summaryrefslogtreecommitdiff
path: root/fpcsrc/packages/numlib/src/eigh2.pas
blob: dd991d3d3229e5b0ba723152a7f4fb1c9a643875 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
{
    This file is part of the Numlib package.
    Copyright (c) 1986-2000 by
     Kees van Ginneken, Wil Kortsmit and Loek van Reij of the
     Computational centre of the Eindhoven University of Technology

    FPC port Code          by Marco van de Voort (marco@freepascal.org)
             Documentation by Michael van Canneyt (Michael@freepascal.org)

    This is a helper unit for the unit eig. These functions aren't documented,
    so if you find out what it does, please mail it to us.

    See the file COPYING.FPC, included in this distribution,
    for details about the copyright.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

 **********************************************************************}

unit eigh2;
{$I DIRECT.INC}

interface

uses typ;

procedure orthes(var a: ArbFloat; n, rwidth: ArbInt; var u: ArbFloat);
procedure hessva(var h: ArbFloat; n, rwidth: ArbInt; var lam: complex;
                 var term: ArbInt);
procedure balance(var a: ArbFloat; n, rwidtha: ArbInt; var low, hi: ArbInt;
                  var d: ArbFloat);
procedure orttrans(var a: ArbFloat; n, rwidtha: ArbInt; var q: ArbFloat;
                   rwidthq: ArbInt);
procedure balback(var pd: ArbFloat; n, m1, m2, k1, k2: ArbInt; var pdx: ArbFloat;
                  rwidth: ArbInt);
procedure hessvec(var h: ArbFloat; n, rwidthh: ArbInt; var lam: complex;
                  var v: ArbFloat; rwidthv: ArbInt; var term: ArbInt);
procedure normeer(var lam: complex; n: ArbInt; var v: ArbFloat;
                  rwidthv: ArbInt);
procedure transx(var v: ArbFloat; n, rwidthv: ArbInt; var lam, x: complex;
                 rwidthx: ArbInt);
procedure reduc1(var a: ArbFloat; n, rwidtha: ArbInt; var b: ArbFloat;
                 rwidthb: ArbInt; var term: ArbInt);
procedure rebaka(var l: ArbFloat; n, rwidthl, k1, k2: ArbInt; var x: ArbFloat;
                 rwidthx: ArbInt; var term: ArbInt);

implementation

procedure orthes(var a: ArbFloat; n, rwidth: ArbInt; var u: ArbFloat);
var               pa, pu, d : ^arfloat1;
    sig, sig2, h, f, tol : ArbFloat;
                    k, i, j : ArbInt;
begin
  pa:=@a; pu:=@u; tol:=midget/macheps;
  getmem(d, n*sizeof(ArbFloat));
  for k:=1 to n-2 do
    begin
      sig2:=0;
      for i:=k+2 to n do
        begin
          d^[i]:=pa^[(i-1)*rwidth+k]; f:=d^[i]; sig2:=sig2+sqr(f)
        end; {i}
      if sig2<tol then
        begin
          pu^[k]:=0; for i:=k+2 to n do pa^[(i-1)*rwidth+k]:=0
        end else
        begin
          f:=pa^[k*rwidth+k]; sig2:=sig2+sqr(f);
          if f<0 then sig:=sqrt(sig2) else sig:=-sqrt(sig2);
          pa^[k*rwidth+k]:=sig;
          h:=sig2-f*sig; d^[k+1]:=f-sig; pu^[k]:=d^[k+1];
          for j:=k+1 to n do
          begin
            f:=0; for i:=k+1 to n do f:=f+d^[i]*pa^[(i-1)*rwidth+j]; f:=f/h;
           for i:=k+1 to n do pa^[(i-1)*rwidth+j]:=pa^[(i-1)*rwidth+j]-f*d^[i]
          end; {j}
          for i:=1 to n do
          begin
            f:=0; for j:=k+1 to n do f:=f+d^[j]*pa^[(i-1)*rwidth+j]; f:=f/h;
           for j:=k+1 to n do pa^[(i-1)*rwidth+j]:=pa^[(i-1)*rwidth+j]-f*d^[j]
          end {i}
        end
    end;  {k}
  freemem(d, n*sizeof(ArbFloat));
end  {orthes};

