\textsf{widechar})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{BoolDef}
\Declaration
Var BoolDef : pOrdDef;
\Description
Type definition for a boolean value (\textsf{boolean})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{u8BitDef}
\Declaration
Var u8BitDef : pOrdDef;
\Description
Type definition for an 8-nit unsigned value (\textsf{byte})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{u16BitDef}
\Declaration
Var u16BitDef : pOrdDef;
\Description
Type definition for an unsigned 16-bit value (\textsf{word})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{u32BitDef}
\Declaration
Var u32BitDef : pOrdDef;
\Description
Type definition for an unsigned 32-bit value (\textsf{cardinal})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{s32BitDef}
\Declaration
Var s32BitDef : pOrdDef;
\Description
Type definition for a signed 32-bit value (\textsf{longint})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{cu64BitDef}
\Declaration
Var cu64BitDef : pOrdDef;
\Description
Type definition for an unsigned 64-bit value (\textsf{qword})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{cs64BitDef}
\Declaration
Var cs64BitDef : pOrdDef;
\Description
Type definition for a signed 64-bit value (\textsf{int64})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
The following variables are default type definitions which are created each
time compilation begins (default system-unit definitions), these definitions
should always be valid:
\begin{variable}{s64FloatDef}
\Declaration
Var s64FloatDef : pFloatDef;
\Description
Type definition for a 64-bit IEEE floating point type (\textsf{double})
\Notes
This is loaded as a default supported type for the compiler. This might not
actually really point to the double type if the cpu does not support it.
\end{variable}
\begin{variable}{s32FloatDef}
\Declaration
Var s32FloatDef : pFloatDef;
\Description
Type definition for a 32-bit IEEE floating point type (\textsf{single})
\Notes
This is loaded as a default supported type for the compiler. This might not
actually really point to the single type if the cpu does not support it.
\end{variable}
\begin{variable}{s80FloatDef}
\Declaration
Var s80FloatDef : pFloatDef;
\Description
Type definition for an extended floating point type (\textsf{extended})
\Notes
This is loaded as a default supported type for the compiler. This
might not actually really point to the extended type if the cpu does not
support it.
\end{variable}
\begin{variable}{s32FixedDef}
\Declaration
Var s32FixedDef : pFloatDef;
\Description
Type definition for a fixed point 32-bit value (\textsf{fixed})
\Notes
This is loaded as a default supported type for the compiler. This is
not supported officially in FPC 1.0
\end{variable}
The following variables are default type definitions which are created each
time compilation begins (default system-unit definitions), these definitions
should always be valid:
\begin{variable}{cShortStringDef}
\Declaration
Var cShortStringDef : pStringDef;
\Description
Type definition for a short string type (\textsf{shortstring})
\Notes
This is loaded as a default supported type for the compiler.
\end{variable}
\begin{variable}{cLongStringDef}
\Declaration
Var cLongStringDef : pStringDef;
\Description
Type definition for a long string type (\textsf{\textit{longstring}})
\Notes
This is loaded as a default supported type for the compiler.
\end{variable}
\begin{variable}{cAnsiStringDef}
\Declaration
Var cAnsiStringDef : pStringDef;
\Description
Type definition for an ansistring type (\textsf{ansistring})
\Notes
This is loaded as a default supported type for the compiler.
\end{variable}
\begin{variable}{cWideStringDef}
\Declaration
Var cWideStringDef : pStringDef;
\Description
Type definition for an wide string type (\textsf{\textit{widestring}})
\Notes
This is loaded as a default supported type for the compiler.
\end{variable}
\begin{variable}{OpenShortStringDef}
\Declaration
Var OpenShortStringDef : pStringDef;
\Description
Type definition for an open string type (\textsf{openstring})
\Notes
This is loaded as a default supported type for the compiler.
\end{variable}
\begin{variable}{OpenCharArrayDef}
\Declaration
Var OpenCharArrayDef : pArrayDef;
\Description
Type definition for an open char array type(\textsf{openchararray})
\Notes
This is loaded as a default supported type for the compiler.
\end{variable}
The following variables are default type definitions which are created each
time compilation begins (default system-unit definitions), these definitions
should always be valid:
\begin{variable}{VoidPointerDef}
\Declaration
Var VoidPointerDef : pPointerDef;
\Description
Type definition for a pointer which can point to anything (\textsf{pointer})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{CharPointerDef}
\Declaration
Var CharPointerDef : pPointerDef;
\Description
Type definition for a pointer which can point to characters (\textsf{pchar})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{VoidFarPointerDef}
\Declaration
Var VoidFarPointerDef : pPointerDef;
\Description
Type definition for a pointer which can point to anything
(intra-segment) (\textsf{far pointer})
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{cFormalDef}
\Declaration
Var cFormalDef : pFormalDef;
\Notes
This is loaded as a default supported type for the compiler
\end{variable}
\begin{variable}{cfFileDef}
\Declaration
Var cfFileDef : pFileDef;
\Description This is the default file type (\textsf{file})
\Notes This is loaded as a default supported type for the compiler
\end{variable}
\section{The inline assembler parser}
\label{sec:mylabel6}
To be written.
\section{The code generator}
\label{sec:mylabel7}
\subsection{Introduction}
\label{subsec:introductioneratorer}
The code generator is responsible for creating the assembler output in form
of a linked list, taking as input the node created in the parser and the
1$^{st}$ pass. Picture \seefig{fig9} shows an overview of the code generator
architecture:
\begin{figure}
\begin{center}
\ifpdf
\includegraphics{arch9.pdf}
%\epsfig{file=arch9.png,width=\textwidth}
\else
\includegraphics[width=5.68in,height=1.76in]{arch9.eps}
\fi
\label{fig:fig9}
\caption{Code generator architecture}
\end{center}
\end{figure}
The code generation is only done when a procedure body is parsed; the
interaction, between the 1$^{st}$ pass (type checking phase), the code
generation and the parsing process is show in the following diagram:
\begin{figure}
\ifpdf
\includegraphics{arch10.pdf}
%\epsfig{file=arch10.png,width=\textwidth}
\else
\includegraphics[width=6.95in,height=4.90in]{arch10.eps}
\fi
\label{fig:fig10}
\caption{Interaction between codegeneration and the parsing process}
\end{figure}
The \textsf{secondpass()} is actually a simple dispatcher. Each possible
tree type node (Cf. Tree types) is associated with
a second pass routine which is called using a dispatch table.
\subsection{Locations (cpubase.pas)}
\label{subsec:locations}
The code generator uses the tree location component to indicate the location
where the current node operands are located. This is then used by the code
generator to generate the appropriate instruction, all depending on the
location of the operand. The possible operand locations:
\begin{longtable}{|l|p{10cm}|}
\hline
Location define & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{LOC{\_}INVALID}&
Invalid location (should never occur) \\
\textsf{LOC{\_}FPU}&
Floating point registers \\
\textsf{LOC{\_}REGISTER}&
Integer registers \\
\textsf{LOC{\_}MEM}&
Memory Location \\
\textsf{LOC{\_}REFERENCE}&
Constant node with constant value \\
\textsf{LOC{\_}JUMP}&
Label operand \\
\textsf{LOC{\_}FLAGS}&
Flags operand \\
\textsf{LOC{\_}CREGISTER}&
Constant integer register (when operand is in this
location, it should be considered as read-only) \\
\end{longtable}
Depending on the location type, a variable structure is defined indicating
more information on the operand. This is used by the code generator to
generate the exact instructions.
\subsubsection{LOC{\_}INVALID}
\label{subsubsec:mylabel18}
This location does not contain any related information, when this location
occurs, it indicates that the operand location was not initially allocated
correctly. This indicates a problem in the compiler.
\subsubsection{LOC{\_}FPU}
\label{subsubsec:mylabel19}
This indicates a location in the coprocessor; this is platform dependant.
\paragraph{Stack based FPU}
Only one CPU uses a stack based FPU architecture, this is the intel 80x86
family of processors. When the operand is on the top of the stack, the
operand is of type LOC{\_}FPU.
\paragraph{Register based FPU}
When the floating point co-processor is register based, the following
field(s) are defined in the structure to indicate the current location of
the operand:
\begin{longtable}{|l|p{7cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{FpuRegister : TRegister;}&
Indicates in what register the operand is located (a general purpose
register in emulation mode, and a floating point register when floating
point hardware is present) \\
\textsf{FpuRegisterHigh, } \par
\textsf{FpuRegisterLow : TRegister;}&
Indicates in what registers the operand are located (for emulation
support - these are general purpose registers)
\end{longtable}
\subsubsection{LOC{\_}REGISTER}
\label{subsubsec:mylabel20}
This fields indicates that the operand is located in a CPU register. It is
possible to allocate more then one register, if trying to access 64-bit
values on 32-bit wide register machines.
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Register : TRegister}&
Indicates in what register the operand is located. \\
\textsf{RegisterHigh : TRegister;}&
High 32-bit of 64-bit virtual register (on 32-bit machines) \\
\textsf{RegisterLow : TRegister;}&
Low 32-bit of 64-bit virtual register (on 32-bit machines)
\end{longtable}
\subsubsection{LOC{\_}MEM, LOC{\_}REFERENCE}
\label{subsubsec:mylabel21}
This either indicates an operand in memory, or a constant integer numeric
value. The fields for this type of operand is as follows:
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Reference : TReference;}&
Information on the location in memory
\end{longtable}
References are the basic building blocks of the code generator, every load
and store in memory is done via a reference. A reference type can either
point to a symbolic name, an assembler expression (base register + index
register + offset)*scale factor, as well as simply giving information on a
numeric value.
The treference consists of the following:
\begin{tabular*}{6.5in}{|l@{\extracolsep{\fill}}lp{6,5cm}|}
\hline
\textsf{TYPE} & & \\
\xspace \textsf{pReference} &= \^{} \textbf{TReference};& \\
\xspace \textsf{TReference} &= \textbf{packed Record} & \\
&\textsf{Is{\_}Immediate : Boolean;}&
Indicates that this location points to a memory location, but to a
constant value (TRUE), which is located in the offset field. \\
&\textsf{Segment : TRegister;}& (cpu-specific) \\
&\textsf{Base : TRegister;}&
Base address register for assembler expression \\
&\textsf{Index : TRegister;}&
Index register for assembler expression \\
&\textsf{ScaleFactor : Byte;}&
Multiplication factor for assembler expression (this field is
cpu-specific) \\
&\textsf{Offset : Longint;}&
Either an offset from base assembler address expression to add (if
Is{\_}Constant = FALSE) otherwise the numeric value of the operand \\
&\textsf{Symbol : pAsmSymbol;}&
Pointer to the symbol name string of the reference in case where it is
a symbolic reference \\
&\textsf{OffsetFixup : Longint;}& \\
&\textsf{Options : TRefOptions;}& \\
&\textsf{END;}& \\
\hline
\end{tabular*}
\subsubsection{LOC{\_}JUMP}
\label{subsubsec:mylabel22}
There are no fields associated with this location, it simply indicates that
it is a boolean comparison which must be done to verify the succeeding
operations. (i.e the processor zero flag is valid and gives information on
the result of the last operation).
\subsubsection{LOC{\_}FLAGS}
\label{subsubsec:mylabel23}
The operand is in the flags register. From this operand, the conditional
jumps can be done. This is processor dependant, but normally the flags for
all different comparisons should be present.
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{ResFlags : TResFlags;}&
This indicates the flag which must be verified for the actual jump
operation. \textsf{tresflags }is an enumeration of all possible
conditional flags which can be set by the processor. \\
\end{longtable}
\subsubsection{LOC{\_}CREGISTER}
\label{subsubsec:mylabel24}
This is a read-only register allocated somewhere else in the code generator.
It is used mainly for optimization purposes. It has the same fields as
LOC{\_}REGISTER, except that the registers associated with this location can
only be read from, and should never be modified directly.
\begin{longtable}{|l|p{10cm}|}
\hline
Field & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{Register : TRegister}&
Indicates in what register the operand is located. \\
\textsf{RegisterHigh : TRegister;}&
High 32-bit of 64-bit virtual register (on 32-bit machines) \\
\textsf{RegisterLow : TRegister;}&
Low 32-bit of 64-bit virtual register (on 32-bit machines) \\
\end{longtable}
\subsubsection{LOCATION PUBLIC INTERFACE}
\label{subsubsec:location}
\begin{procedurel}{Del{\_}Location}{dellocation}
\Declaration
procedur Del{\_}Location(const L : TLocation);
\Description
If the location points to a LOC{\_}REGISTER or LOC{\_}CREGISTER, it frees up
the allocated register(s) associated with this location. If the location
points to LOC{\_}REFERENCE or LOC{\_}MEM, it frees up the the allocated base
and index registers associated with this node.
