summaryrefslogtreecommitdiff
path: root/fpcsrc/packages/univint/src/PEFBinaryFormat.pas
blob: 2ed2d523845581ad50039c90438b1dd5ae5133b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
{
     File:       CarbonCore/PEFBinaryFormat.h
 
     Contains:   PEF Types and Macros
 
     Version:    CarbonCore-859.2~1
 
     Copyright:  © 1993-2008 by Apple Computer, Inc., all rights reserved.
 
     Bugs?:      For bug reports, consult the following page on
                 the World Wide Web:
 
                     http://www.freepascal.org/bugs.html
 
}
{       Pascal Translation Updated:  Jonas Maebe, <jonas@freepascal.org>, October 2009 }
{
    Modified for use with Free Pascal
    Version 308
    Please report any bugs to <gpc@microbizz.nl>
}

{$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE}
{$mode macpas}
{$packenum 1}
{$macro on}
{$inline on}
{$calling mwpascal}

unit PEFBinaryFormat;
interface
{$setc UNIVERSAL_INTERFACES_VERSION := $0400}
{$setc GAP_INTERFACES_VERSION := $0308}

{$ifc not defined USE_CFSTR_CONSTANT_MACROS}
    {$setc USE_CFSTR_CONSTANT_MACROS := TRUE}
{$endc}

{$ifc defined CPUPOWERPC and defined CPUI386}
	{$error Conflicting initial definitions for CPUPOWERPC and CPUI386}
{$endc}
{$ifc defined FPC_BIG_ENDIAN and defined FPC_LITTLE_ENDIAN}
	{$error Conflicting initial definitions for FPC_BIG_ENDIAN and FPC_LITTLE_ENDIAN}
{$endc}

{$ifc not defined __ppc__ and defined CPUPOWERPC32}
	{$setc __ppc__ := 1}
{$elsec}
	{$setc __ppc__ := 0}
{$endc}
{$ifc not defined __ppc64__ and defined CPUPOWERPC64}
	{$setc __ppc64__ := 1}
{$elsec}
	{$setc __ppc64__ := 0}
{$endc}
{$ifc not defined __i386__ and defined CPUI386}
	{$setc __i386__ := 1}
{$elsec}
	{$setc __i386__ := 0}
{$endc}
{$ifc not defined __x86_64__ and defined CPUX86_64}
	{$setc __x86_64__ := 1}
{$elsec}
	{$setc __x86_64__ := 0}
{$endc}
{$ifc not defined __arm__ and defined CPUARM}
	{$setc __arm__ := 1}
{$elsec}
	{$setc __arm__ := 0}
{$endc}

{$ifc defined cpu64}
  {$setc __LP64__ := 1}
{$elsec}
  {$setc __LP64__ := 0}
{$endc}


{$ifc defined __ppc__ and __ppc__ and defined __i386__ and __i386__}
	{$error Conflicting definitions for __ppc__ and __i386__}
{$endc}

{$ifc defined __ppc__ and __ppc__}
	{$setc TARGET_CPU_PPC := TRUE}
	{$setc TARGET_CPU_PPC64 := FALSE}
	{$setc TARGET_CPU_X86 := FALSE}
	{$setc TARGET_CPU_X86_64 := FALSE}
	{$setc TARGET_CPU_ARM := FALSE}
	{$setc TARGET_OS_MAC := TRUE}
	{$setc TARGET_OS_IPHONE := FALSE}
	{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$elifc defined __ppc64__ and __ppc64__}
	{$setc TARGET_CPU_PPC := FALSE}
	{$setc TARGET_CPU_PPC64 := TRUE}
	{$setc TARGET_CPU_X86 := FALSE}
	{$setc TARGET_CPU_X86_64 := FALSE}
	{$setc TARGET_CPU_ARM := FALSE}
	{$setc TARGET_OS_MAC := TRUE}
	{$setc TARGET_OS_IPHONE := FALSE}
	{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$elifc defined __i386__ and __i386__}
	{$setc TARGET_CPU_PPC := FALSE}
	{$setc TARGET_CPU_PPC64 := FALSE}
	{$setc TARGET_CPU_X86 := TRUE}
	{$setc TARGET_CPU_X86_64 := FALSE}
	{$setc TARGET_CPU_ARM := FALSE}
{$ifc defined(iphonesim)}
 	{$setc TARGET_OS_MAC := FALSE}
	{$setc TARGET_OS_IPHONE := TRUE}
	{$setc TARGET_IPHONE_SIMULATOR := TRUE}
{$elsec}
	{$setc TARGET_OS_MAC := TRUE}
	{$setc TARGET_OS_IPHONE := FALSE}
	{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$endc}
{$elifc defined __x86_64__ and __x86_64__}
	{$setc TARGET_CPU_PPC := FALSE}
	{$setc TARGET_CPU_PPC64 := FALSE}
	{$setc TARGET_CPU_X86 := FALSE}
	{$setc TARGET_CPU_X86_64 := TRUE}
	{$setc TARGET_CPU_ARM := FALSE}
	{$setc TARGET_OS_MAC := TRUE}
	{$setc TARGET_OS_IPHONE := FALSE}
	{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$elifc defined __arm__ and __arm__}
	{$setc TARGET_CPU_PPC := FALSE}
	{$setc TARGET_CPU_PPC64 := FALSE}
	{$setc TARGET_CPU_X86 := FALSE}
	{$setc TARGET_CPU_X86_64 := FALSE}
	{$setc TARGET_CPU_ARM := TRUE}
	{ will require compiler define when/if other Apple devices with ARM cpus ship }
	{$setc TARGET_OS_MAC := FALSE}
	{$setc TARGET_OS_IPHONE := TRUE}
	{$setc TARGET_IPHONE_SIMULATOR := FALSE}
{$elsec}
	{$error __ppc__ nor __ppc64__ nor __i386__ nor __x86_64__ nor __arm__ is defined.}
{$endc}