procedure hessva(var h: ArbFloat; n, rwidth: ArbInt; var lam: complex;
                 var term: ArbInt);
var   i, j, k, kk, k1, k2, k3, l, m, mr,
                ik, nn, na, n1, n2, its : ArbInt;
        meps, p, q, r, s, t, w, x, y, z : ArbFloat;
                          test, notlast : boolean;
                                     ph : ^arfloat1;
                                   plam : ^arcomp1;
begin
  ph:=@h; plam:=@lam;
  t:=0; term:=1; meps:=macheps; nn:=n;
  while (nn >= 1) and (term=1) do
    begin
      n1:=(nn-1)*rwidth; na:=nn-1; n2:=(na-1)*rwidth;
      its:=0;
      repeat
        l:=nn+1; test:=true;
        while test and (l>2) do
          begin
            l:=l-1;
            test:=abs(ph^[(l-1)*(rwidth+1)]) >
                  meps*(abs(ph^[(l-2)*rwidth+l-1])+abs(ph^[(l-1)*rwidth+l]))
          end;
        if (l=2) and  test then l:=l-1;
        if l<na then
          begin
            x:=ph^[n1+nn]; y:=ph^[n2+na]; w:=ph^[n1+na]*ph^[n2+nn];
            if (its=10) or (its=20) then
              begin
                {form exceptional shift}
                t:=t+x;
                for i:=1 to nn do ph^[(i-1)*rwidth+i]:=ph^[(i-1)*rwidth+i]-x;
                s:=abs(ph^[n1+na])+abs(ph^[n1+nn-2]);
                y:=0.75*s; x:=y; w:=-0.4375*sqr(s);
              end; {shift}
            {look for two consecutive small sub-diag elmts}
            m:=nn-1; test:= true ;
            repeat
              m:=m-1; mr:=m*rwidth;
              z:=ph^[mr-rwidth+m]; r:=x-z; s:=y-z;
              p:=(r*s-w)/ph^[mr+m]+ph^[mr-rwidth+m+1];
              q:=ph^[mr+m+1]-z-r-s; r:=ph^[mr+rwidth+m+1];
              s:=abs(p)+abs(q)+abs(r); p:=p/s; q:=q/s; r:=r/s;
              if m <> l then
                test:=abs(ph^[mr-rwidth+m-1])*(abs(q)+abs(r)) <=
                      meps*abs(p)*(abs(ph^[mr-2*rwidth+m-1])+abs(z)+
                                                    abs(ph^[mr+m+1]))
            until (m=l) or test;
            for i:=m+2 to nn do ph^[(i-1)*rwidth+i-2]:=0;
            for i:=m+3 to nn do ph^[(i-1)*rwidth+i-3]:=0;
            { double qp-step involving rows l to nn and columns m to nn}
            for k:=m to na do
              begin
                notlast:=k <> na;
                if k <> m then
                  begin
                    p:=ph^[(k-1)*(rwidth+1)]; q:=ph^[k*rwidth+k-1];
                    if notlast then r:=ph^[(k+1)*rwidth+k-1] else r:=0;
                    x:=abs(p)+abs(q)+abs(r);
                    if x>0 then
                      begin
                        p:=p/x; q:=q/x; r:=r/x
                      end
                  end else x:=1;
                if x>0 then
                begin
                  s:=sqrt(p*p+q*q+r*r); if p<0 then s:=-s;
                  if k <> m then ph^[(k-1)*(rwidth+1)]:=-s*x else
                  if l <> m then
                    begin
                      kk:=(k-1)*(rwidth+1); ph^[kk]:=-ph^[kk]
                    end;
                  p:=p+s; x:=p/s; y:=q/s; z:=r/s; q:=q/p; r:=r/p;
                  { row moxification}
                  for j:=k to nn do
                    begin
                      k1:=(k-1)*rwidth+j; k2:=k1+rwidth; k3:=k2+rwidth;
                      p:=ph^[k1]+q*ph^[k2];
                      if notlast then
                        begin
                          p:=p+r*ph^[k3]; ph^[k3]:=ph^[k3]-p*z;
                        end;
                      ph^[k2]:=ph^[k2]-p*y; ph^[k1]:=ph^[k1]-p*x;
                    end;  {j}
                  if k+3<nn then j:=k+3 else j:=nn;
                  { column modification}
                  for i:=l to j do
                    begin
                      ik:=(i-1)*rwidth+k;
                      p:=x*ph^[ik]+y*ph^[ik+1];
                      if notlast then
                        begin
                          p:=p+z*ph^[ik+2]; ph^[ik+2]:=ph^[ik+2]-p*r;
                        end;
                      ph^[ik+1]:=ph^[ik+1]-p*q; ph^[ik]:=ph^[ik]-p;
                    end  {i}
                end  {x <> 0}
              end  {k};
          end;  {l < na}
        its:=its+1
      until (l=na) or (l=nn) or (its=30);
      if l=nn then
        begin  { one root found}
          plam^[nn].Init(ph^[n1+nn]+t, 0); nn:=na
        end else
      if l=na then
        begin  { two roots found}
          x:=ph^[n1+nn]; y:=ph^[n2+na]; w:=ph^[n1+na]*ph^[n2+nn];
          p:=(y-x)/2; q:=p*p+w; y:=sqrt(abs(q)); x:=x+t;
          if q>0 then
            begin  {  ArbFloat pair}
              if p<0 then y:=-y; y:=p+y;
              plam^[na].Init(x+y, 0); plam^[nn].Init(x-w/y, 0)
            end else
            begin { complex pair}
              plam^[na].Init(x+p, y); plam^[nn].Init(x+p, -y)
            end;
          nn:=nn-2
        end else term:=2
    end {while }
end  {hessva};