\end{procedurel}
\begin{procedurel}{Clear{\_}Location}{clearlocation}
\Declaration
procedure Clear{\_}location(var Loc : TLocation);
\Description
Sets the location to point to a LOC{\_}INVALID type.
\end{procedurel}
\begin{procedurel}{Set{\_}Location}{setlocation}
\Declaration
procedure Set{\_}Location(var Destloc,Sourceloc : TLocation);
\Description
The destination location now points to the destination location (now copy is
made, a simple pointer assignment)
\end{procedurel}
\begin{procedurel}{Swap{\_}Location}{swaplocation}
\Declaration
Procedure Swap{\_}Location(var Destloc,Sourceloc : TLocation);
\Description
Swap both location pointers.
\end{procedurel}
\subsection{Registers (cpubase.pas)}
\label{subsec:registers}
The code generator defines several types of registers which are categorized
by classes. All (except for the scratch register class) of these register
classes are allocated / freed on the fly, when the code is generated in the
code generator: The registers are defined in a special enumeration called
tregister. This enumeration contains all possible register defines for the
target architecture, and a possible definition could be as follows :
\begin{verbatim}
tregister = ( { general purpose registers }
R_NO,R_D0,R_D1,R_D2,R_D3,R_D4,R_D5,R_D6,R_D7,
{ address registers }
R_A0,R_A1,R_A2,R_A3,R_A4,R_A5,R_A6,R_SP,
{ PUSH/PULL- quick and dirty hack }
R_SPPUSH,R_SPPULL,
{ misc. and floating point registers }
R_CCR,R_FP0,R_FP1,R_FP2,R_FP3,R_FP4,R_FP5,R_FP6,
R_FP7,R_FPCR,R_SR,R_SSP,R_DFC,R_SFC,R_VBR,R_FPSR,
{ other - not used }
R_DEFAULT_SEG
);
\end{verbatim}
\subsubsection{integer registers}
\label{subsubsec:integer}
\textsf{intregs: array[1..maxintregs] of tregister;}
General purpose registers which can contain any data, usually integer
values. These can also be used, when no floating point coprocessor is
present, to hold values for floating point operations.
\subsubsection{address registers}
\label{subsubsec:address}
\textsf{addrregs: array[1..maxaddrregs] of tregister;}
Registers which are used to construct assembler address expressions, usually
the address registers are used as the base registers in these assembler
expressions.
\subsubsection{fpu registers}
\label{subsubsec:mylabel25}
\textsf{FpuRegs: array[1..MaxFpuRegs] of TRegister;}
Hardware floating point registers. These registers must at least be able to
load and store IEEE DOUBLE floating point values, otherwise they cannot be
considered as FPU registers. Not available on systems with no floating point
coprocessor.
\subsubsection{scratch registers}
\label{subsubsec:scratch}
\textsf{Scratch{\_}Regs: array[1..MaxScratchRegs] of TRegister;}
These registers are used as scratch, and can be used in assembler statement
in the pascal code, without being saved. They will always be valid across
routine calls. These registers are sometimes temporarily allocated inside
code generator nodes, and then immediately freed (always inside the same
routine).
\subsection{Special registers (cpubase.pas)}
\label{subsec:special}
The code generator has special uses for certain types of registers. These
special registers are of course CPU dependant, but as an indication, the
following sections explains the uses of these special registers and their
defines.
\subsubsection{Stack{\_}Pointer}
\label{subsubsec:stack}
\textsf{Const Stack{\_}Pointer = R{\_}A7}
This represents the stack pointer, an address register pointing to the
allocated stack area.
\subsubsection{Frame{\_}Pointer}
\label{subsubsec:frame}
\textsf{Const Frame{\_}Pointer = R{\_}A6}
This represents the frame register which is used to access values in the
stack. This is usually also an address register.
\subsubsection{Self{\_}Pointer}
\label{subsubsec:mylabel26}
\textsf{Const Self{\_}Pointer = R{\_}A5}
This represents the self register, which represents a pointer to the current
instance of a class or object.
\subsubsection{accumulator}
\label{subsubsec:accumulatorents}
\textsf{Const Accumulator = R{\_}D0}
The accumulator is used (except in the i386) as a scratch register, and also
for return value in functions (in the case where they are 32-bit or less).
In the case it is a 64-bit value (and the target processor only supports
32-bit registers) , the result of the routine is stored in the accumulator
for the low 32-bit value, and in the scratch register
(\textsf{scratch{\_}register}) for the high 32-bit value.
\subsubsection{scratch register}
\label{subsubsec:mylabel27}
\textsf{const scratch{\_}reg = R{\_}D1}
This register is used in special circumstances by the code generator. It is
simply a define to one of the registers in the \textsf{scratch{\_}regs
}array.
\subsection{Instructions}
\label{subsec:instructionsr}
\subsection{Reference subsystem}
\label{subsec:reference}
\subsubsection{Architecture}
\label{subsubsec:architecturebsysteme}
As described before in the locations section, one of the possible locations
for an operand is a memory location, which is described in a special
structure \textsf{treference} (described earlier). This subsection describes
the interface available by the code generator for allocation and freeing
reference locations.
\subsubsection{Code generator interface}
\label{subsubsec:mylabel28}
%\lstinline!Function NewReference(Const R : TReference) : pReference;!
\begin{procedure}{DisposeReference}
\Declaration
Procedure DisposeReference(Var R : pReference);
\Description
Disposes of the reference \textsf{R} and sets r to \textsf{NIL}
\Notes
Does not verify if \textsf{R} is assigned first.
\end{procedure}
\begin{function}{NewReference}
\Declaration
Function NewReference(Const R : TReference) : pReference;
\Description
Allocates in the heap a copy of the reference \textsf{r} and returns that
allocated pointer.
\end{function}
\begin{functionl}{Del{\_}Reference}{delreference}
\Declaration
Procedure Del{\_}Reference(Const Ref : tReference);
\Description
Free up all address registers allocated in this reference for the index and
base (if required).
\Notes
Does not free the reference symbol if it exists.
\end{functionl}
\begin{functionl}{New{\_}Reference}{resetreference}
\Declaration
Function New{\_}Reference(Base : TRegister;Offset : Longint) : PReference;
\Description
Allocates a reference pointer, clears all the fields to zero, and sets the
offset to the offset field and the base to the base fields of the newly
allocated reference. Returns this newly allocated reference.
\end{functionl}
\begin{procedurel}{Reset{\_}Reference}{resetreference}
\Declaration
Procedure Reset{\_}Reference(Var Ref : TReference);
\Description
Clears all fields of the reference.
\end{procedurel}
\subsection{The register allocator subsystem}
\label{subsec:mylabel7}
\subsubsection{Architecture}
\label{subsubsec:architecture}
This system allocates and deallocates registers, from a pool of free
registers. Each time the code generator requires a register for generating
assembler instructions, it either calls the register allocator subsystem to
get a free register or directly uses the scratch registers (which are never
allocated in a pool except in the optimization phases of the compiler).
The code generator when no longer referencing the register should deallocate
it so it can be used once again.
\subsubsection{Code generator interface (tgen.pas)}
\label{subsubsec:mylabel29}
The following interface routines are used by the code generator to allocate
and deallocate registers from the different register pools available to code
generator.
\begin{function}{GetRegister32}
\Declaration
Function GetRegister32 : TRegister;
\Description
Allocates and returns a general purpose (integer) register which can be used
in the code generator. The register, when no longer used should be
deallocated with ungetregister32() or ungetregister()
\Notes
On non 32-bit machines, this routine should return the normal register for
this machine (eg : 64-bit machines will alloate and return a 64-bit
register).
\end{function}
\begin{procedure}{GetRegisterPair}
\Declaration
Procedure GetRegisterPair(Var Low, High : TRegister);
\Description
Returns a register pair to be used by the code generator when accessing
64-bit values on 32-bit wide register machines.
\Notes
On machines which support 64-bit registers naturally, this routine should
never be used, it is intended for 32-bit machines only.par Some machines
support 64-bit integer operations using register 32-bit pairs in hardware,
but the allocated registers must be specific, this routine is here to
support these architectures.
\end{procedure}
\begin{procedure}{UngetRegister32}
\Declaration
Procedure UnGetRegister32(R : TRegister);
\Description
Deallocates a general purpose register which was previously allocated with
\seef{GetRegister32}().
\end{procedure}
\begin{function}{GetFloatRegister}
\Declaration
Function GetFloatRegister : TRegister;
\Description
Allocates and returns a floating point register which can be used in the
code generator. The register, when no longer used should be deallocated with
ungetregister(). The register returned is a true floating point register (if
supported).
\Notes
This routine should only be used when floating point hardware is present in
the system. For emulation of floating point, the general purpose register
allocator / deallocator routines should be used instead.
\end{function}
\begin{function}{IsFloatsRegister}
\Declaration
Function IsFloatsRegister(R : TRegister): Boolean;
\Description
Returns TRUE if the register r is actually a floating point register,
otherwise returns FALSE. This is used when the location is LOC{\_}FPU on
machines which do not support true floating point registers.
\end{function}
\begin{function}{GetAdressReg}
\Declaration
Function GetAddressReg : TRegister;
\Description
Allocates and returns an address register which can be used for address
related opcodes in the code generator. The register, when no longer used
should be deallocated with ungetregister()
\Notes
If there is no distinction between address registers, and general purpose
register in the architecture, this routine may simply call and return the
getregister32() result.
\end{function}
\begin{function}{IsAddressRegister}
\Declaration
Function IsAddressRegister(r : TRegister): Boolean;
\Description
Returns TRUE if the register r is actually an address register, otherwise
returns FALSE.
\Notes
If there is no distinction between address registers, and general purpose
register in the architecture, this routine may simply verify if this is a
general purpose register and return TRUE in that case.
\end{function}
\begin{procedure}{UngetRegister}
\Declaration
Procedure UngetRegister(r : TRegister);
\Description
Deallocates any register which was previously allocated with any of the
allocation register routines.
\end{procedure}
\begin{function}{SaveUsedRegisters}
\Declaration
Procedure SaveUsedRegisters(Var Saved : TSaved; ToSave: TRegisterset);
\Description
Saves in a temporary location all specified registers. On stack based
machines the registers are saved on the stack, otherwise they are saved in a
temporary memory location. The registers which were saved are stored in the
\textsf{saved} variable. The constant \textsf{ALL{\_}REGISTERS} passed to
the \textsf{tosave} parameter indicates to save all used registers.
\end{function}
\begin{function}{RestoreUsedRegisters}
\Declaration
procedure restoreusedregisters(Saved : TSaved);
\Description
Restores all saved registers from the stack (or a temporary memory
location). Free any temporary memory space allocated, if necessary.
\end{function}
\begin{function}{GetExplicitRegister32}
\Declaration
Function GetExplicitRegister32(R : TRegister): TRegister;
\Description
This routine allocates specifically the specified register \textsf{r} and
returns that register. The register to allocate can only be one of the
scratch registers.
\Notes
This routine is used for debugging purposes only. It should be used in
conjunctions with UnGetRegister32() to explicitly allocate and deallocate a
scratch register.
\end{function}
\subsection{Temporary memory allocator subsystem}
\label{subsec:temporary}
\subsubsection{Architecture}
\label{subsubsec:architecturemory}
Sometimes it is necessary to reserve temporary memory locations on the stack
to store intermediate results of statements. This is done by the temporary
management module.
Since entry and exit code for routines are added after the code for the
statements in the routine have been generated, temporary memory allocation
can be used `on the fly' in the case where temporary memory values are
required in the code generation phase of the routines being compiled. After
usage, the temporary memory space should be freed, so it can be reused if
necessary.
The temporary memory allocation is a linked list of entries containing
information where to access the data via a negative offset from the
Frame{\_}Pointer register. The linked list is only valid when compiling and
generating the code for the procedure bodies; it is reset and cleared each
time a new routine is compiled. There are currently three different types of
memory spaces in use : volatile (\textsf{tt{\_}Normal}) which can be
allocated and freed any time in the procedure body, ansistring, which is
currently the same as volatile, except it only stored references to
ansistring's, and persistent (\textsf{tt{\_}Persistent}) which are memory
blocks which are reserved throughout the routine duration; persistent
allocated space can never be reused in a procedure body, unless explicitly
released.