{$ifc defined __LP64__ and __LP64__ }
  {$setc TARGET_CPU_64 := TRUE}
{$elsec}
  {$setc TARGET_CPU_64 := FALSE}
{$endc}

{$ifc defined FPC_BIG_ENDIAN}
	{$setc TARGET_RT_BIG_ENDIAN := TRUE}
	{$setc TARGET_RT_LITTLE_ENDIAN := FALSE}
{$elifc defined FPC_LITTLE_ENDIAN}
	{$setc TARGET_RT_BIG_ENDIAN := FALSE}
	{$setc TARGET_RT_LITTLE_ENDIAN := TRUE}
{$elsec}
	{$error Neither FPC_BIG_ENDIAN nor FPC_LITTLE_ENDIAN are defined.}
{$endc}
{$setc ACCESSOR_CALLS_ARE_FUNCTIONS := TRUE}
{$setc CALL_NOT_IN_CARBON := FALSE}
{$setc OLDROUTINENAMES := FALSE}
{$setc OPAQUE_TOOLBOX_STRUCTS := TRUE}
{$setc OPAQUE_UPP_TYPES := TRUE}
{$setc OTCARBONAPPLICATION := TRUE}
{$setc OTKERNEL := FALSE}
{$setc PM_USE_SESSION_APIS := TRUE}
{$setc TARGET_API_MAC_CARBON := TRUE}
{$setc TARGET_API_MAC_OS8 := FALSE}
{$setc TARGET_API_MAC_OSX := TRUE}
{$setc TARGET_CARBON := TRUE}
{$setc TARGET_CPU_68K := FALSE}
{$setc TARGET_CPU_MIPS := FALSE}
{$setc TARGET_CPU_SPARC := FALSE}
{$setc TARGET_OS_UNIX := FALSE}
{$setc TARGET_OS_WIN32 := FALSE}
{$setc TARGET_RT_MAC_68881 := FALSE}
{$setc TARGET_RT_MAC_CFM := FALSE}
{$setc TARGET_RT_MAC_MACHO := TRUE}
{$setc TYPED_FUNCTION_POINTERS := TRUE}
{$setc TYPE_BOOL := FALSE}
{$setc TYPE_EXTENDED := FALSE}
{$setc TYPE_LONGLONG := TRUE}
uses MacTypes;
{$endc} {not MACOSALLINCLUDE}


{$ifc TARGET_OS_MAC}

{$ALIGN MAC68K}


{ -------------------------------------------------------------------------------------------- }
{ Almost all types are padded for natural alignment.  However the PEFExportedSymbol type is    }
{ 10 bytes long, containing two 32 bit fields and one 16 bit field.  Arrays of it must be      }
{ packed, so it requires "68K" alignment.  Setting this globally to 68K should also help       }
{ ensure consistent treatment across compilers.                                                }


{ ======================================================================================== }
{ Overall Structure }
{ ================= }