procedure balance(var a: ArbFloat; n, rwidtha: ArbInt; var low, hi: ArbInt;
                  var d: ArbFloat);

const radix = 2;

var   i, j, k, l, ii, jj: ArbInt;
    b2, b, c, f, g, r, s: ArbFloat;
                  pa, pd: ^arfloat1;
           nonconv, cont: boolean;

  procedure exc(j, k: ArbInt);
  var i, ii, jj, kk: ArbInt;
                  h: ArbFloat;
  begin
    pd^[k]:=j;
    if j <> k then
      begin
        for i:=1 to n do
          begin
            ii:=(i-1)*rwidtha;
            h:=pa^[ii+j]; pa^[ii+j]:=pa^[ii+k]; pa^[ii+k]:=h
          end; {i}
        for i:=1 to n do
          begin
            jj:=(j-1)*rwidtha+i; kk:=(k-1)*rwidtha+i;
            h:=pa^[jj]; pa^[jj]:=pa^[kk]; pa^[kk]:=h
         end; {i}
     end {j <> k}
  end {exc};
begin
  pa:=@a; pd:=@d; b:=radix; b2:=b*b; l:=1; k:=n; cont:=true;
  while cont do
    begin
      j:=k+1;
      repeat
        j:=j-1; r:=0; jj:=(j-1)*rwidtha;
        for i:=1 to j-1 do r:=r+abs(pa^[jj+i]);
        for i:=j+1 to k do r:=r+abs(pa^[jj+i]);
      until (r=0) or (j=1);
      if r=0 then
        begin
          exc(j,k); k:=k-1
        end;
      cont:=(r=0) and (k >= 1);
    end;
  cont:= true ;
  while cont do
    begin
      j:=l-1;
      repeat
        j:=j+1; r:=0;
        for i:=l to j-1 do r:=r+abs(pa^[(i-1)*rwidtha+j]);
        for i:=j+1 to k do r:=r+abs(pa^[(i-1)*rwidtha+j])
      until (r=0) or (j=k);
      if r=0 then
        begin
          exc(j,l); l:=l+1
        end;
      cont:=(r=0) and (l <= k);
    end;
  for i:=l to k do pd^[i]:=1;
  low:=l; hi:=k; nonconv:=l <= k;
  while nonconv do
    begin
      for i:=l to k do
        begin
          c:=0; r:=0;
          for j:=l to i-1 do
            begin
              c:=c+abs(pa^[(j-1)*rwidtha+i]);
              r:=r+abs(pa^[(i-1)*rwidtha+j])
            end;
          for j:=i+1 to k do
            begin
              c:=c+abs(pa^[(j-1)*rwidtha+i]);
              r:=r+abs(pa^[(i-1)*rwidtha+j])
            end;
          g:=r/b; f:=1; s:=c+r;
          while c<g do
            begin
              f:=f*b; c:=c*b2
            end;
          g:=r*b;
          while c >= g do
            begin
              f:=f/b; c:=c/b2
            end;
          if (c+r)/f<0.95*s then
            begin
              g:=1/f; pd^[i]:=pd^[i]*f; ii:=(i-1)*rwidtha;
              for j:=l to n do pa^[ii+j]:=pa^[ii+j]*g;
              for j:=1 to k do pa^[(j-1)*rwidtha+i]:=pa^[(j-1)*rwidtha+i]*f;
            end else nonconv:=false
        end
     end {while}
end; {balance}

procedure orttrans(var a: ArbFloat; n, rwidtha: ArbInt; var q: ArbFloat;
                   rwidthq: ArbInt);

var                 i, j, k : ArbInt;
    sig, sig2, f, h, tol : ArbFloat;
                  pa, pq, d : ^arfloat1;

