1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
{
Copyright (c) 1998-2002 by Florian Klaempfl
Generate i386 assembler for math nodes
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
unit n386mat;
{$i fpcdefs.inc}
interface
uses
node,nmat,ncgmat,nx86mat;
type
ti386moddivnode = class(tmoddivnode)
procedure pass_generate_code;override;
end;
ti386shlshrnode = class(tcgshlshrnode)
procedure second_64bit;override;
function first_shlshr64bitint: tnode; override;
end;
ti386unaryminusnode = class(tx86unaryminusnode)
end;
ti386notnode = class(tx86notnode)
end;
implementation
uses
globtype,systems,constexp,
cutils,verbose,globals,
symconst,symdef,aasmbase,aasmtai,aasmdata,defutil,
cgbase,pass_2,
ncon,
cpubase,cpuinfo,
cga,ncgutil,cgobj,cgutils;
{*****************************************************************************
TI386MODDIVNODE
*****************************************************************************}
function log2(i : dword) : dword;
begin
result:=0;
i:=i shr 1;
while i<>0 do
begin
i:=i shr 1;
inc(result);
end;
end;
procedure ti386moddivnode.pass_generate_code;
var
hreg1,hreg2:Tregister;
power:longint;
hl:Tasmlabel;
op:Tasmop;
e : longint;
d,l,r,s,m,a,n,t : dword;
m_low,m_high,j,k : qword;
begin
secondpass(left);
if codegenerror then
exit;
secondpass(right);
if codegenerror then
exit;
if is_64bitint(resultdef) then
{ should be handled in pass_1 (JM) }
internalerror(200109052);
{ put numerator in register }
location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
location_force_reg(current_asmdata.CurrAsmList,left.location,location.size,false);
hreg1:=left.location.register;
if (nodetype=divn) and (right.nodetype=ordconstn) then
begin
if ispowerof2(tordconstnode(right).value.svalue,power) then
begin
{ for signed numbers, the numerator must be adjusted before the
shift instruction, but not wih unsigned numbers! Otherwise,
"Cardinal($ffffffff) div 16" overflows! (JM) }
if is_signed(left.resultdef) Then
begin
if (current_settings.optimizecputype <> cpu_386) and
not(cs_opt_size in current_settings.optimizerswitches) then
{ use a sequence without jumps, saw this in
comp.compilers (JM) }
begin
{ no jumps, but more operations }
hreg2:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_reg_reg(A_MOV,S_L,hreg1,hreg2);
{If the left value is signed, hreg2=$ffffffff, otherwise 0.}
emit_const_reg(A_SAR,S_L,31,hreg2);
{If signed, hreg2=right value-1, otherwise 0.}
emit_const_reg(A_AND,S_L,tordconstnode(right).value.svalue-1,hreg2);
{ add to the left value }
emit_reg_reg(A_ADD,S_L,hreg2,hreg1);
{ do the shift }
emit_const_reg(A_SAR,S_L,power,hreg1);
end
else
begin
{ a jump, but less operations }
emit_reg_reg(A_TEST,S_L,hreg1,hreg1);
current_asmdata.getjumplabel(hl);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NS,hl);
if power=1 then
emit_reg(A_INC,S_L,hreg1)
else
emit_const_reg(A_ADD,S_L,tordconstnode(right).value.svalue-1,hreg1);
cg.a_label(current_asmdata.CurrAsmList,hl);
emit_const_reg(A_SAR,S_L,power,hreg1);
end
end
else
emit_const_reg(A_SHR,S_L,power,hreg1);
location.register:=hreg1;
end
else
begin
if is_signed(left.resultdef) then
begin
e:=tordconstnode(right).value.svalue;
d:=abs(e);
{ Determine algorithm (a), multiplier (m), and shift factor (s) for 32-bit
signed integer division. Based on: Granlund, T.; Montgomery, P.L.:
"Division by Invariant Integers using Multiplication". SIGPLAN Notices,
Vol. 29, June 1994, page 61.