The temporary memory allocator guarantees to allocate memory space on the
stack at least on a 16-bit alignment boundary. The exact alignment depends
on the operating system required alignment.
\subsubsection{Temporary memory allocator interface (temp{\_}gen.pas)}
\label{subsubsec:temporary}
\begin{function}{GetTempOfSize}
\Declaration
Function GetTempOfSize(Size : Longint) : Longint;
\Description
Allocates at least \textsf{size} bytes of temporary volatile memory on the
stack. The return value is the negative offset from the frame pointer where
this memory was allocated.
\Notes
The return offset always has the required alignment for the target system,
and can be used as an offset from the Frame{\_}Pointer to access the
temporary space.
\end{function}
\begin{procedure}{GetTempOfSizeReference}
\Declaration
Procedure GetTempOfSizeReference(L : Longint;Var Ref : TReference);
\Description
This routine is used to assign and allocate extra temporary volatile memory
space on the stack from a reference. \textsf{l} is the size of the
persistent memory space to allocate, while \textsf{Ref} is a reference entry
which will be set to the correct offset from the Frame{\_}Pointer register
base. The \textsf{Offset} and \textsf{Base} fields of \textsf{Ref} will be
set appropriately in this routine, and can be considered valid on exit of
this routine.
\Notes
The return offset always has the required alignment for the target system.
\end{procedure}
\begin{procedure}{UnGetIfTemp}
\Declaration
Procedure UnGetIfTemp(Const Ref : TReference);
\Description
Frees a reference \textsf{Ref} which was allocated in the volatile temporary
memory space.
\Notes
The freed space can later be reallocated and reused.
\end{procedure}
\begin{procedure}{GetTempAnsiStringReference}
\Declaration
Procedure GetTempAnsiStringReference(Var Ref : TReference);
\Description
Allocates \textsf{Ref} on the volatile memory space and sets the
\textsf{Base} to the Frame{\_}Pointer register and \textsf{Offset} to the
correct offset to access this allocated memory space.
\Notes
The return offset always has the required alignment for the target system.
\end{procedure}
\begin{function}{GetTempOfSizePersistant}
\Declaration
Function GetTempOfSizePersistant(Size : Longint) :Longint;
\Description
Allocates persistent storage space on the stack. return value is the
negative offset from the frame pointer where this memory was allocated.
\Notes
The return offset always has the required alignment for the target system.
\end{function}
\begin{function}{UngetPersistantTemp}
\Declaration
Procedure UnGetPersistantTemp(Pos : Longint);
\Description
Frees space allocated as being persistent. This persistent space can then
later be used and reallocated. \textsf{Pos} is the offset relative to the
Frame{\_}Pointer of the persistent memory block to free.
\end{function}
\begin{procedure}{ResetTempGen}
\Declaration
Procedure ResetTempGen;
\Description
Clear and free the complete linked list of temporary memory locations. The
list is set to nil.
\Notes
This routine is called each time a routine has been fully compiled.
\end{procedure}
\begin{procedure}{SetFirstTemp}
\Declaration
Procedure SetFirstTemp(L : Longint);
\Description
This routine sets the start of the temporary local area (this value is a
negative offset from the Frame{\_}Pointer, which is located after the local
variables). Usually the start offset is the size of the local variables,
modified by any alignment requirements.
\Notes
This routine is called once before compiling a routine, it indicates the
start address where to allocate temporary memory space.
\end{procedure}
\begin{function}{GetFirstTempSize}
\Declaration
Function GetFirstTempSize : Longint;
\Description
Returns the total number of bytes allocated for local and temporary
allocated stack space. This value is aligned according to the target system
alignment requirements, even if the actual size is not aligned.
\Notes
This routine is used by the code generator to get the total number of bytes
to allocate locally (i.e the stackframe size) in the entry and exit code of
the routine being compiled.
\end{function}
\begin{function}{NormalTempToPersistant}
\Declaration
Procedure NormalTempToPersistant(Pos : Longint);
\Description
Searches the list of currently temporary memory allocated for the one with
the offset \textsf{Pos}, and if found converts this temporary memory space
as persistent (can never be freed and reallocated).
\end{function}
\begin{function}{PersistantTempToNormal}
\Declaration
Procedure PersistantTempToNormal(Pos : Longint);
\Description
Searches the list of currently allocated persistent memory space as the
specified address \textsf{Pos}, and if found converts this memory space to
normal volatile memory space which can be freed and reused.
\end{function}
\begin{function}{IsTemp}
\Declaration
Function IsTemp(const Ref : TReference): Boolean;
\Description
Returns TRUE if the reference \textsf{ref }is allocated in temporary
volatile memory space, otherwise returns FALSE.
\end{function}
\subsection{Assembler generation}
\label{subsec:mylabel8}
\subsubsection{Architecture}
\label{subsubsec:architectureneration}
The different architectures on the market today only support certain types
of operands as assembler instructions. The typical format of an assembler
instruction has the following format:
\begin{center}
\textsf{OPCODE [opr1,opr2[,opr3][\ldots ]]}
\end{center}
The opcode field is a mnemonic for a specific assembler instruction, such as
\textsf{MOV} on the 80x86, or \textsf{ADDX} on the 680x0. Furthermore, in
most cases, this mnemonic is followed by zero to three operands which can be
of the following types:
Possible Operand Types
\begin{itemize}
\item a LABEL or SYMBOL (to code or data)
\item a REGISTER (one of the predefined hardware registers)
\item a CONSTANT (an immediate value)
\item a MEMORY EXPRESSION (indirect addressing through offsets, symbols, and
address registers)
\end{itemize}
In the compiler, this concept of different operand types has been directly
defined for easier generation of assembler output. All opcodes generated by
the code generator are stored in a linked list of opcodes which contain
information on the operand types, The opcode and the size (which is
important to determine on what size the operand must be operated on) are
stored in that linked list.
The possible operand sizes for the code generator are as follows (a
enumeration of type \textsf{topsize}):
\begin{longtable}{|l|p{10cm}|}
\hline
Operand size enum (\textsf{topsize}) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{S{\_}B}& 8-bit integer operand \\
\textsf{S{\_}W}& 16-bit integer operand \\
\textsf{S{\_}L}& 32-bit integer operand \\
\textsf{S{\_}Q}& 64-bit integer operand \\
\textsf{S{\_}FS}& 32-bit IEEE 754 Single floating point operand \\
\textsf{S{\_}FL}& 64-bit IEEE 754 Double floating point operand \\
\textsf{S{\_}FX}& Extended point floating point operand (cpu-specific) \\
\textsf{S{\_}CPU}& A constant equal to one of the previous sizes (natural size of operands) \\
\end{longtable}
The possible operand types for the code generator are as follows (other
might be added as required by the target architecture):
\begin{longtable}{|l|p{10cm}|}
\hline
Operand type (\textsf{TOpType}) & Description \\
\hline
\endhead
\hline
\endfoot
\textsf{top{\_}None}& No operand \\
\textsf{top{\_}Reg}& Operand is a register \\
\textsf{top{\_}Ref}& Operand is a reference (\textsf{treference} type) \\
\textsf{top{\_}Symbol}& Operand is a symbol (reference or label) \\
\end{longtable}
The architecture specific opcodes are done in an enumeration of type
\textsf{tasmop}. An example of an enumeration for some of the opcodes of the
PowerPC 32-bit architecture is as follows:
\begin{lstlisting}{}
Type TAsmOp = (a_Add, a_Add_, a_Addo, a_Addo_, a_Addc, a_Addc_, a_Addco,
a_Addco_,a_Adde, a_Adde_, a_Addeo, a_Addeo_, a_Addi,
a_Addic, a_Addic_, a_Addis \ldots
\end{lstlisting}
\subsubsection{Generic instruction generation interface}
\label{subsubsec:generic}
To independently generate code for different architectures, wrappers for the
most used instructions in the code generator have been created which are
totally independent of the target system.
\begin{procedurel}{Emit\_Load\_Loc\_Reg}{EmitLoadLocReg}
\Declaration
Procedure Emit{\_}Load{\_}Loc{\_}Reg(Src:TLocation;Srcdef:pDef; DstDef : pDef; Dst : TRegister);
\Description
Loads an operand from the source location in \textsf{Src} into the
destination register \textsf{Dst} taking into account the source definition
and destination definition (sign-extension, zero extension depending on the
sign and size of the operands).
\Notes
The source location can only be in LOC{\_}REGISTER, LOC{\_}CREGISTER,
LOC{\_}MEM or LOC{\_}REFERENCE otherwise an internal error will occur. This
generic opcode does not work on floating point values, only integer values.
\end{procedurel}
\begin{procedure}{FloatLoad}
\Declaration
Procedure FloatLoad(t : tFloatType;Ref : TReference; Var Location:TLocation);
\Description
This routine is to be called each time a location must be set to LOC{\_}FPU
and a value loaded into a FPU register
\Notes
The routine sets up the register field of LOC{\_}FPU correctly. The source
location can only be : LOC{\_}MEM or LOC{\_}REFERENCE. The destination
location is set to LOC{\_}FPU.
\end{procedure}
\begin{function}{FloatStore}
\Declaration
Procedure FloatStore(t : TFloatType;Var Location:TLocation; Ref:TReference);
\Description
This routine is to be called when a value located in LOC{\_}FPU must be
stored into memory.
\Notes
The destination must be LOC{\_}REFERENCE or LOC{\_}MEM. This routine frees
the LOC{\_}FPU location \\
\end{function}
\begin{functionl}{emit{\_}mov{\_}ref{\_}reg64}{emitmovrefreg64}
\Declaration
Procedure Emit{\_}Mov{\_}Ref{\_}Reg64(r : TReference;rl,rh : TRegister);
\Description
This routine moves a 64-bit integer value stored in memory location
\textsf{r} into the low 32-bit register \textsf{rl} and the high 32-bit
register \textsf{rh}.
\end{functionl}
\begin{functionl}{Emit{\_}Lea{\_}Loc{\_}Ref}{emitlealocref}
\Declaration
Procedure Emit{\_}Lea{\_}Loc{\_}Ref(Const t:TLocation;Const Ref:TReference; FreeTemp:Boolean);
\Description
Loads the address of the location \textsf{loc }and stores the result into
\textsf{Ref}
\Notes
The store address \textsf{ref }should point to an allocated area at least
\textsf{sizeof(pointer)} bytes, otherwise unexpected code might be
generated.
\end{functionl}
\begin{functionl}{Emit{\_}Lea{\_}Loc{\_}Reg}{Emitlealocreg}
\Declaration
Procedure Emit{\_}Lea{\_}Loc{\_}Reg(const t:TLocation;Reg:TRegister;Freetemp:Boolean);
\Description
Loads the address of the location \textsf{loc }and stores the result into
ther target register \textsf{reg}
\end{functionl}
\begin{procedure}{GetLabel}
\Declaration
Procedure GetLabel(Var l : pAsmLabel);
\Description
Returns a label associated with code. This label can then be used with the
instructions output by the code generator using the instruction generation
templates which require labels as parameters. The label itself can be
emitted to the assembler source by calling the \seep{EmitLab} routine.
\end{procedure}
\begin{procedure}{EmitLab}
\Declaration
Procedure EmitLab(Var l : pAsmLabel);
\Description
Output the label \textsf{l} to the assembler instruction stream.
\Notes
The label should have been previously allocated with \textsf{GetLabel}, The
output label will be of the form label: in the instruction stream. This
label is usually a jump target.
\end{procedure}
\begin{procedure}{EmitLabeled}
\Declaration
Procedure EmitLabeled(op : TAsmOp; Var l : pAsmLabel);
\Description
Output the opcode \textsf{op} with the operand \textsf{l}
which is a previously allocated label.
\Notes
This routine is used to output jump instructions such as : jmp label, jne
label. The label should have been previously allocated with a call to
\textsf{GetLabel}
\end{procedure}
\begin{function}{EmitCall}
\Declaration
Procedure EmitCall(Const Routine:String);
\Description
Emit a call instruction to an internal routine
\Parameters
Routine = The name of the routine to call.