begin
  pa:=@a; pq:=@q; tol:=midget/macheps;
  getmem(d, n*sizeof(ArbFloat));
  for k:=1 to n-2 do
    begin
      sig2:=0;
      for i:=k+2 to n do
        begin
          d^[i]:=pa^[(i-1)*rwidtha+k]; f:=d^[i]; sig2:=sig2+sqr(f)
        end;
      if sig2<tol then
        begin
          d^[k+1]:=0; for i:=k+2 to n do pa^[(i-1)*rwidtha+k]:=0
        end else
        begin
          f:=pa^[k*rwidtha+k]; sig2:=sig2+sqr(f);
          if f<0 then sig:=sqrt(sig2) else sig:=-sqrt(sig2);
          pa^[k*rwidtha+k]:=sig; h:=sig2-f*sig; d^[k+1]:=f-sig;
          for j:=k+1 to n do
            begin
              f:=0; for i:=k+1 to n do f:=f+d^[i]*pa^[(i-1)*rwidtha+j];
              f:=f/h;
              for i:=k+1 to n do
                pa^[(i-1)*rwidtha+j]:=pa^[(i-1)*rwidtha+j]-f*d^[i];
            end;
          for i:=1 to n do
            begin
              f:=0; for j:=k+1 to n do f:=f+d^[j]*pa^[(i-1)*rwidtha+j];
              f:=f/h;
              for j:=k+1 to n do
                pa^[(i-1)*rwidtha+j]:=pa^[(i-1)*rwidtha+j]-f*d^[j];
            end
        end
    end; {k}
  for i:=1 to n do
    begin
      pq^[(i-1)*rwidthq+i]:=1;
      for j:=1 to i-1 do
        begin
          pq^[(i-1)*rwidthq+j]:=0; pq^[(j-1)*rwidthq+i]:=0
        end
    end;
  for k:=n-2 downto 1 do
    begin
      h:=pa^[k*rwidtha+k]*d^[k+1];
      if h <> 0
      then
        begin
          for i:=k+2 to n do d^[i]:=pa^[(i-1)*rwidtha+k];
          for i:=k+2 to n do pa^[(i-1)*rwidtha+k]:=0;
          for j:=k+1 to n do
            begin
              f:=0; for i:=k+1 to n do f:=f+d^[i]*pq^[(i-1)*rwidthq+j];
              f:=f/h;
              for i:=k+1 to n do
                pq^[(i-1)*rwidthq+j]:=pq^[(i-1)*rwidthq+j]+f*d^[i]
            end
        end
    end;
  freemem(d, n*sizeof(ArbFloat));
end; {orttrans}

procedure balback(var pd: ArbFloat; n, m1, m2, k1, k2: ArbInt; var pdx: ArbFloat;
                  rwidth: ArbInt);

var i, j, k, ii, kk: ArbInt;
                  s: ArbFloat;
          ppd, ppdx: ^arfloat1;

begin
  ppd:=@pd; ppdx:=@pdx;
  for i:=m1 to m2 do
    begin
      ii:=(i-1)*rwidth; s:=ppd^[i];
      for j:=k1 to k2 do ppdx^[ii+j]:=ppdx^[ii+j]*s;
    end;
  for i:=m1-1 downto 1 do
    begin
      k:=round(ppd^[i]); ii:=(i-1)*rwidth; kk:=(k-1)*rwidth;
      if k <> i then
        for j:=k1 to k2 do
          begin
            s:=ppdx^[ii+j]; ppdx^[ii+j]:=ppdx^[kk+j]; ppdx^[kk+j]:=s
          end
    end;
  for i:=m2+1 to n do
    begin
      k:=round(ppd^[i]); ii:=(i-1)*rwidth; kk:=(k-1)*rwidth;
      if k <> i then
        for j:=k1 to k2 do
          begin
            s:=ppdx^[ii+j]; ppdx^[ii+j]:=ppdx^[kk+j]; ppdx^[kk+j]:=s
          end
    end
end; {balback}

procedure cdiv(xr, xi, yr, yi: ArbFloat; var zr, zi: ArbFloat);
var h:ArbFloat;
begin
  if abs(yr)>abs(yi) then
    begin
      h:=yi/yr; yr:=h*yi+yr;
      zr:=(xr+h*xi)/yr; zi:=(xi-h*xr)/yr;
    end else
    begin
      h:=yr/yi; yi:=h*yr+yi;
      zr:=(h*xr+xi)/yi; zi:=(h*xi-xr)/yi
    end
end; {cdiv}

procedure hessvec(var h: ArbFloat; n, rwidthh: ArbInt; var lam: complex;
                  var v: ArbFloat; rwidthv: ArbInt; var term: ArbInt);