}
l:=log2(d);
j:=qword($80000000) mod qword(d);
k:=(qword(1) shl (32+l)) div (qword($80000000-j));
m_low:=((qword(1)) shl (32+l)) div d;
m_high:=(((qword(1)) shl (32+l)) + k) div d;
while ((m_low shr 1) < (m_high shr 1)) and (l > 0) do
begin
m_low:=m_low shr 1;
m_high:=m_high shr 1;
dec(l);
end;
m:=dword(m_high);
s:=l;
if (m_high shr 31)<>0 then
a:=1
else
a:=0;
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_const_reg(A_MOV,S_L,aint(m),NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
emit_reg(A_IMUL,S_L,hreg1);
emit_reg_reg(A_MOV,S_L,hreg1,NR_EAX);
if a<>0 then
begin
emit_reg_reg(A_ADD,S_L,NR_EAX,NR_EDX);
{
printf ("; dividend: memory location or register other than EAX or EDX\n");
printf ("\n");
printf ("MOV EAX, 0%08LXh\n", m);
printf ("IMUL dividend\n");
printf ("MOV EAX, dividend\n");
printf ("ADD EDX, EAX\n");
if (s) printf ("SAR EDX, %d\n", s);
printf ("SHR EAX, 31\n");
printf ("ADD EDX, EAX\n");
if (e < 0) printf ("NEG EDX\n");
printf ("\n");
printf ("; quotient now in EDX\n");
}
end;
{
printf ("; dividend: memory location of register other than EAX or EDX\n");
printf ("\n");
printf ("MOV EAX, 0%08LXh\n", m);
printf ("IMUL dividend\n");
printf ("MOV EAX, dividend\n");
if (s) printf ("SAR EDX, %d\n", s);
printf ("SHR EAX, 31\n");
printf ("ADD EDX, EAX\n");
if (e < 0) printf ("NEG EDX\n");
printf ("\n");
printf ("; quotient now in EDX\n");
}
if s<>0 then
emit_const_reg(A_SAR,S_L,s,NR_EDX);
emit_const_reg(A_SHR,S_L,31,NR_EAX);
emit_reg_reg(A_ADD,S_L,NR_EAX,NR_EDX);
if e<0 then
emit_reg(A_NEG,S_L,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register)
end
else
begin
d:=tordconstnode(right).value.svalue;
if d>=$80000000 then
begin
emit_const_reg(A_CMP,S_L,aint(d),hreg1);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
emit_const_reg(A_MOV,S_L,0,location.register);
emit_const_reg(A_SBB,S_L,-1,location.register);
end
else
begin
{ Reduce divisor until it becomes odd }
n:=0;
t:=d;
while (t and 1)=0 do
begin
t:=t shr 1;
inc(n);
end;
{ Generate m, s for algorithm 0. Based on: Granlund, T.; Montgomery,
P.L.: "Division by Invariant Integers using Multiplication".
SIGPLAN Notices, Vol. 29, June 1994, page 61.
}
l:=log2(t)+1;
j:=qword($ffffffff) mod qword(t);
k:=(qword(1) shl (32+l)) div (qword($ffffffff-j));
m_low:=((qword(1)) shl (32+l)) div t;
m_high:=(((qword(1)) shl (32+l)) + k) div t;
while ((m_low shr 1) < (m_high shr 1)) and (l>0) do
begin
m_low:=m_low shr 1;
m_high:=m_high shr 1;
l:=l-1;
end;
if (m_high shr 32)=0 then
begin
m:=dword(m_high);
s:=l;
a:=0;
end
{ Generate m, s for algorithm 1. Based on: Magenheimer, D.J.; et al:
"Integer Multiplication and Division on the HP Precision Architecture".
IEEE Transactions on Computers, Vol 37, No. 8, August 1988, page 980.
}
else
begin
s:=log2(t);
m_low:=(qword(1) shl (32+s)) div qword(t);
r:=dword(((qword(1)) shl (32+s)) mod qword(t));
if (r < ((t>>1)+1)) then
m:=dword(m_low)
else
m:=dword(m_low)+1;
a:=1;
end;
{ Reduce multiplier for either algorithm to smallest possible }
while (m and 1)=0 do
begin
m:=m shr 1;
dec(s);
end;
{ Adjust multiplier for reduction of even divisors }
inc(s,n);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_const_reg(A_MOV,S_L,aint(m),NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
emit_reg(A_MUL,S_L,hreg1);
if a<>0 then
begin
{
printf ("; dividend: register other than EAX or memory location\n");
printf ("\n");
printf ("MOV EAX, 0%08lXh\n", m);
printf ("MUL dividend\n");
printf ("ADD EAX, 0%08lXh\n", m);
printf ("ADC EDX, 0\n");
if (s) printf ("SHR EDX, %d\n", s);
printf ("\n");
printf ("; quotient now in EDX\n");
}
emit_const_reg(A_ADD,S_L,aint(m),NR_EAX);
emit_const_reg(A_ADC,S_L,0,NR_EDX);
end;
if s<>0 then
emit_const_reg(A_SHR,S_L,aint(s),NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register)
end;
end
end
end
else
begin
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
emit_reg_reg(A_MOV,S_L,hreg1,NR_EAX);
cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
{Sign extension depends on the left type.}
if torddef(left.resultdef).ordtype=u32bit then
emit_reg_reg(A_XOR,S_L,NR_EDX,NR_EDX)
else
emit_none(A_CDQ,S_NO);