\end{function}
\begin{procedure}{ConcatCopy}
\Declaration
procedure ConcatCopy(Source,Dest : TReference;Size : Longint;DelSource : Boolean; loadref:boolean);
\Description
This routine copies \textsf{Size} data from the \textsf{Source} reference to
the destination \textsf{Dest} reference. \\
\Parameters
Source = Source reference to copy from \par
Dest = Depending on the value of loadref, either indicates a location where a pointer to the data to copy is
Stored, or this reference directly the address to copy to. \par
Size = Number of bytes to copy \par
DelSource = TRUE if the source reference should be freed in this routine \par
LoadRef = TRUE if the source reference contains a pointer to the address we
wish to copy to, otherwise the reference itself is the destination
location to copy to.
\end{procedure}
\begin{procedurel}{Emit{\_}Flag2Reg}{emitflag2reg}
\Declaration
Procedure Emit{\_}Flag2Reg(Flag:TResflags;HRegister:TRegister);
\Description
Sets the value of the register to 1 if the condition code flag in
\textsf{Flag} is TRUE, otherwise sets the register to zero.
\Notes
The operand should be zero extended to the natural register size for the
target architecture.
\end{procedurel}
%\subsubsection{Instruction generation interface}
%\label{subsubsec:instruction}
\section{The assembler output}
\label{sec:mylabel8}
All code is generated via special linked lists of instructions. The base of
this is a special object, an abstract assembler which implements all
directives which are usually implemented in the different assemblers
available on the market . When the code generator and parser generates the
final output, it is generated as a linked list for each of the sections
available for the output assembler. Each entry in the linked list is either
an instruction, or one of the abstract directives for the assembler.
\begin{figure}
\ifpdf
\includegraphics{arch11.pdf}
%\epsfig{file=arch11.png,width=\textwidth}
\else
\includegraphics[width=5.67in,height=2.17in]{arch11.eps}
\fi
\label{fig:fig11}
\caption{Assembler generation organisation}
\end{figure}
% FIXME
% If I don't do this, the assembler node table has a problem.
% untested for more recent versions (with less floats due to longtable)
\clearpage
The different possible sections which are output are as follows:
\begin{center}
Section lists for the assembler output
\end{center}
\begin{longtable}{|l|p{10cm}|}
\hline
Internal section name & Description \\
\hline
\endhead
\hline
\endfoot
ExparAsmList & temporary list \\
DataSegment & initialized variables \\
CodeSegment & instructions and general code directives \\
DebugList & debugging information \\
WithDebugList & ??????????????? \\
Consts & read only constants \\
ImportSection & imported symbols \\
ExportSection & exported symbols \\
ResourceSection & Resource data \\
RttiList & runtime type information data \\
ResourceStringList& resource string data
\end{longtable}
The following directives for the abstract assembler currently exist:
Abstract assembler node types:
\begin{longtable}{|l|p{10cm}|}
\hline
Node entry Type & Description \\
\hline
\endhead
\hline
\endfoot
Ait{\_}None&
This entry in the linked list is invalid (this should
normally never occur) \\
Ait{\_}Direct&
Direct output to the resulting assembler file (as string) \\
Ait{\_}String&
Shortstring with a predefined length \\
Ait{\_}Label&
Numbered assembler label used for jumps \\
Ait{\_}Comment&
Assembler output comment \\
Ait{\_}Instruction&
Processor specific instruction \\
Ait{\_}DataBlock&
Unitialized data block (BSS) \\
Ait{\_}Symbol&
Entry represents a symbol (exported, imported, or other public
symbol type) \newline
Possible symbol types : NONE, EXTERNAL, LOCAL and GLOBAL \newline
eg : A symbol followed by an Ait{\_}const{\_}32bit \\
Ait{\_}Symbol{\_}End &
Symbol end (for example the end of a routine) \\
Ait{\_}Const{\_}32bit&
Initialized 32-bit constant (without a symbol) \\
Ait{\_}Const{\_}16bit&
Initialized 16-bit constant (without a symbol) \\
Ait{\_}Const{\_}8bit&
Initialized 8-bit constant (without a symbol) \\
Ait{\_}Const{\_}symbol & ???????????? \\
Ait{\_}Real{\_}80bit (x86)&
Initialized 80-bit floating point constant (without symbol) \\
Ait{\_}Real{\_}64bit&
Initialized Double IEEE floating point constant (without symbol) \\
Ait{\_}Real{\_}32bit&
Initialized Single IEEE floating point constant (without symbol) \\
Ait{\_}Comp{\_}64bit (x86)&
Initialized 64-bit floating point integer (without symbol) \\
Ait{\_}Align&
Alignment directive \\
Ait{\_}Section&
Section directive \\
Ait{\_}const{\_}rva (Win32)& \\
Ait{\_}Stabn &
stabs debugging information (numerical value) \\
Ait{\_}Stabs &
stabs debugging information (string) \\
Ait{\_}Force{\_}Line&
stabs debugging line information \\
Ait{\_}Stab{\_}Function{\_}Name&
stabs debug information routine name \\
Ait{\_}Cut&
Cut in the assembler files (used for smartlinking) \\
Ait{\_}RegAlloc&
Debugging information for the register allocator \\
Ait{\_}Marker & ???????????? \\
Ait{\_}Frame (Alpha)& \\
Ait{\_}Ent (Alpha)& \\
Ait{\_}Labeled{\_}Instruction (m68k)& \\
Ait{\_}Dummy & Unused - should never appear
\end{longtable}
\section{The Runtime library}
\label{sec:mylabel9}
This section describes the requirements of the internal routines which MUST
be implemented for all relevant platforms to port the system unit to a new
architecture or operating system.
The following defines are available when compiling the runtime library:
\begin{longtable}{|l|p{10cm}|}
\hline
Define Name & Description \\
\hline
\endhead
\hline
\endfoot
i386 & Intel 80x86 family of processors (and compatibles) \\
m68k & Motorola 680x0 family of processors (excludes coldfire) \\
alpha & Alpha 21x64 family of processors \\
powerpc & Motorola / IBM 32-bit family of processors \\
sparc & SPARC v7 compatible processors
\end{longtable}
\begin{longtable}{|l|p{10cm}|}
\hline
Define name & Description \\
\hline
\endhead
\hline
\endfoot
RTLLITE&
Removes some extraneous routine from compilation (system unit
is minimal). Mvdv: Afaik the status of this is unknown \\
DEFAULT{\_}EXTENDED&
The runtime library routines dealing with fixed point values have the
\textsf{extended} type instead of the \textsf{real} type. \\
SUPPORT{\_}SINGLE&
The compiler supports the \textsf{single} floating point precision type \\
SUPPORT{\_}DOUBLE&
The compiler supports the \textsf{double }floating point precision type \\
SUPPORT{\_}EXTENDED&
The compiler supports the \textsf{extended }floating point
precision type \\
SUPPORT{\_}FIXED&
The compiler supports the \textsf{fixed} floating point precision type \\
HASWIDECHAR&
The compiler supported the \textsf{widechar} character type \\
INT64&
The compiler supports 64-bit integer operations \\
MAC{\_}LINEBREAK&
Text I/O uses Mac styled line break ({\#}13) instead of {\#}13{\#}10 \\
SHORT{\_}LINEBREAK&
Text I/O uses UNIX styled line breaks ({\#}10) instead of {\#}13{\#}10 \\
EOF{\_}CTRLZ&
A Ctrl-Z character in a text file is an EOF marker (UNIX mostly) \\
\end{longtable}
The following defines are used for fexpand definitions:
% FIXME Seem to miss a *nix symlink expand behaviour define.
\begin{longtable}{|l|p{10cm}|}
\hline
Define name & Description \\
\hline
\endhead
\hline
\endfoot
FPC{\_}EXPAND{\_}DRIVES&
Different devices with different names (as drives) are
supported \par (like DOS, Netware, etc\ldots ) \\
FPC{\_}EXPAND{\_}UNC&
Universal Naming convention support i.e \par $\backslash \backslash
< $server-name>$\backslash $<share-name>$\backslash $<directory/filename> \\
UNIX&
Unix style file names \\
FPC{\_}EXPAND{\_}VOLUMES&
Volume names (i.e. drive descriptions longer than 1
character) are supported. \\
FPC{\_}EXPAND{\_}TILDE&
Replaces the $\sim $ character, with the `HOME' directory
(mostly on UNIX platforms) \\
\end{longtable}
The following defines some debugging routines for the runtime library:
\begin{longtable}{|l|p{10cm}|}
\hline
Define Name & Description \\
\hline
\endhead
\hline
\endfoot
DEFINE NAME & Description \\
ANSISTRDEBUG & Add Debug routines for ansi string support \\
EXCDEBUG & Add Debug routines for exception debugging \\
LOGGING & Log the operations to a file \\
\end{longtable}
\subsection{Operating system hooks}
\label{subsec:operating}
This section contains information on all routines which should be hooked and
implemented to be able to compile and use the system unit for a new
operating system:
\begin{functionl}{System{\_}Exit}{systemexit}
\Declaration
Procedure System{\_}Exit;
\Description
This routine is internally called by the system unit when the application
exits.
\Notes
This routine should actually exit the application. It should exit with the
error code specified in the \textsf{ExitCode} variable.
\Algorithm
Exit application with ExitCode value.
\end{functionl}
\begin{function}{ParamCount}
\Declaration
Function ParamCount : Longint;
\Description
This routine is described in the Free Pascal reference manual.
\end{function}
\begin{procedure}{Randomize}
\Declaration
Procedure Randomize;
\Description
This routine should initialize the built-in random generator with a random value.
\Notes
This routine is used by random
\Algorithm
Randseed := pseudo random 32-bit value
\end{procedure}
\begin{function}{GetHeapStart}
\Declaration
Function GetHeapStart : Pointer;
\Description
This routine should return a pointer to the start of the heap area.
\Algorithm
GetHeapStart := address of start of heap.
\end{function}
\begin{function}{GetHeapSize}
\Declaration
Function GetHeapSize : Longint;
\Description
This routine should return the total heap size in bytes
\Algorithm
GetHeapSize := total size of the initial heap area.
\end{function}
\begin{function}{sbrk}
\Declaration
Function Sbrk(Size : Longint): Longint;
\Description
This routine should grow the heap by the number of bytes specified. If
the heap cannot be grown it should return -1, otherwise it should return
a pointer to the newly allocated area.
\Parameters
size = Number of bytes to allocate
\end{function}
\begin{procedurel}{Do{\_}Close}{doclose}
\Declaration
Procedure Do{\_}Close(Handle : Longint);
\Description
This closes the file specified of the specified handle number.
\Parameters
handle = file handle of file to close
\Notes
This routine should close the specified file.
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
\begin{procedurel}{Do{\_}Erase}{doerase}
\Declaration
Procedure Do{\_}Erase(p: pChar);
\Description
This erases the file specifed by p.
\Parameters
p = name of the file to erase
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
\begin{procedurel}{Do{\_}Truncate}{dotruncate}
\Declaration
Procedure Do{\_}Truncate(Handle, FPos : Longint);
\Description
This truncates the file at the specified position.
\Parameters
handle = file handle of file to truncate
fpos = file position where the truncate should occur
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
\begin{procedurel}{Do{\_}Rename}{dorename}
\Declaration
Procedure Do{\_}Rename(p1, p2 : pchar);
\Description
This renames the file specified.
\Parameters
p1 = old file name
p2 = new file name
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
\begin{functionl}{Do{\_}Write}{dowrite}
\Declaration
Function Do{\_}Write(Handle,Addr,Len:Longint):longint;
\Description
This writes to the specified file. Returns the number of bytes
actually written.
\Parameters
handle = file handle of file to write to
addr = address of buffer containing the data to write
len = number of bytes to write
\Notes
This routine should set InoutRes in case of error.
\end{functionl}
\begin{functionl}{Do{\_}Read}{doread}
\Declaration
Function Do{\_}Read(Handle,Addr,Len:Longint):Longint;
\Description
Reads from a file. Returns the number of bytes read.
\Parameters
handle = file handle of file to read from
addr = address of buffer containing the data to read
len = number of bytes to read
\Notes
This routine should set InoutRes in case of error.
\end{functionl}
\begin{functionl}{Do{\_}FilePos}{dofilepos}
\Declaration
function Do{\_}FilePos(Handle: Longint):longint;
\Description
Returns the file pointer position
\Parameters
handle = file handle of file to get file position on
\Notes
This routine should set InoutRes in case of error.