var                        iterate, stop, notlast, contin: boolean;
           i, j, k, l, m, na, its, en, n1, n2, ii, kk, ll,
                                   ik, i1, k0, k1, k2, mr: ArbInt;
    meps, p, q, r, s, t, w, x, y, z, ra, sa, vr, vi, norm: ArbFloat;
                                                   ph, pv: ^arfloat1;
                                                   plam  : ^arcomp1;
begin
  ph:=@h; pv:=@v; plam:=@lam;
  term:=1; en:=n; t:=0; meps:=macheps;
  while (term=1) and (en>=1) do
    begin
      its:=0; na:=en-1; iterate:=true;
      while iterate and (term=1) do
        begin
          l:=en; contin:=true;
          while (l>=2) and contin do
            begin
              ll:=(l-1)*rwidthh+l;
              if abs(ph^[ll-1])>meps*(abs(ph^[ll-rwidthh-1])+abs(ph^[ll]))
              then l:=l-1 else contin:=false
            end;
          n1:=(na-1)*rwidthh; n2:=(en-1)*rwidthh; x:=ph^[n2+en];
          if l=en then
            begin
              iterate:=false; plam^[en].Init(x+t, 0); ph^[n2+en]:=x+t;
              en:=en-1
            end else
            if l=en-1 then
              begin
                iterate:=false; y:=ph^[n1+na]; w:=ph^[n2+na]*ph^[n1+en];
                p:=(y-x)/2; q:=p*p+w; z:=sqrt(abs(q)); x:=x+t;
                ph^[n2+en]:=x; ph^[n1+na]:=y+t;
                if q>0 then
                  begin
                    if p<0 then z:=p-z else z:=p+z; plam^[na].Init(x+z, 0);
                    s:=x-w/z; plam^[en].Init(s, 0);
                    x:=ph^[n2+na]; r:=sqrt(x*x+z*z); p:=x/r; q:=z/r;
                    for j:=na to n do
                      begin
                        z:=ph^[n1+j]; ph^[n1+j]:=q*z+p*ph^[n2+j];
                        ph^[n2+j]:=q*ph^[n2+j]-p*z
                      end;
                    for i:=1 to en do
                      begin
                        ii:=(i-1)*rwidthh;
                        z:=ph^[ii+na]; ph^[ii+na]:=q*z+p*ph^[ii+en];
                        ph^[ii+en]:=q*ph^[ii+en]-p*z;
                      end;
                    for i:=1 to n do
                      begin
                        ii:=(i-1)*rwidthv;
                        z:=pv^[ii+na]; pv^[ii+na]:=q*z+p*pv^[ii+en];
                        pv^[ii+en]:=q*pv^[ii+en]-p*z;
                      end
                  end {q>0}
                else
                  begin
                    plam^[na].Init(x+p, z); plam^[en].Init(x+p, -z)
                  end;
                en:=en-2;
              end {l=en-1}
            else
              begin
                y:=ph^[n1+na]; w:=ph^[n1+en]*ph^[n2+na];
                if (its=10) or (its=20)
                then
                  begin
                    t:=t+x;
                    for i:=1 to en do
                      ph^[(i-1)*rwidthh+i]:=ph^[(i-1)*rwidthh+i]-x;
                    s:=abs(ph^[n2+na])+abs(ph^[n1+en-2]);
                    y:=0.75*s; x:=y; w:=-0.4375*s*s;
                  end;
                m:=en-1; stop:=false;
                repeat
                  m:=m-1; mr:=m*rwidthh;
                  z:=ph^[mr-rwidthh+m]; r:=x-z; s:=y-z;
                  p:=(r*s-w)/ph^[mr+m]+ph^[mr-rwidthh+m+1];
                  q:=ph^[mr+m+1]-z-r-s; r:=ph^[mr+rwidthh+m+1];
                  s:=abs(p)+abs(q)+abs(r); p:=p/s; q:=q/s; r:=r/s;
                  if m>l then
                    stop:=abs(ph^[mr-rwidthh+m-1])*(abs(q)+abs(r))<=
                          meps*abs(p)*(abs(ph^[mr-2*rwidthh+m-1])+
                                          abs(z)+abs(ph^[mr+m+1]))
                until stop or (m=l);
                for i:=m+2 to en do ph^[(i-1)*rwidthh+i-2]:=0;
                for i:=m+3 to en do ph^[(i-1)*rwidthh+i-3]:=0;
                for k:=m to na do
                  begin
                    k0:=(k-1)*rwidthh; k1:=k0+rwidthh; k2:=k1+rwidthh;
                    notlast:=k<na; contin:=true;
                    if k>m then
                      begin
                        p:=ph^[k0+k-1]; q:=ph^[k1+k-1];
                        if notlast then r:=ph^[k2+k-1] else r:=0;
                        x:=abs(p)+abs(q)+abs(r);
                        if x>0 then
                          begin
                            p:=p/x; q:=q/x; r:=r/x
                          end else contin:=false
                      end;
                    if contin then
                      begin
                        s:=sqrt(p*p+q*q+r*r);
                        if p<0 then s:=-s;
                        if k>m then ph^[k0+k-1]:=-s*x else
                        if l <> m then ph^[k0+k-1]:=-ph^[k0+k-1];
                        p:=p+s; x:=p/s; y:=q/s; z:=r/s; q:=q/p; r:=r/p;
                        for j:=k to n do
                          begin
                            p:=ph^[k0+j]+q*ph^[k1+j];
                            if notlast then
                              begin
                                p:=p+r*ph^[k2+j];
                                ph^[k2+j]:=ph^[k2+j]-p*z
                              end;
                            ph^[k1+j]:=ph^[k1+j]-p*y;
                            ph^[k0+j]:=ph^[k0+j]-p*x
                          end; {j}
                        if k+3<en then j:=k+3 else j:=en;
                        for i:=1 to j do
                          begin
                            ik:=(i-1)*rwidthh+k;
                            p:=x*ph^[ik]+y*ph^[ik+1];
                            if notlast then
                              begin
                                p:=p+z*ph^[ik+2]; ph^[ik+2]:=ph^[ik+2]-p*r
                              end;
                            ph^[ik+1]:=ph^[ik+1]-p*q; ph^[ik]:=ph^[ik]-p
                          end;  {i}
                        for i:=1 to n do