{Division depends on the right type.}
if Torddef(right.resultdef).ordtype=u32bit then
op:=A_DIV
else
op:=A_IDIV;
if right.location.loc in [LOC_REFERENCE,LOC_CREFERENCE] then
emit_ref(op,S_L,right.location.reference)
else if right.location.loc in [LOC_REGISTER,LOC_CREGISTER] then
emit_reg(op,S_L,right.location.register)
else
begin
hreg1:=cg.getintregister(current_asmdata.CurrAsmList,right.location.size);
cg.a_load_loc_reg(current_asmdata.CurrAsmList,OS_32,right.location,hreg1);
emit_reg(op,S_L,hreg1);
end;
{Copy the result into a new register. Release EAX & EDX.}
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
if nodetype=divn then
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EAX,location.register)
else
cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EDX,location.register);
end;
end;
{*****************************************************************************
TI386SHLRSHRNODE
*****************************************************************************}
function ti386shlshrnode.first_shlshr64bitint: tnode;
begin
result := nil;
end;
procedure ti386shlshrnode.second_64bit;
var
hreg64hi,hreg64lo:Tregister;
v : TConstExprInt;
l1,l2,l3:Tasmlabel;
begin
location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
{ load left operator in a register }
location_force_reg(current_asmdata.CurrAsmList,left.location,location.size,false);
hreg64hi:=left.location.register64.reghi;
hreg64lo:=left.location.register64.reglo;
{ shifting by a constant directly coded: }
if (right.nodetype=ordconstn) then
begin
v:=Tordconstnode(right).value and 63;
if v>31 then
begin
if nodetype=shln then
begin
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
if ((v and 31) <> 0) then
emit_const_reg(A_SHL,S_L,v.svalue and 31,hreg64lo);
end
else
begin
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
if ((v and 31) <> 0) then
emit_const_reg(A_SHR,S_L,v.svalue and 31,hreg64hi);
end;
location.register64.reghi:=hreg64lo;
location.register64.reglo:=hreg64hi;
end
else
begin
if nodetype=shln then
begin
emit_const_reg_reg(A_SHLD,S_L,v.svalue and 31,hreg64lo,hreg64hi);
emit_const_reg(A_SHL,S_L,v.svalue and 31,hreg64lo);
end
else
begin
emit_const_reg_reg(A_SHRD,S_L,v.svalue and 31,hreg64hi,hreg64lo);
emit_const_reg(A_SHR,S_L,v.svalue and 31,hreg64hi);
end;
location.register64.reglo:=hreg64lo;
location.register64.reghi:=hreg64hi;
end;
end
else
begin
{ load right operators in a register }
cg.getcpuregister(current_asmdata.CurrAsmList,NR_ECX);
cg.a_load_loc_reg(current_asmdata.CurrAsmList,OS_32,right.location,NR_ECX);
{ left operator is already in a register }
{ hence are both in a register }
{ is it in the case ECX ? }
{ the damned shift instructions work only til a count of 32 }
{ so we've to do some tricks here }
current_asmdata.getjumplabel(l1);
current_asmdata.getjumplabel(l2);
current_asmdata.getjumplabel(l3);
emit_const_reg(A_CMP,S_L,64,NR_ECX);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_L,l1);
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l1);
emit_const_reg(A_CMP,S_L,32,NR_ECX);
cg.a_jmp_flags(current_asmdata.CurrAsmList,F_L,l2);
emit_const_reg(A_SUB,S_L,32,NR_ECX);
if nodetype=shln then
begin
emit_reg_reg(A_SHL,S_L,NR_CL,hreg64lo);
emit_reg_reg(A_MOV,S_L,hreg64lo,hreg64hi);
emit_reg_reg(A_XOR,S_L,hreg64lo,hreg64lo);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l2);
emit_reg_reg_reg(A_SHLD,S_L,NR_CL,hreg64lo,hreg64hi);
emit_reg_reg(A_SHL,S_L,NR_CL,hreg64lo);
end
else
begin
emit_reg_reg(A_SHR,S_L,NR_CL,hreg64hi);
emit_reg_reg(A_MOV,S_L,hreg64hi,hreg64lo);
emit_reg_reg(A_XOR,S_L,hreg64hi,hreg64hi);
cg.a_jmp_always(current_asmdata.CurrAsmList,l3);
cg.a_label(current_asmdata.CurrAsmList,l2);
emit_reg_reg_reg(A_SHRD,S_L,NR_CL,hreg64hi,hreg64lo);
emit_reg_reg(A_SHR,S_L,NR_CL,hreg64hi);
end;
cg.a_label(current_asmdata.CurrAsmList,l3);
cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_ECX);
location.register64.reglo:=hreg64lo;
location.register64.reghi:=hreg64hi;
end;
end;
begin
cunaryminusnode:=ti386unaryminusnode;
cmoddivnode:=ti386moddivnode;
cshlshrnode:=ti386shlshrnode;
cnotnode:=ti386notnode;
end.
|