\end{functionl}
\begin{procedurel}{Do{\_}Seek}{doseek}
\Declaration
Procedure Do{\_}Seek(Handle,Pos:Longint);
\Description
Set file pointer of file to a new position
\Parameters
handle = file handle of file to seek in
pos = new position of file pointer (from start of file)
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
\begin{functionl}{Do{\_}Seekend}{doseekend}
\Declaration
Function Do{\_}SeekEnd(Handle:Longint): Longint;
\Description
Seeks to the end of the file. Returns the
new file pointer position.
\Parameters
handle = file handle of file to seek to end of file
\Notes
This routine should set InoutRes in case of error.
\end{functionl}
\begin{functionl}{Do{\_}FileSize}{dofilesize}
\Declaration
Function Do{\_}FileSize(Handle:Longint): Longint;
\Description
Returns the filesize in bytes.
\Parameters
handle = file handle of file to get the file size
\Notes
This routine should set InoutRes in case of error.
\end{functionl}
\begin{functionl}{Do{\_}IsDevice}{doisdevice}
\Declaration
Function Do{\_}ISDevice(Handle:Longint): boolean;
\Description
Returns TRUE if the file handle points to a device
instead of a file.
\Parameters
handle = file handle to gtet status on
\Notes
This routine should set InoutRes in case of error.
\end{functionl}
\begin{procedurel}{Do{\_}Open}{doopen}
\Declaration
Procedure Do{\_}Open(var f;p:pchar;flags:longint);
\Description
Opens a file in the specified mode, and sets the
\var{mode} and \var{handle} fields of the \var{f}
structure parameter.
\Parameters
f = pointer to \var{textrec} or \var{filerec} structure
p = name and path of file to open
flags = access mode to open the file with
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
\begin{procedurel}{ChDir}{chdir}
\Declaration
Procedure ChDir(Const s: String);[IOCheck];
\Description
Changes to the specified directory. . and ..
should also be supported by this call.
\Parameters
s = new directory to change to
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
\begin{procedurel}{MkDir}{mkdir}
\Declaration
Procedure MkDir(Const s: String);[IOCheck];
\Description
Creates the specified directory.
\Parameters
s = name of directory to create
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
\begin{procedurel}{RmDir}{rmdir}
\Declaration
Procedure RmDir(Const s: String);[IOCheck];
\Description
Removes the specified directory.
\Parameters
s = name of directory to remove
\Notes
This routine should set InoutRes in case of error.
\end{procedurel}
The following variables should also be defined for each new operating
system, they are used by external units:
\noindent
argc : The number of command line arguments of the program
\noindent
argv : A pointer to each of the command line arguments (an array of pchar
pointers)
\subsection{CPU specific hooks}
\label{subsec:mylabel9}
The following routines must absolutely be implemented for each processor, as
they are dependent on the processor:
\subsubsection{FPC{\_}SETJMP}
\label{subsubsec:mylabel30}
\begin{function}{SetJmp}
\Declaration
Function SetJmp (Var S : Jmp{\_}Buf) : Longint;
\Description
A call to SetJmp(), saves the calling environment in its \textsf{s} argument
for later use by \textsf{longjmp()}. Called by the code generator in
exception handling code. The return value should be zero.
\Notes
This routine should save / restore all used registers (except the
accumulator which should be cleared).
\end{function}
\subsubsection{FPC{\_}LONGJMP}
\label{subsubsec:mylabel31}
\subsubsection{function SPtr()}
\label{subsubsec:function}
\subsubsection{function Get{\_}Caller{\_}Frame(framebp:longint):longint;}
\label{subsubsec:mylabel32}
\subsubsection{function Get{\_}Caller{\_}Addr(framebp:longint):longint;}
\label{subsubsec:mylabel33}
\subsubsection{function Get{\_}Frame:longint;}
\label{subsubsec:mylabel34}
\subsubsection{function Trunc()}
\label{subsubsec:mylabel35}
\subsection{String related}
\label{subsec:string}
\subsubsection{FPC{\_}SHORTSTR{\_}COPY}
\label{subsubsec:mylabel36}
\begin{procedurel}{Int{\_}StrCopy}{intstrcopy}
\Declaration
Procedure Int{\_}StrCopy(Len:Longint;SStr,DStr:pointer);
\Description
This routine copies the string pointed to by the address in sstr, to the
string pointed in the destination. The old string is overwritten, and the
source string will be truncated to make it fit in destination if the length
of the source is greater then destination string len (the len parameter).
\Parameters
Len = maximum length to copy (the destination string length) \par
SStr = pointer to source shortstring \par
DStr = point to destination shortstring
\Notes
Called by code generator when a string is assigned to another string.
\end{procedurel}
\subsubsection{FPC{\_}SHORTSTR{\_}COMPARE}
\label{subsubsec:mylabel37}
\begin{functionl}{Int{\_}StrCmp}{intstrcmp}
\Declaration
Function Int{\_}StrCmp(DStr,SStr:Pointer) : Longint;
\Description
The routine compares two shortstrings, and returns 0 if both are equal, 1 if
\textsf{DStr} is greater then \textsf{SSrc}, otherwise it returns --1.
\Notes
Both pointers must point to shortstrings. Length checking must be performed
in the routine.
\end{functionl}
\subsubsection{FPC{\_}SHORTSTR{\_}CONCAT}
\label{subsubsec:mylabel38}
\begin{procedurel}{Int{\_}StrConcat}{intstrconcat}
\Declaration
Procedure Int{\_}StrConcat(Src,Dest:Pointer);
\Description
This routine appends the string pointed to by \textsf{Src} to the end of the
string pointed to by \textsf{Dest}.
\Parameters
Src = pointer to shortstring to append to dest \par
Dest = pointer to shortstring to receive appended string
\Notes
Both pointers must point to shortstrings. In the case where the src string
length does not fit in dest, it is truncated.
\Algorithm
\begin{lstlisting}{}
if src =nil or dest = nil then
exit routine;
if (src string length + dest string length) > 255 then
number of bytes to copy = 255 -- dest string length
else
number of bytes to copy = src string length;
copy the string data (except the length byte)
dest string length = dest string length + number of bytes to copied
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}ANSISTR{\_}CONCAT}
\label{subsubsec:mylabel39}
\begin{procedurel}{AnsiStr{\_}Concat}{ansistrconcat}
\Declaration
Procedure AnsiStr{\_}Concat(s1,s2:Pointer;var s3:Pointer);
\Description
This routine appends \textsf{s1}+\textsf{s2} and stores the result at the
address pointed to by \textsf{s3}.
\Notes
All pointers must point to ansistrings.
\end{procedurel}
\subsubsection{FPC{\_}ANSISTR{\_}COMPARE}
\label{subsubsec:mylabel40}
\begin{functionl}{AnsiStr{\_}Compare}{ansistrcompare}
\Declaration
Function AnsiStr{\_}Compare(s1,s2 : Pointer): Longint;
\Description
The routine compares two ansistrings, and returns 0 if both are equal, 1 if
\textsf{s1} is greater then \textsf{s2}, otherwise it returns --1.
\Parameters
Both pointers must point to ansistrings.
\end{functionl}
\subsubsection{FPC{\_}ANSISTR{\_}INCR{\_}REF }
\label{subsubsec:mylabel41}
\begin{procedurel}{AnsiStr{\_}Incr{\_}Ref}{ansistrincrref}
\Declaration
procedure AnsiStr{\_}Incr{\_}Ref (var s : Pointer);
\Description
This routine simply increments the ANSI string reference count, which is
used for garbage collection of ANSI strings.
\Parameters
s = pointer to the ansi string (including the header structure)
\end{procedurel}
\subsubsection{FPC{\_}ANSISTR{\_}DECR{\_}REF }
\label{subsubsec:mylabel42}
\begin{procedurel}{AnsiStr{\_}Decr{\_}Ref}{ansistrdecrref}
\Declaration
procedure AnsiStr{\_}Decr{\_}Ref (Var S : Pointer);
\Parameters
s = pointer to the ansi string (including the header structure)
\Algorithm
Decreases the internal reference count of this non constant ansistring; If
the reference count is zero, the string is deallocated from the
heap.
\end{procedurel}
\subsubsection{FPC{\_}ANSISTR{\_}ASSIGN }
\label{subsubsec:mylabel43}
\begin{functionl}{AnsiStr{\_}Assign}{ansistrassign}
\Declaration
Procedure AnsiStr{\_}Assign (var s1 : Pointer;s2 : Pointer);
\Parameters
s1 = address of ANSI string to be assigned to \par
s2 = address of ANSI string which will be assigned
\Algorithm
Assigns S2 to S1 (S1:=S2), also by the time decreasing the reference count
to S1 (it is no longer used by this variable).
\end{functionl}
\subsubsection{FPC{\_}PCHAR{\_}TO{\_}SHORTSTR}
\label{subsubsec:mylabel44}
\begin{function}{StrPas}
\Declaration
Function StrPas(p:pChar):ShortString;
\Description
Copies and converts a null-terminated string (pchar) to a shortstring with
length checking.
\Parameters
p = pointer to null terminated string to copy
\Notes
Length checking is performed. Verifies also p=nil, and if so sets the
shortstring length to zero. Called by the type conversion generated code of
code generator.
\Algorithm
\begin{lstlisting}{}
if p=nil then
string length =0
else
string length =string length(p)
if string length>255 then
string length = 255
if string length>0 then
Copy all characters of pchar array to string (except length byte)
\end{lstlisting}
\end{function}
\subsubsection{FPC{\_}SHORTSTR{\_}TO{\_}ANSISTR}
\label{subsubsec:mylabel45}
\begin{functionl}{FPC{\_}ShortStr{\_}To{\_}AnsiStr}{fpcshortstrtoansistr}
\Notes
Called by the type conversion generated code of code generator.
\end{functionl}
\subsubsection{FPC{\_}STR{\_}TO{\_}CHARARRAY}
\label{subsubsec:mylabel46}
\begin{procedurel}{Str{\_}To{\_}CharArray}{strtochararray}
\Declaration
procedure Str{\_}To{\_}CharArray(StrTyp, ArraySize: Longint; src,dest: pChar);
\Description
Converts a string to a character array (currently supports both shortstring and ansistring types). Length checking is performed, and copies up to \textsf{arraysize} elements to dest.
\Parameters
strtyp = Indicates the conversion type to do (0 = shortstring, 1 =
ansistring, 2 = longstring, 3 = widestring) \\
arraysize = size of the destination array \par
src = pointer to source string \par
dest = pointer to character array
\Notes
Called by the type conversion generated code of code generator when
converting a string to an array of char. If the size of the string is less
then the size of the array, the rest of the array is filled with zeros.
\end{procedurel}
\subsubsection{FPC{\_}CHARARRAY{\_}TO{\_}SHORTSTR}
\label{subsubsec:mylabel47}
\begin{function}{StrCharArray}
\Declaration
Function StrCharArray(p:pChar; l : Longint):ShortString;
\Description
Copies a character array to a shortstring with length checking (upto 255
characters are copied)
\Parameters
p = Character array pointer \par
l = size of the array
\Notes
Called by the type conversion generated code of code generator when
converting an array of char to a shortstring.
\Algorithm
\begin{lstlisting}{}
if size of array >= 256 then
length of string =255
else
if size of array < 0 then
length of string = 0
else
length of string = size of array
Copy all characters from array to shortstring
\end{lstlisting}
\end{function}
\subsubsection{FPC{\_}CHARARRAY{\_}TO{\_}ANSISTR}
\label{subsubsec:mylabel48}
\begin{functionl}{Fpc{\_}Chararray{\_}To{\_}AnsiStr}{chararraytoansistr}
\Notes
Called by the type conversion generated code of code generator when converting an array of char to an ansistring.
\end{functionl}
\subsubsection{FPC{\_}CHAR{\_}TO{\_}ANSISTR}
\label{subsubsec:mylabel49}
\begin{functionl}{Fpc{\_}Char{\_}To{\_}AnsiStr}{fpcchartoansistr}
\Notes
Called by the type conversion generated code of code generator when
converting a char to an ansistring.