                          begin
                            ik:=(i-1)*rwidthv+k;
                            p:=x*pv^[ik]+y*pv^[ik+1];
                            if notlast then
                              begin
                                p:=p+z*pv^[ik+2]; pv^[ik+2]:=pv^[ik+2]-p*r
                              end;
                            pv^[ik+1]:=pv^[ik+1]-p*q; pv^[ik]:=pv^[ik]-p
                          end  {i}
                      end  {contin}
                  end;  {k}
                its:=its+1; if its >= 30 then term:=2
              end  {ifl}
        end  {iterate}
    end;  {term=1}
  if term=1 then
    begin
      norm:=0; k:=1;
      for i:=1 to n do
        begin
          for j:=k to n do norm:=norm+abs(ph^[(i-1)*rwidthh+j]);
          k:=i
        end;
      if norm=0 then
        begin
         { matrix is nulmatrix: eigenwaarden zijn alle 0 en aan de
           eigenvectoren worden de eenheidsvectoren toegekend }
          for i:=1 to n do plam^[i].Init(0, 0);
          for i:=1 to n do
            fillchar(pv^[(i-1)*rwidthv+1], n*sizeof(ArbFloat), 0);
          for i:=1 to n do pv^[(i-1)*rwidthv+i]:=1;
          exit
        end; {norm=0}
      for en:=n downto 1 do
        begin
          p:=plam^[en].re; q:=plam^[en].im; na:=en-1;
          n1:=(na-1)*rwidthh; n2:=(en-1)*rwidthh;
          if q=0 then
            begin
              m:=en; ph^[n2+en]:=1;
              for i:=na downto 1 do
                begin
                  ii:=(i-1)*rwidthh; i1:=ii+rwidthh;
                  w:=ph^[ii+i]-p; r:=ph^[ii+en];
                  for j:=m to na do r:=r+ph^[ii+j]*ph^[(j-1)*rwidthh+en];
                  if plam^[i].im < 0 then
                    begin
                      z:=w; s:=r
                    end else
                    begin
                      m:=i; if plam^[i].im=0 then
                      if w=0 then ph^[ii+en]:=-r/(meps*norm)
                      else ph^[ii+en]:=-r/w else
                        begin
                          x:=ph^[ii+i+1]; y:=ph^[i1+i];
                          q:=sqr(plam^[i].xreal-p)+sqr(plam^[i].imag);
                          ph^[ii+en]:=(x*s-z*r)/q; t:=ph^[ii+en];
                          if abs(x)>abs(z) then ph^[i1+en]:=(-r-w*t)/x
                          else ph^[i1+en]:=(-s-y*t)/z;
                        end  {plam^[i].imag > 0}
                    end  {plam^[i].imag >= 0}
                end  {i}
            end {q=0}
          else
            if q<0 then
              begin
                m:=na;
                if abs(ph^[n2+na]) > abs(ph^[n1+en]) then
                  begin
                    ph^[n1+na]:=-(ph^[n2+en]-p)/ph^[n2+na];
                    ph^[n1+en]:=-q/ph^[n2+na];
                  end else
                  cdiv(-ph^[n1+en], 0, ph^[n1+na]-p, q,
                        ph^[n1+na], ph^[n1+en]);
                ph^[n2+na]:=1; ph^[n2+en]:=0;
                for i:=na-1 downto 1 do
                  begin
                    ii:=(i-1)*rwidthh; i1:=ii+rwidthh;
                    w:=ph^[ii+i]-p; ra:=ph^[ii+en]; sa:=0;
                    for j:=m to na do
                      begin
                        ra:=ra+ph^[ii+j]*ph^[(j-1)*rwidthh+na];
                        sa:=sa+ph^[ii+j]*ph^[(j-1)*rwidthh+en]
                      end;
                    if plam^[i].imag < 0 then
                      begin
                        z:=w; r:=ra; s:=sa
                      end else
                      begin
                        m:=i;
                        if plam^[i].imag=0
                        then cdiv(-ra, -sa, w, q, ph^[ii+na], ph^[ii+en])
                        else
                          begin
                            x:=ph^[ii+i+1]; y:=ph^[i1+i];
                            vr:=sqr(plam^[i].xreal-p)+sqr(plam^[i].imag)-q*q;
                            vi:=(plam^[i].xreal-p)*q*2;
                            if (vr=0) and (vi=0)
                            then
                               vr:=meps*norm*(abs(w)+abs(q)+abs(x)+
                                                   abs(y)+abs(z));
                            cdiv(x*r-z*ra+q*sa, x*s-z*sa-q*ra, vr, vi,
                                 ph^[ii+na], ph^[ii+en]);
                            if abs(x)>abs(z)+abs(q)
                            then
                              begin
                                ph^[i1+na]:=(-ra-w*ph^[ii+na]+q*ph^[ii+en])/x;
                                ph^[i1+en]:=(-sa-w*ph^[ii+en]-q*ph^[ii+na])/x
                              end
                            else
                              cdiv(-r-y*ph^[ii+na], -s-y*ph^[ii+en],
                                   z, q, ph^[i1+na], ph^[i1+en])
                          end  {plam^[i].imag > 0}
                      end {plam^[i].imag >= 0}
                  end  {i}
              end
        end  {backsubst};
      for j:=n downto 1 do
        begin
          m:=j; l:=j-1;
          if plam^[j].imag < 0 then
            begin
              for i:=1 to n do
                begin
                  ii:=(i-1)*rwidthv; y:=0; z:=0;
                  for k:=1 to m do
                    begin
                      kk:=(k-1)*rwidthh;
                      y:=y+pv^[ii+k]*ph^[kk+l];
                      z:=z+pv^[ii+k]*ph^[kk+j]
                    end;
                  pv^[ii+l]:=y; pv^[ii+j]:=z
                end  {i}
            end else
            if plam^[j].imag=0 then
              for i:=1 to n do
                begin
                  z:=0;
                  ii:=(i-1)*rwidthv;
                  for k:=1 to m do z:=z+pv^[ii+k]*ph^[(k-1)*rwidthh+j];
                  pv^[ii+j]:=z;
                end  {i}
        end {j}
    end  {term=1}
end;  {hessvec}