{ -------------------------------------------------------------------------------------------- }
{ This header contains a complete set of types and macros for dealing with the PEF executable  }
{ format.  While some description is provided, this header is not meant as a primary source    }
{ of documentation on PEF.  An excellent specification of PEF can be found in the Macintosh    }
{ Runtime Architectures book.  This header is primarily a physical format description.  Thus   }
{ it depends on as few other headers as possible and structure fields have obvious sizes.      }
{ The physical storage for a PEF executable is known as a "container".  This refers to just    }
{ the executable itself, not the file etc.  E.g. if five DLLs are packaged in a single file's  }
{ data fork, that one data fork has five containers within it.                                 }
{ A PEF container consists of an overall header, followed by one or more section headers,      }
{ followed by the section name table, followed by the contents for the sections.  Some kinds   }
{ of sections have specific internal representation.  The "loader" section is the most common  }
{ of these special sections.  It contains information on the exports, imports, and runtime     }
{ relocations required to prepare the executable.  PEF containers are self contained, all      }
{ portions are located via relative offsets.                                                   }
{          +-------------------------------+                                                   }
{          |       Container Header        |   40 bytes                                        }
{          +-------------------------------+                                                   }
{          |       Section 0 header        |   28 bytes each                                   }
{          |...............................|                                                   }
{          |           - - - -             |                                                   }
{          |...............................|                                                   }
{          |       Section n-1 header      |                                                   }
{          +-------------------------------+                                                   }
{          |       Section Name Table      |                                                   }
{          +-------------------------------+                                                   }
{          |       Section x raw data      |                                                   }
{          +-------------------------------+                                                   }
{          |           - - - -             |                                                   }
{          +-------------------------------+                                                   }
{          |       Section y raw data      |                                                   }
{          +-------------------------------+                                                   }
{ The sections are implicitly numbered from 0 to n according to the order of their headers.    }
{ The headers of the instantiated sections must precede those of the non-instantiated          }
{ sections.  The ordering of the raw data is independent of the section header ordering.       }
{ Each section header contains the offset for that section's raw data.                         }


{ =========================================================================================== }
{ Container Header }
{ ================ }


type
	PEFContainerHeaderPtr = ^PEFContainerHeader;
	PEFContainerHeader = record
		tag1: OSType;                   { Must contain 'Joy!'.}
		tag2: OSType;                   { Must contain 'peff'.  (Yes, with two 'f's.)}
		architecture: OSType;           { The ISA for code sections.  Constants in CodeFragments.h.}
		formatVersion: UInt32;          { The physical format version.}
		dateTimeStamp: UInt32;          { Macintosh format creation/modification stamp.}
		oldDefVersion: UInt32;          { Old definition version number for the code fragment.}
		oldImpVersion: UInt32;          { Old implementation version number for the code fragment.}
		currentVersion: UInt32;         { Current version number for the code fragment.}
		sectionCount: UInt16;           { Total number of section headers that follow.}
		instSectionCount: UInt16;       { Number of instantiated sections.}
		reservedA: UInt32;              { Reserved, must be written as zero.}
	end;
const
	kPEFTag1 = FourCharCode('Joy!'); { For non-Apple compilers: 0x4A6F7921.}
	kPEFTag2 = FourCharCode('peff'); { For non-Apple compilers: 0x70656666.}
	kPEFVersion = $00000001;


const
	kPEFFirstSectionHeaderOffset = SizeOf(PEFContainerHeader);
(*
#define PEFFirstSectionNameOffset(container)    \
            ( kPEFFirstSectionHeaderOffset + ((container)->sectionCount * sizeof ( PEFSectionHeader )) )
*)

{ =========================================================================================== }
{ Section Headers }
{ =============== }


type
	PEFSectionHeaderPtr = ^PEFSectionHeader;
	PEFSectionHeader = record
		nameOffset: SInt32;             { Offset of name within the section name table, -1 => none.}
		defaultAddress: UInt32;         { Default address, affects relocations.}
		totalLength: UInt32;            { Fully expanded size in bytes of the section contents.}
		unpackedLength: UInt32;         { Size in bytes of the "initialized" part of the contents.}
		containerLength: UInt32;        { Size in bytes of the raw data in the container.}
		containerOffset: UInt32;        { Offset of section's raw data.}
		sectionKind: UInt8;            { Kind of section contents/usage.}
		shareKind: UInt8;              { Sharing level, if a writeable section.}
		alignment: UInt8;              { Preferred alignment, expressed as log 2.}
		reservedA: UInt8;              { Reserved, must be zero.}
	end;
const
{ Values for the sectionKind field.}
                                        {    Section kind values for instantiated sections.}
	kPEFCodeSection = 0;    { Code, presumed pure & position independent.}
	kPEFUnpackedDataSection = 1;    { Unpacked writeable data.}
	kPEFPackedDataSection = 2;    { Packed writeable data.}
	kPEFConstantSection = 3;    { Read-only data.}
	kPEFExecDataSection = 6;    { Intermixed code and writeable data.}
                                        { Section kind values for non-instantiated sections.}
	kPEFLoaderSection = 4;    { Loader tables.}
	kPEFDebugSection = 5;    { Reserved for future use.}
	kPEFExceptionSection = 7;    { Reserved for future use.}
	kPEFTracebackSection = 8;     { Reserved for future use.}


const
{ Values for the shareKind field.}
	kPEFProcessShare = 1;    { Shared within a single process.}
	kPEFGlobalShare = 4;    { Shared across the entire system.}
	kPEFProtectedShare = 5;     { Readable across the entire system, writeable only to privileged code.}