\end{functionl}
\subsubsection{FPC{\_}PCHAR{\_}TO{\_}ANSISTR}
\label{subsubsec:mylabel50}
\begin{functionl}{Fpc{\_}pChar{\_}To{\_}AnsiStr}{fpcpchartoansistr}
\Notes
Called by the type conversion generated code of code generator when
converting a pchar to an ansistring.
\end{functionl}
\subsection{Compiler runtime checking}
\label{subsec:compiler}
\subsubsection{FPC{\_}STACKCHECK}
\label{subsubsec:mylabel51}
\begin{procedurel}{Int{\_}StackCheck}{intstackcheck}
\Declaration
procedure int{\_}stackcheck (stack{\_}size:longint);
\Description
This routine is used to check if there will be a stack overflow when trying
to allocate stack space from the operating system. The routine must preserve
all registers. In the case the stack limit is reached, the routine calls the
appropriate error handler.
\Parameters
stack{\_}size = The amount of stack we wish to allocate
\Notes
Inserted in the entry code of a routine in the {\{}{\$}S+{\}} state by the code generator
\Algorithm
\begin{lstlisting}{}
if ((StackPointer - stack_size) < System.StackLimit) then
Throw a Runtime error with error code 202 (stack overflow)
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}RANGEERROR}
\label{subsubsec:mylabel52}
\begin{procedurel}{Int{\_}RangeError}{intrangerror}
\Declaration
procedure Int{\_}RangeError;
\Description
This routine is called when a range check error is detected when executing
the compiled code. This usually simply calls the default error handler, with
the correct runtime error code to produce.
\Parameters
Inserted in code generator when a Runtime error 201 {\{}{\$}R+{\}} should be
generated
\end{procedurel}
\subsubsection{FPC{\_}BOUNDCHECK}
\label{subsubsec:mylabel53}
\begin{procedurel}{Int{\_}BoundCheck}{intboundcheck}
\Declaration
procedure Int{\_}BoundCheck(l : Longint; Range : Pointer);
\Description
This routine is called at runtime in {\$}R+ mode to check if accessing
indexes in a string or array is out of bounds. In this case, the default
error handler is called, with the correct runtime error code to produce.
\Parameters
l = Index we need to check \par
range = pointer to a structure containing the minimum and maximum allowed
indexes (points to two 32-bit signed values which are the limits of the
array to verify).
\Notes
Inserted in the generated code after assignments, and array indexing to
verify if the result of operands is within range (in the {\{}{\$}R+{\}}
state)
\end{procedurel}
\subsubsection{FPC{\_}OVERFLOW}
\label{subsubsec:mylabel54}
\begin{procedurel}{Int{\_}OverFlow}{intoverflow}
\Declaration
procedure Int{\_}OverFlow;
\Description
This routine is called when an overflow is detected when executing the
compiled code. This usually simply calls the default error handler, with the
correct runtime error code to produce.
\Parameters
Inserted in code generator when a Runtime error 215 {\{}{\$}Q+{\}} should be
generated.
\end{procedurel}
\subsubsection{FPC{\_}CHECK{\_}OBJECT}
\label{subsubsec:mylabel55}
\begin{procedurel}{Int{\_}Check{\_}Object}{intcheckobject}
\Declaration
procedure Int{\_}Check{\_}Object(vmt : Pointer);
\Description
This routine is called at runtime in the {\$}R+ state each time a virtual
method is called. It verifies that the object constructor has been called
first to build the VMT of the object, otherwise it throws an Runtime error 210.
\Parameters
vmt = Current value of the SELF register
\Notes
Call inserted by the code generator before calling the virtual method. This
routine should save / restore all used registers.
\Algorithm
\begin{lstlisting}{}
if vmt = nil or size of method table =0 then
Throw a Runtime error with error code 210 (object not initialized)
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}CHECK{\_}OBJECT{\_}EXT}
\label{subsubsec:mylabel56}
\begin{procedurel}{Int{\_}Check{\_}Object{\_}Ext}{intcheckobjectext}
\Declaration
procedure Int{\_}Check{\_}Object{\_}Ext(vmt, expvmt : pointer);
\Description
This routine is called at runtime when extended object checking is enabled (on the command line) and a virtual method is called. It verifies that the object constructor has been called first to build the VMT of the object, otherwise it throws an Runtime error 210, and furthermore it check that the object is actually a descendant of the parent object, otherwise it returns a Runtime error 219.
\Parameters
vmt = Current value of the SELF register \par
expvmt = Pointer to TRUE object definition
\Notes
Call inserted by the code generator before calling the virtual method. \par
This routine should save / restore all used registers.
\Algorithm
\begin{lstlisting}{}
if vmt = nil or size of method table =0 then
Throw a Runtime error with error code 210 (object not initialized)
Repeat
If SELF (VMT) <> VMT Address (expvmt) Then
Get Parent VMT Address
Else
Exit;
until no more ent;
Throw a Runtime error with error code 220 (Incorrect object reference)
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}IO{\_}CHECK}
\label{subsubsec:mylabel57}
\begin{procedurel}{Int{\_}IOCheck}{intiocheck}
\Declaration
procedure Int{\_}IOCheck(addr : longint);
\Description
This routine is called after an I/O operation to verify the success of the
operation when the code is compiled in the {\$}I+ state.
\Parameters
addr = currently unused
\Algorithm
Check last I/O was successful, if not call error handler.
\end{procedurel}
\subsubsection{FPC{\_}HANDLEERROR}
\label{subsubsec:mylabel58}
\begin{procedure}{HandleError}
\Declaration
procedure HandleError (Errno : longint);
\Description
This routine should be called to generate a runtime error either from one of
the system unit routines or the code generator.
\Parameters
Errno = Runtime error to generate
\Notes
This routine calls the appropriate existing error handler with the specified
error code.
\Algorithm
\end{procedure}
\subsubsection{FPC{\_}ASSERT}
\label{subsubsec:mylabel59}
\begin{procedurel}{Int{\_}Assert}{intassert}
\Declaration
procedure Int{\_}Assert(Const Msg,FName:Shortstring;LineNo,ErrorAddr:Longint);
\Description
This routine is called by the code generator in an assert statement. When
the assertion fails, this routine is called.
\Parameters
msg = string to print \par
Fname = Current filename of source \par
LineNo = Current line number of source \par
ErrorAddr = Address of assertion failure
\end{procedurel}
\subsection{Exception handling}
\label{subsec:exception}
\subsubsection{FPC{\_}RAISEEXCEPTION}
\label{subsubsec:mylabel60}
\begin{function}{RaiseExcept}
\Declaration
function RaiseExcept (Obj : Tobject; AnAddr,AFrame : Pointer) : Tobject;
\Description
Called by the code generator in the raise statement to raise an exception.
\Parameters
Obj = Instance of class exception handler \par
AnAddr = Address of exception \par
Aframe = Exception frame address
\Notes
REGISTERS NOT SAVED???????????
\end{function}
\subsubsection{FPC{\_}PUSHEXCEPTADDR}
\label{subsubsec:mylabel61}
\begin{function}{PushExceptAddr}
\Declaration
function PushExceptAddr (Ft: Longint): PJmp{\_}buf ;
\Description
This routine should be called to save the current caller context to be used
for exception handling, usually called in the context where ANSI strings are
used (they can raise exceptions), or in a try..finally or on statements to
save the current context.
\Parameters
Ft = Indicates the frame type on the stack (1= Exception frame or 2=Finalize
frame)
\Algorithm
Adds this item to the linked list of stack frame context information saved.
Allocates a buffer for the jump statement and returns it.
\end{function}
\subsubsection{FPC{\_}RERAISE}
\label{subsubsec:mylabel62}
\begin{procedure}{ReRaise}
\Declaration
procedure ReRaise;
\Notes
REGISTERS NOT SAVED???????????
\end{procedure}
\subsubsection{FPC{\_}POPOBJECTSTACK}
\label{subsubsec:mylabel63}
\begin{function}{PopObjectStack}
\Declaration
function PopObjectStack : TObject;
\Description
This is called by the code generator when an exception occurs, it is used to
retrieve the exception handler object from the context information.
\Notes
REGISTERS NOT SAVED???????????
\end{function}
\subsubsection{FPC{\_}POPSECONDOBJECTSTACK}
\label{subsubsec:mylabel64}
\begin{function}{PopSecondObjectStack}
\Declaration
function PopSecondObjectStack : TObject;
\Description
This is called by the code generator when a double exception occurs, it is
used to retrieve the second exception handler object from the context
information.
\Notes
REGISTERS NOT SAVED???????????
\end{function}
\subsubsection{FPC{\_}DESTROYEXCEPTION}
\label{subsubsec:mylabel65}
\begin{procedure}{DestroyException}
\Declaration
Procedure DestroyException(o : TObject);
\Description
This routine is called by the code generator after the exception handling
code is complete to destroy the exception object.
\Parameters
o = Exception handler object reference
\Notes
REGISTERS NOT SAVED?????????????
\end{procedure}
\subsubsection{FPC{\_}POPADDRSTACK}
\label{subsubsec:mylabel66}
\begin{procedure}{PopAddrStack}
\Declaration
procedure PopAddrStack;
\Description
Called by the code generator in the finally part of a try statement to
restore the stackframe and dispose of all the saved context information.
\Notes
REGISTERS NOT SAVED??????????
\end{procedure}
\subsubsection{FPC{\_}CATCHES}
\label{subsubsec:mylabel67}
\begin{function}{Catches}
\Declaration
function Catches(Objtype : TExceptObjectClass) : TObject;
\Description
This routine is called by the code generator to get the exception handler
object. ?????????????????
\Parameters
ObjType = The exception type class
\Notes
REGISTERS NOT SAVED??????????
\end{function}
\subsubsection{FPC{\_}GETRESOURCESTRING}
\label{subsubsec:mylabel68}
\begin{function}{GetResourceString}
\Declaration
function GetResourceString(Const TheTable: TResourceStringTable;Index : longint) : AnsiString;
\Description
Called by code generator when a reference to a resource string is made. This
routine loads the correct string from the resource string section and
returns the found string (or `' if not found).
\Parameters
TheTable = pointer to the resource string table \par
Index = Index in the resource string table.
\end{function}
\subsection{Runtime type information}
\label{subsec:runtime}
\subsubsection{FPC{\_}DO{\_}IS}
\label{subsubsec:mylabel69}
\begin{functionl}{Int{\_}Do{\_}Is}{intdois}
\Declaration
Function Int{\_}Do{\_}Is(AClass : TClass;AObject : TObject) : Boolean;
\Description
If \textsf{aclass} is of type \textsf{aobject}, returns TRUE otherwise
returns FALSE.
\Parameters
aclass = class type reference \par
aobject = Object instance to compare against
\Notes
This is called by the code generator when the \textsf{is} operator is used.
\Algorithm
\end{functionl}
\subsubsection{FPC{\_}DO{\_}AS}
\label{subsubsec:mylabel70}
\begin{procedurel}{Int{\_}Do{\_}As}{intdoas}
\Declaration
Procedure Int{\_}Do{\_}As(AClass : TClass;AObject : TObject)
\Description
Typecasts \textsf{aclass} as \textsf{aobject}, with dynamic type checking.
If the object is not from the correct type class, a runtime error 219 is
generated. Called by the code generator for the \textsf{as} statement.
\Parameters
aclass = Class to typecast to \par
aobject = Object to typecast
\end{procedurel}
\subsubsection{FPC{\_}INITIALIZE }
\label{subsubsec:mylabel71}
\begin{procedure}{Initialize}
\Declaration
Procedure Initialize (Data,TypeInfo : Pointer);
\Description
\Parameters
data = pointer to the data to initialize \par
typeinfo = pointer to the type information for this data
\Notes
This routine should save / restore all used registers.
\Algorithm
Initializes the class data for runtime typed values
\end{procedure}
\subsubsection{FPC{\_}FINALIZE}
\label{subsubsec:mylabel72}
\begin{procedure}{Finalize}
\Declaration
procedure Finalize (Data,TypeInfo: Pointer);
\Description
Called by code generator if and only if the reference to finalize <> nil.
\Parameters
data = point to the data to finalize \par
typeinfo = Pointer to the type information of this data
\Notes
This routine should save / restore all used registers. Finalizes and frees
the heap class data for runtime typed values (decrements the reference
count)
\end{procedure}
\subsubsection{FPC{\_}ADDREF}
\label{subsubsec:mylabel73}
\begin{procedure}{AddRef}
\Declaration
Procedure AddRef (Data,TypeInfo : Pointer);
\Description
Called by the code generator for class parameters (property support) of type
const or value in parameters, to increment the reference count of ANSI
strings.