procedure normeer(var lam: complex; n: ArbInt; var v: ArbFloat;
                  rwidthv: ArbInt);

var              i, j, k, ii, kk: ArbInt;
               max, s, t, vr, vi: ArbFloat;
                              pv: ^arfloat1;
                            plam: ^arcomp1;
begin
  plam:=@lam; pv:=@v; j:=1;
  while j<=n do
    if plam^[j].imag=0 then
      begin
        s:=0; for i:=1 to n do s:=s+sqr(pv^[(i-1)*rwidthv+j]); s:=sqrt(s);
        for i:=1 to n do pv^[(i-1)*rwidthv+j]:=pv^[(i-1)*rwidthv+j]/s;
        j:=j+1
      end else
      begin
        max:=0; s:=0;
        for i:=1 to n do
          begin
            ii:=(i-1)*rwidthv;
            t:=sqr(pv^[ii+j])+sqr(pv^[ii+j+1]); s:=s+t;
            if t>max then
              begin
                max:=t; k:=i
              end
          end;
        kk:=(k-1)*rwidthv;
        s:=sqrt(max/s); t:=pv^[kk+j+1]/s; s:=pv^[kk+j]/s;
        for i:=1 to n do
          begin
            ii:=(i-1)*rwidthv;
            vr:=pv^[ii+j]; vi:=pv^[ii+j+1];
            cdiv(vr, vi, s, t, pv^[ii+j], pv^[ii+j+1]);
          end;
        pv^[kk+j+1]:=0; j:=j+2;
      end
end; {normeer}

