1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
program RPNThing;
{
$ id: $
Copyright (c) 2000 by Marco van de Voort(marco@freepascal.org)
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright. (LGPL)
Much too simplistic program to test some basic features of Symbolic unit.
It is the very rough skeleton of a symbolic RPN calculator like a HP48.
Since there are no exception conditions in the parser or evaluator,
please enter valid expressions.
Don't use 5E6 notation, it is not implemented yet. You can enter
symbolic expressions using x, integer constants and half the math
unit's function.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
}
{$ifdef FPC}
{$Mode ObjFpc}
{$endif}
Uses Symbolic,Crt;
function GetKey:char;
begin
repeat
while keypressed DO ;
result:=ReadKey;
if result=#0 then {Make sure control codes are skipped apropiately}
begin
result:=readKey;
result:=#0;
end;
until result IN ['X','x','O','o','q','Q',' ','+','-','*','/','^','e','E','d','D','T','t'];
end;
VAR Stack : array[0..100] of TExpression;
I,StackPtr : Integer;
InputC : Char;
S : String;
Flag : Boolean;
Procedure Redraw;
var I : Integer;
begin
for I:=1 to 20 DO
begin
GotoXY(1,I);
Write(' ':79);
GotoXY(1,I);
IF (StackPtr>(20-I)) then
begin
IF NOT Assigned(stack[20-I]) then
begin
gotoXY(1,1); write(' ':50);
gotoxy(1,1); writeln(I,' ',20-I);
Writeln(stackptr);
HALT;
end;
Writeln(stack[StackPtr-(21-I)].InfixExpr);
end
else
write('-');
end;
GotoXY(1,21);
Write(' ':80);
end;
begin
Writeln(' + - / * ^ : perform the RPN operation');
Writeln(' [space],'#39' : get a "prompt" to input a number or infix expression');
Writeln(' E,e : Try to simplify/evaluate the expression. ');
Writeln(' For now this is restricted to constant values only');
Writeln(' D,d : Drop 1 value from the stack');
Writeln(' Q,q : By pressing this key you agree this program is great');
Writeln(' O,o : Derive the expression with respect to X');
Writeln(' T,t : Taylor polynomal. Also with respect to X, and to 2nd ');
writeln(' stacklevel degree');
Writeln;
Writeln('Press enter to start calculating');
ReadLn;
ClrScr;
StackPtr:=0;
repeat
InputC:=GetKey;
Case InputC OF
'+','-','*','/','^' : if stackPtr>1 then
begin
Dec(StackPtr);
case InputC of {Double case is ugly but short}
'+' : Stack[StackPtr-1].AddTo(Stack[StackPtr]);
'-' : Stack[StackPtr-1].SubFrom(Stack[StackPtr]);
'*' : Stack[StackPtr-1].Times(Stack[StackPtr]);
'/' : Stack[StackPtr-1].DivBy(Stack[StackPtr]);
'^' : Stack[StackPtr-1].RaiseTo(Stack[StackPtr]);
end;
Stack[StackPtr].free;
Redraw;
end;
'E','e' : If Stackptr>0 then
begin
Stack[StackPtr-1].SimplifyConstants;
Redraw;
end;
'T','t' : If StackPtr>1 then {Stackptr-1=function. Stackptr-2=degree
x is assumed, and x0 is substed}
begin
Flag:=True;
Try
i:=Stack[StackPtr-2].ValueAsInteger;
except
on ENotInt do
begin
GotoXY(1,1);
WritelN('This constant doesn''t evaluate to an integer');
Flag:=False;
end;
end;
If I<0 then
begin
GotoXY(1,1);
WritelN('I never heard of negative terms in a Taylor polynomal');
end
else
If Flag then
begin
Stack[StackPtr-2].Free;
Stack[StackPtr-2]:=Stack[StackPtr-1];
Stack[StackPtr-1]:=Stack[StackPtr-2].Taylor(I,'X','0.0');
Redraw;
end;
end;
'O','o' : if StackPtr>0 then
begin
Stack[StackPtr]:=Stack[StackPtr-1].Derive('X');
Inc(StackPtr);
Redraw;
end;
'D','d' : If StackPtr>0 Then
begin
Stack[StackPtr-1].free;
Dec(StackPtr);
Redraw;
end;
' ',#39 : If Stackptr<100 then
begin
GotoXY(1,1); Writeln(' ':60);
gotoxy(1,1); write('Enter expr. : '); readln(s);
s:=upcase(S);
stack[StackPtr]:=TExpression.Create(S);
Stack[StackPtr].Simplificationlevel:=2; {Don't add reals to integer. Only evaluates
(integer op integer) and (real op real) and
function(real)}
Inc(Stackptr);
Redraw;
end;
'X','x' : begin
ClrScr;
Writeln(stdout,stack[StackPtr-1].InfixExpr);
Writeln;
Writeln(stdout,stack[StackPtr-1].RPNExpr);
inputC:='q';
end;
end;
until (InputC IN ['q','Q']);
If StackPtr>0 THEN
For I:=0 To StackPtr-1 Do
Stack[I].Free;
end.
|