\Notes
This routine should save / restore all used registers. This routine can be
called recursively with a very deep nesting level, an assembler
implementation in suggested.
\end{procedure}
\subsubsection{FPC{\_}DECREF}
\label{subsubsec:mylabel74}
\begin{procedure}{DecRef}
\Declaration
Procedure DecRef (Data, TypeInfo : Pointer);
\Description
Called by the code generator for class parameters (property support) of type
const or value parameters, to decrement the reference count. of ANSI
strings.
\Parameters
\Notes
This routine should save / restore all used registers. This routine can be
called recursively with a very deep nesting level, an assembler
implementation in suggested.
\end{procedure}
\subsection{Memory related}
\label{subsec:memory}
\subsubsection{FPC{\_}GETMEM}
\label{subsubsec:mylabel75}
\begin{procedure}{GetMem}
\Declaration
procedure GetMem(Var p:Pointer;Size:Longint);
\end{procedure}
\subsubsection{FPC{\_}FREEMEM}
\label{subsubsec:mylabel76}
\begin{procedure}{FreeMem}
\Declaration
Procedure FreeMem(Var P:Pointer;Size:Longint);
\end{procedure}
\subsubsection{FPC{\_}CHECKPOINTER}
\label{subsubsec:mylabel77}
\begin{function}{CheckPointer}
\Declaration
Procedure CheckPointer(p : Pointer);
\Description
Called by the code generator when a pointer is referenced in heap debug
mode. Verifies that the pointer actually points in the heap area.
\Parameters
p = pointer to check
\Notes
This routine should save /restore all used registers.
\end{function}
\subsubsection{FPC{\_}DO{\_}EXIT}
\label{subsubsec:mylabel78}
\begin{procedurel}{Do{\_}Exit}{doexit}
\Declaration
procedure Do{\_}Exit;
\Description
Called by code generator at the end of the program entry point.
\Notes
Called to terminate the program
\Algorithm
Call all unit exit handlers. \par
Finalize all units which have a finalization section \par
Print runtime error in case of error\par
Call OS-dependant system{\_}exit routine
\end{procedurel}
\subsubsection{FPC{\_}ABSTRACTERROR}
\label{subsubsec:mylabel79}
\begin{function}{AbstractError}
\Declaration
procedure AbstractError;
\Description
The code generator allocates a VMT entry equal to this routine address when
a method of a class is declared as being abstract. This routine simply calls
the default error handler.
\Algorithm
Throw a Runtime error with error code 211 (Abstract call)
\end{function}
\subsubsection{FPC{\_}INITIALIZEUNITS}
\label{subsubsec:mylabel80}
\begin{function}{InitializeUnits}
\Declaration
\Description
Called by the code generator in the main program, this is only available if
an \textsf{initialization} section exists in one of the units used by the
program.
\end{function}
\subsubsection{FPC{\_}NEW{\_}CLASS (assembler)}
\label{subsubsec:mylabel81}
\begin{procedurel}{int{\_}new{\_}class}{intnewclass}
\Description
This routine will call the TObject.InitInstance() routine to
instantiate a class (Delphi-styled class) and allocate the memory for all
fields of the class.
On entry the self{\_}register should be valid, and should point either to
nil, for a non-initialized class, or to the current instance of the class.
The first parameter on the top of the stack should be a pointer to the VMT
table for this class(????).
\end{procedurel}
\subsubsection{FPC{\_}HELP{\_}DESTRUCTOR}
\label{subsubsec:mylabel82}
Could be implemented in ASM directly with register parameter passing.
\begin{procedurel}{Int{\_}Help{\_}Destructor}{inthelpdestructor}
\Declaration
Procedure Int{\_}Help{\_}Destructor(Var {\_}Self : Pointer; Vmt : Pointer; Vmt{\_}Pos : Cardinal);
\Description
Frees the memory allocated for the object fields, and if the object had a
VMT field, sets it to nil.
\Parameters
self = pointer to the object field image in memory \par
vmt = pointer to the the actual vmt table (used to get the size of the object) \par
vmt{\_}pos = offset in the object field image to the vmt pointer field
\Notes
This routine should / save restore all used registers.
\Algorithm
\begin{lstlisting}{}
if self = nil then
exit
set VMT field in object field image ,if present, to nil
Free the allocated heap memory for the field objects
set Self = nil
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}HELP{\_}CONSTRUCTOR}
\label{subsubsec:mylabel83}
Could be implemented in ASM directly with register parameter passing.
\begin{functionl}{Int{\_}Help{\_}Constructor}{inthelpconstructor}
\Declaration
function Int{\_}Help{\_}Constructor(Var {\_}self : Pointer; Var VMT : Pointer; Vmt{\_}Pos : Cardinal):Pointer;
\Description
Allocates the memory for an object's field, and fills the object fields with
zeros. Returns the newly allocated self{\_}pointer
\Parameters
self = pointer to the object field image in memory \par
vmt = pointer to the the actual vmt table (used to get the size of the object) \par
vmt{\_}pos = offset in the object field image to the vmt pointer field
\Notes
The self{\_}pointer register should be set appropriately by the code
generator to the allocated memory (self parameter)
\Algorithm
Self = Allocate Memory block for object fields \par
Fill the object field image with zeros\par
Set the VMT field in allocated object to VMT pointer
\end{functionl}
\subsubsection{FPC{\_}HELP{\_}FAIL{\_}CLASS}
\label{subsubsec:mylabel84}
\begin{functionl}{Help{\_}Fail{\_}Class}{inthelpfileclass}
\Description
Inserted by code generator after constructor call. If the constructor failed
to allocate the memory for its fields, this routine will be called.
\end{functionl}
\subsubsection{FPC{\_}HELP{\_}FAIL}
\label{subsubsec:mylabel85}
\begin{functionl}{Help{\_}Fail}{HelpFail}
\Description
Inserted by code generator after constructor call. If the constructor failed
to allocate the memory for its fields, this routine will be called.
\end{functionl}
\subsection{Set handling}
\label{subsec:mylabel10}
\subsubsection{FPC{\_}SET{\_}COMP{\_}SETS}
\label{subsubsec:mylabel86}
\begin{functionl}{Do{\_}Comp{\_}Sets}{docompsets}
\Declaration
function Do{\_}Comp{\_}Sets(Set1,Set2 : Pointer): Boolean;
\Description
This routine compares if set1 and set2 are exactly equal and returns 1 if
so, otherwise it returns false.
\Parameters
set1 = Pointer to 32 byte set to compare \par
set2 = Pointer to 32 byte set to compare
\Notes
Both pointers must point to normal sets.
\end{functionl}
\subsubsection{FPC{\_}SET{\_}CONTAINS{\_}SET}
\label{subsubsec:mylabel87}
\begin{procedurel}{Do{\_}Contains{\_}Sets}{docontainssets}
\Declaration
Procedure Do{\_}Contains{\_}Sets(Set1,Set2 : Pointer): Boolean;
\Description
Returns 1 if set2 contains set1 (That is all elements of set2 are in set1).
\Parameters
set1 = Pointer to 32 byte set to verify \par
set2 = Pointer to 32 byte set to verify
\Notes
Both pointers must point to normal sets.
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}CREATE{\_}ELEMENT}
\label{subsubsec:mylabel88}
\begin{procedurel}{Do{\_}Create{\_}Element}{docreateelement}
\Declaration
procedure Do{\_}Create{\_}Element(p : Pointer; b : Byte);
\Description
Create a new normal set in the area pointed to by \textsf{p} and add the
element value \textsf{b} in that set.
\Parameters
p = pointer to area where the 32 byte set will be created \par
b = bit value within that set which must be set
\Notes
This works on normal sets only.
\Algorithm
Zero the area pointed to by p \par
Set the bit number b to 1
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}SET{\_}RANGE}
\label{subsubsec:mylabel89}
\begin{procedurel}{Do{\_}Set{\_}Range}{dosetrange}
\Declaration
Procedure Do{\_}Set{\_}Range(P : Pointer;l,h : Byte);
\Description
Sets the bit values within the \textsf{l} and \textsf{h }bit ranges in the
normal set pointed to by \textsf{p}
\Parameters
p = pointer to area where the 32 bytes of the set will be updated \par
l = low bit number value to set \par
h = high bit number value to set
\Notes
This works on normal sets only.
\Algorithm
Set all bit numbers from l to h in set p
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}SET{\_}BYTE}
\label{subsubsec:mylabel90}
\begin{procedurel}{Do{\_}Set{\_}Byte}{dosetbyte}
\Declaration
procedure Do{\_}Set{\_}Byte(P : Pointer;B : byte);
\Description
Add the element \textsf{b} in the normal set pointed to by \textsf{p}
\Parameters
p = pointer to 32 byte set \par
b = bit number to set
\Notes
This works on normal sets only. The intel 80386 version of the compiler does
not save the used registers, therefore, in that case, it must be done in the
routine itself.
\Algorithm
Set bit number b in p
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}SUB{\_}SETS}
\label{subsubsec:mylabel91}
\begin{procedurel}{Do{\_}Sub{\_}Sets}{dosubsets}
\Declaration
Procedure Do{\_}Sub{\_}Sets(Set1,Set2,Dest:Pointer);
\Description
Calculate the difference between \textsf{set1} and \textsf{set2}, setting
the result in \textsf{dest}.
\Parameters
set1 = pointer to 32 byte set \par
set2 = pointer to 32 byte set \par
dest = pointer to 32 byte set which will receive the result
\Notes
This works on normal sets only.
\Algorithm
\begin{lstlisting}{}
For each bit in the set do
dest bit = set1 bit AND NOT set2 bit
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}MUL{\_}SETS}
\label{subsubsec:mylabel92}
\begin{procedurel}{Do{\_}Mul{\_}Sets}{domulsets}
\Declaration
procedure Do{\_}Mul{\_}Sets(Set1,Set2,Dest:Pointer);
\Description
Calculate the multiplication between \textsf{set1} and \textsf{set2},
setting the result in \textsf{dest}.
\Parameters
set1 = pointer to 32 byte set \par
set2 = pointer to 32 byte set \par
dest = pointer to 32 byte set which will receive the result
\Notes
This works on normal sets only.
\Algorithm
\begin{lstlisting}{}
For each bit in the set do
dest bit = set1 bit AND set2 bit
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}SYMDIF{\_}SETS}
\label{subsubsec:mylabel93}
\begin{procedurel}{Do{\_}Symdif{\_}Sets}{dosymdifssets}
\Declaration
Procedure Do{\_}Symdif{\_}Sets(Set1,Set2,Dest:Pointer);
\Description
Calculate the symmetric between \textsf{set1} and \textsf{set2}, setting the
result in \textsf{dest}.
\Parameters
set1 = pointer to 32 byte set \par
set2 = pointer to 32 byte set \par
dest = pointer to 32 byte set which will receive the result
\Notes
This works on normal sets only.
\Algorithm
\begin{lstlisting}{}
For each bit in the set do
dest bit = set1 bit XOR set2 bit
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}ADD{\_}SETS}
\label{subsubsec:mylabel94}
\begin{procedurel}{Do{\_}Add{\_}Sets}{doaddsets}
\Declaration
procedure Do{\_}Add{\_}Sets(Set1,Set2,Dest : Pointer);
\Description
Calculate the addition between \textsf{set1} and \textsf{set2}, setting the
result in \textsf{dest}.
\Parameters
set1 = pointer to 32 byte set \par
set2 = pointer to 32 byte set \par
dest = pointer to 32 byte set which will receive the result
\Notes
This works on normal sets only.
\Algorithm
\begin{lstlisting}{}
For each bit in the set do
dest bit = set1 bit OR set2 bit
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}LOAD{\_}SMALL}
\label{subsubsec:mylabel95}
\begin{procedurel}{Do{\_}Load{\_}Small}{doloadsmall}
\Declaration
Procedure Do{\_}Load{\_}Small(P : Pointer;L:Longint);
\Description
Load a small set into a 32-byte normal set.
\Parameters
p = pointer to 32 byte set \par
l = value of the small set
\Notes
Called by code generator (type conversion) from small set to large set.
Apart from the first 32 bits of the 32 byte set, other bits are not
modified.