procedure transx(var v: ArbFloat; n, rwidthv: ArbInt; var lam, x: complex;
                 rwidthx: ArbInt);

var  i, j, ix, iv : ArbInt;
               pv : ^arfloat1;
         plam, px : ^arcomp1;
begin
  pv:=@v; plam:=@lam; px:=@x;
  for i:=1 to n do
    if plam^[i].imag > 0 then
      for j:=1 to n do
        begin
          iv:=(j-1)*rwidthv+i; ix:=(j-1)*rwidthx+i;
          px^[ix].xreal:=pv^[iv]; px^[ix].imag:=pv^[iv+1]
        end else
    if plam^[i].imag < 0 then
      for j:=1 to n do
        begin
          iv:=(j-1)*rwidthv+i; ix:=(j-1)*rwidthx+i;
          px^[ix].xreal:=pv^[iv-1]; px^[ix].imag:=-pv^[iv]
        end else
      for j:=1 to n do
        begin
          iv:=(j-1)*rwidthv+i; ix:=(j-1)*rwidthx+i;
          px^[ix].xreal:=pv^[iv]; px^[ix].imag:=0
        end
end; {transx}

procedure reduc1(var a: ArbFloat; n, rwidtha: ArbInt; var b: ArbFloat;
                 rwidthb: ArbInt; var term: ArbInt);

var  i, j, k, ia, ja, ib, jb : ArbInt;
                        x, y : ArbFloat;
                      pa, pb : ^arfloat1;
begin
  pa:=@a; pb:=@b;
  term:=1; i:=0;
  while (i<n) and (term=1) do
    begin
      i:=i+1; j:=i-1; jb:=(j-1)*rwidthb; ib:=(i-1)*rwidthb;
      while (j<n) and (term=1) do
        begin
          j:=j+1; jb:=jb+rwidthb; x:=pb^[jb+i];
          for k:=1 to i-1 do x:=x-pb^[ib+k]*pb^[jb+k];
            if i=j then
              begin
                if x<=0 then term:=2 else
                  begin
                    y:=sqrt(x); pb^[ib+i]:=y
                  end
              end else pb^[jb+i]:=x/y
        end  {j}
    end; {i}
  if term=1 then
    begin
      for i:=1 to n do
        begin
          ib:=(i-1)*rwidthb; y:=pb^[ib+i];
          for j:=i to n do
            begin
              ja:=(j-1)*rwidtha; x:=pa^[ja+i];
              for k:=i-1 downto 1 do x:=x-pb^[ib+k]*pa^[ja+k];
                pa^[ja+i]:=x/y;
            end {j}
        end; {i}
      for j:=1 to n do
        begin
          ja:=(j-1)*rwidtha;
          for i:=j to n do
            begin
              ia:=(i-1)*rwidtha; ib:=(i-1)*rwidthb; x:=pa^[ia+j];
              for k:=i-1 downto j do x:=x-pa^[(k-1)*rwidtha+j]*pb^[ib+k];
              for k:=j-1 downto 1 do x:=x-pa^[ja+k]*pb^[ib+k];
              pa^[ia+j]:=x/pb^[ib+i]
            end {i}
        end {j}
    end {term=1};
end; {reduc1}

procedure rebaka(var l: ArbFloat; n, rwidthl, k1, k2: ArbInt; var x: ArbFloat;
                 rwidthx: ArbInt; var term: ArbInt);

var         pl, px : ^arfloat1;
   i, j, k, il, ix : ArbInt;
                y : ArbFloat;
begin
  pl:=@l; px:=@x; term:=1; il:=1;
  for i:=1 to n do
    begin
      if pl^[il]=0 then
        begin
          term:=2; exit
        end;
      il:=il+rwidthl+1
    end; {i}
  for j:=1 to k2-k1+1 do
    for i:=n downto 1 do
      begin
        il:=(i-1)*rwidthl; ix:=(i-1)*rwidthx; y:=px^[ix+j];
        for k:=i+1 to n do y:=y-pl^[(k-1)*rwidthl+i]*px^[(k-1)*rwidthx+j];
        px^[ix+j]:=y/pl^[il+i]
      end
end; {rebaka}

end.