\Algorithm
\begin{lstlisting}{}
For n = bit 0 to bit 31 of l do
p bit n = l bit n
\end{lstlisting}
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}UNSET{\_}BYTE}
\label{subsubsec:mylabel96}
\begin{procedurel}{Do{\_}Unset{\_}Byte}{dounsetbyte}
\Declaration
Procedure Do{\_}Unset{\_}Byte(P : Pointer;B : Byte);
\Description
Called by code generator to exclude element b from a big 32-byte set pointed
to by p.
\Parameters
p = pointer to 32 byte set \par b = element number to exclude
\Notes
The intel 80386 version of the compiler does not save the used registers,
therefore, in that case, it must be done in the routine itself.
\Algorithm
Clear bit number b in p
\end{procedurel}
\subsubsection{FPC{\_}SET{\_}IN{\_}BYTE}
\label{subsubsec:mylabel97}
\begin{functionl}{Do{\_}In{\_}Byte}{doinbyte}
\Declaration
Function Do{\_}In{\_}Byte(P : Pointer;B : Byte):boolean;
\Description
Called by code generator to verify the existence of an element in a set.
Returns TRUE if b is in the set pointed to by p, otherwise returns FALSE.
\Parameters
p = pointer to 32 byte set \par b = element number to verify
\Notes
This routine should save / restore all used registers.
\Algorithm
Clear bit number b in p
\end{functionl}
\subsection{Optional internal routines}
\label{subsec:optional}
These routines are dependant on the target architecture. They are present in
software if the hardware does not support these features.
They could be implemented in assembler directly with register parameter
passing.
\subsubsection{FPC{\_}MUL{\_}INT64}
\label{subsubsec:mylabel98}
\begin{function}{MulInt64}
\Declaration
function MulInt64(f1,f2 : Int64;CheckOverflow : LongBool) : Int64;
\Description
Called by the code generator to multiply two int64 values, when the hardware
does not support this type of operation. The value returned is the result of
the multiplication.
\Parameters
f1 = first operand \par
f2 = second operand \par
checkoverflow = TRUE if overflow checking should be done
\end{function}
\subsubsection{FPC{\_}DIV{\_}INT64}
\label{subsubsec:mylabel99}
\begin{function}{DivInt64}
\Declaration
function DivInt64(n,z : Int64) : Int64;
\Description
Called by the code generator to get the division two int64 values, when the
hardware does not support this type of operation. The value returned is the
result of the division.
\Parameters
n =numerator \par
z = denominator
\end{function}
\subsubsection{FPC{\_}MOD{\_}INT64}
\label{subsubsec:mylabel100}
\begin{function}{ModInt64}
\Declaration
function ModInt64(n,z : Int64) : Int64;
\Description
Called by the code generator to get the modulo two int64 values, when the
architecture does not support this type of operation. The value returned is
the result of the modulo.
\Parameters
n = numerator \par
z = denominator
\end{function}
\subsubsection{FPC{\_}SHL{\_}INT64}
\label{subsubsec:mylabel101}
\begin{function}{ShlInt64}
\Declaration
Function ShlInt64(Cnt : Longint; Low, High: Longint): Int64;
\Description
Called by the code generator to shift left a 64-bit integer by the specified
amount cnt, when this is not directly supported by the hardware. Returns the
shifted value.
\Parameters
low,high = value to shift (low / high 32-bit value) \par
cnt = shift count
\end{function}
\subsubsection{FPC{\_}SHR{\_}INT64}
\label{subsubsec:mylabel102}
\begin{function}{ShrInt64}
\Declaration
function ShrInt64(Cnt : Longint; Low, High: Longint): Int64;
\Description
Called by the code generator to shift left a 64-bit integer by the specified
amount cnt, when this is not directly supported by the hardware. Returns the
shifted value.
\Parameters
low,high = value to shift (low/high 32-bit values) \par
cnt = shift count
\end{function}
\subsubsection{FPC{\_}MUL{\_}LONGINT}
\label{subsubsec:mylabel103}
\begin{function}{MulLong}
\Declaration
Function MulLong: Longint;
\Description
Called by the code generator to multiply two longint values, when the hardware does not support this type of operation. The value returned is the result of the multiplication.
\Parameters
Parameters are passed in registers.
\Notes
This routine should save / restore all used registers.
\end{function}
\subsubsection{FPC{\_}REM{\_}LONGINT}
\label{subsubsec:mylabel104}
\begin{function}{RemLong}
\Declaration
Function RemLong: Longint;
\Description
Called by the code generator to get the modulo two longint values, when the
hardware does not support this type of operation. The value returned is the
result of the modulo.
\Parameters
Parameters are passed in registers.
\Notes
This routine should save / restore all used registers.
\end{function}
\subsubsection{FPC{\_}DIV{\_}LONGINT}
\label{subsubsec:mylabel105}
\begin{function}{DivLong}
\Declaration
Function DivLong: Longint;
\Description
Called by the code generator to get the division two longint values, when
the hardware does not support this type of operation. The value returned is
the result of the division.
\Parameters
Parameters are passed in registers.
\Notes
This routine should save / restore all used registers.
\end{function}
\subsubsection{FPC{\_}MUL{\_}LONGINT}
\label{subsubsec:mylabel106}
\begin{function}{MulCardinal}
\Declaration
Function MulCardinal: Cardinal;
\Description
Called by the code generator to multiply two cardinal values, when the
hardware does not support this type of operation. The value returned is the
result of the multiplication.
\Parameters
Parameters are passed in registers.
\Notes
This routine should save / restore all used registers.
\end{function}
\subsubsection{FPC{\_}REM{\_}CARDINAL}
\label{subsubsec:mylabel107}
\begin{function}{RemCardinal}
\Declaration
Function RemCardinal : Cardinal;
\Description
Called by the code generator to get the modulo two cardinal values, when the
hardware does not support this type of operation. The value returned is the
result of the modulo.
\Parameters
Parameters are passed in registers.
\Notes
This routine should save / restore all used registers.
\end{function}
\subsubsection{FPC{\_}DIV{\_}CARDINAL}
\label{subsubsec:mylabel108}
\begin{function}{DivCardinal}
\Declaration
Function DivCardinal: Cardinal;
\Description
Called by the code generator to get the division two cardinal values, when
the hardware does not support this type of operation. The value returned is
the result of the division.
\Parameters
Parameters are passed in registers.
\Notes
This routine should save / restore all used registers.
\end{function}
\subsubsection{FPC{\_}LONG{\_}TO{\_}SINGLE}
\label{subsubsec:mylabel109}
\begin{function}{LongSingle}
\Declaration
Function LongSingle: Single;
\Description
Called by the code generator to convert a longint to a single IEEE floating
point value.
\Parameters
Parameters are passed in registers
\Notes
This routine should save / restore all used registers.
\end{function}
FPC{\_}ADD{\_}SINGLE
FPC{\_}SUB{\_}SINGLE
FPC{\_}MUL{\_}SINGLE
FPC{\_}REM{\_}SINGLE
FPC{\_}DIV{\_}SINGLE
FPC{\_}CMP{\_}SINGLE
FPC{\_}SINGLE{\_}TO{\_}LONGINT
\section{Optimizing your code}
\label{sec:optimizing}
\subsection{Simple types}
\label{subsec:simple}
Use the most simple types, when defining and declaring variables, they
require less overhead. Classes, and complex string types (ansi strings and
wide strings) posess runtime type information, as well as more overhead for
operating on them then simple types such as shortstring and simple ordinal
types.
\subsection{constant duplicate merging}
\label{subsec:constant}
When duplicates of constant strings, sets or floating point values are found
in the code, they are replaced by only once instance of the same string, set
or floating point constant which reduces the size of the final executable.
\subsection{inline routines}
\label{subsec:inline}
The following routines of the system unit are directly inlined by the
compiler, and generate more efficient code:
\begin{longtable}{|l|l|}
\hline
Prototype& Definition and notes \\
\hline
\endhead
\hline
\endfoot
\textsf{function pi : extended;}& \\
\textsf{function abs(d : extended) : extended;}& \\
\textsf{function sqr(d : extended) : extended;}& \\
\textsf{function sqrt(d : extended) : extended;}& \\
\textsf{function arctan(d : extended) : extended;}& \\
\textsf{function ln(d : extended) : extended;}& \\
\textsf{function sin(d : extended) : extended;}& \\
\textsf{function cos(d : extended) : extended;}& \\
\textsf{function ord(X): longint;}&
Changes node type to be type compatible \\
\textsf{function lo(X) : byte or word;}&
Generates 2-3 instruction sequence inline \\
\textsf{function hi(X) : byte or word;}&
Generates 2-3 instruction sequence inline \\
\textsf{function chr(b : byte) : Char;}&
Changes node type to be type compatible \\
\textsf{function Length(s : string) : byte;}&
Generate 2-3 instruction sequence \\
\textsf{function Length(c : char) : byte;}&
Generates 1 instruction sequence (appx.) \\
\textsf{procedure Reset(var f : TypedFile);}&
Calls FPC{\_}RESET{\_}TYPED \\
\textsf{procedure rewrite(var f : TypedFile);}&
Calls FPC{\_}REWRITE{\_}TYPED \\
\textsf{procedure settextbuf(var F : Text; var Buf);}&
Calls SetTextBuf of runtime library \\
\textsf{procedure writen;}&
Calls FPC{\_}WRITE{\_}XXXX routines \\
\textsf{procedure writeln;}&
Calls FPC{\_}WRITE{\_}XXXX routines \\
\textsf{procedure read;}&
Calls FPC{\_}READ{\_}XXXX routines \\
\textsf{procedure readln;}&
Calls FPC{\_}READ{\_}XXXX routines \\
\textsf{procedure concat;}&
Generates a TREE NODES of type addn \\
\textsf{function assigned(var p): boolean;}&
Generates 1-2 instruction sequence inline \\
\textsf{procedure str(X :[Width [:Decimals]]; var S);}& \\
\textsf{}& \\
\textsf{function sizeof(X): longint;}&
Generates 2-3 instruction sequence inline \\
\textsf{function typeof(X): pointer;}&
Generates 2-3 instruction sequence inline \\
\textsf{procedure val(S;var V; var Code: integer);}& \\
\textsf{function seg(X): longint;}& \\
\textsf{function High(X)}&
Generates a TREE NODE of type ordconstn \\
\textsf{function Low(X)}&
Generates a TREE NODE of type ordconstn \\
\textsf{function pred(x)}&
Generates 2-3 instruction sequence inline \\
\textsf{function succ(X)}&
Generates 2-3 instruction sequence inline \\
\textsf{procedure inc(var X [ ; N: longint]);}&
Generate 2-3 instruction sequence inline \\
\textsf{procedure dec(var X [; N:longint]);}&
Generate 2-3 instruction sequence inline \\
\textsf{procedure include(var s: set of T; I: T);}& \\
\textsf{procedure exclude(var S : set of T; I: T);}& \\
\textsf{procedure assert(expr : Boolean);}&
Calls routine FPC{\_}ASSERT if the assert fails.\\
\textsf{function addr(X): pointer;}&
Generates a TREE NODE of type addrn \\
\textsf{function typeInfo(typeIdent): pointer;}&
Generates 1 instruction sequence inline \\
\end{longtable}
\subsection{temporary memory allocation reuse}
\label{subsec:mylabel11}
When routines are very complex , they may require temporary allocated space
on the stack to store intermediate results. The temporary memory space can
be reused for several different operations if other space is required on the
stack.
\section{Appendix A}
\label{sec:appendix}
This appendix describes the temporary defines when compiling software under
the compiler:
The following defines are defined in FreePascal for v1.0.x, but they will be
removed in future versions, they are used for debugging purposes only:
\begin{itemize}
\item INT64
\item HASRESOURCESTRINGS
\item NEWVMTOFFSET
\item HASINTERNMATH
\item SYSTEMVARREC
\item INCLUDEOK
\item NEWMM
\item HASWIDECHAR
\item INT64FUNCRESOK
\item CORRECTFLDCW
\item ENHANCEDRAISE
\item PACKENUMFIXED
\end{itemize}
NOTE: Currently, the only possible stack alignment are either 2 or 4 if the
target operating system pushes parameters on the stack directly in assembler
(because for example if pushing a long value on the stack while the required
stack alignment is 8 will give out wrong access to data in the actual
routine -- the offset will be wrong).
\printindex
\end{document}
|