{ =========================================================================================== }
{ Packed Data Contents }
{ ==================== }


{ -------------------------------------------------------------------------------------------- }
{ The raw contents of a packed data section are a sequence of byte codes.  The basic format    }
{ has a 3 bit opcode followed by a 5 bit count.  Additional bytes might be used to contain     }
{ counts larger than 31, and to contain a second or third count.  Further additional bytes     }
{ contain actual data values to transfer.                                                      }
{ All counts are represented in a variable length manner.  A zero in the initial 5 bit count   }
{ indicates the actual value follows.  In this case, and for the second and third counts, the  }
{ count is represented as a variable length sequence of bytes.  The bytes are stored in big    }
{ endian manner, most significant part first.  The high order bit is set in all but the last   }
{ byte.  The value is accumulated by shifting the current value up 7 bits and adding in the    }
{ low order 7 bits of the next byte.                                                           }


const
{ The packed data opcodes.}
	kPEFPkDataZero = 0;    { Zero fill "count" bytes.}
	kPEFPkDataBlock = 1;    { Block copy "count" bytes.}
	kPEFPkDataRepeat = 2;    { Repeat "count" bytes "count2"+1 times.}
	kPEFPkDataRepeatBlock = 3;    { Interleaved repeated and unique data.}
	kPEFPkDataRepeatZero = 4;     { Interleaved zero and unique data.}


const
	kPEFPkDataOpcodeShift = 5;
	kPEFPkDataCount5Mask = $1F;
	kPEFPkDataMaxCount5 = 31;
	kPEFPkDataVCountShift = 7;
	kPEFPkDataVCountMask = $7F;
	kPEFPkDataVCountEndMask = $80;

(*
#define PEFPkDataOpcode(byte) ( ((UInt8)(byte)) >> kPEFPkDataOpcodeShift )

#define PEFPkDataCount5(byte) ( ((UInt8)(byte)) & kPEFPkDataCount5Mask )

#define PEFPkDataComposeInstr(opcode,count5)        \
            ( (((UInt8)(opcode)) << kPEFPkDataOpcodeShift) | ((UInt8)(count5)) )
*)

{ -------------------------------------------------------------------------------------------- }
{ The following code snippet can be used to input a variable length count.                     }
{      count = 0;                                                                              }
{      do (                                                                                    }
{          byte = *bytePtr++;                                                                  }
{          count = (count << kPEFPkDataVCountShift) | (byte & kPEFPkDataVCountMask);           }
{      ) while ( (byte & kPEFPkDataVCountEndMask) != 0 );                                      }
{ The following code snippet can be used to output a variable length count to a byte array.    }
{ This is more complex than the input code because the chunks are output in big endian order.  }
{ Think about handling values like 0 or 0x030000.                                              }
{      count = 1;.                                                                             }
{      tempValue = value >> kPEFPkDataCountShift;                                              }
{      while ( tempValue != 0 ) (                                                              }
{          count += 1;                                                                         }
{          tempValue = tempValue >> kPEFPkDataCountShift;                                      }
{      )                                                                                       }
{      bytePtr += count;                                                                       }
{      tempPtr = bytePtr - 1;                                                                  }
{      *tempPtr-- = value;     // ! No need to mask, only the low order byte is stored.        }
{      for ( count -= 1; count != 0; count -= 1 ) (                                            }
{          value = value >> kPEFPkDataCountShift;                                              }
{          *tempPtr-- = value | kPEFPkDataCountEndMask;                                        }
{      )                                                                                       }


{ =========================================================================================== }
{ Loader Section }
{ ============== }


{ -------------------------------------------------------------------------------------------- }
{ The loader section contains information needed to prepare the code fragment for execution.   }
{ This includes this fragment's exports, the import libraries and the imported symbols from    }
{ each library, and the relocations for the writeable sections.                                }
{          +-----------------------------------+               <-- containerOffset --------+   }
{          |       Loader Info Header          |   56 bytes                                |   }
{          |-----------------------------------|                                           |   }
{          |       Imported Library 0          |   24 bytes each                           |   }
{          |...................................|                                           |   }
{          |           - - -                   |                                           |   }
{          |...................................|                                           |   }
{          |       Imported Library l-1        |                                           |   }
{          |-----------------------------------|                                           |   }
{          |       Imported Symbol 0           |   4 bytes each                            |   }
{          |...................................|                                           |   }
{          |           - - -                   |                                           |   }
{          |...................................|                                           |   }
{          |       Imported Symbol i-1         |                                           |   }
{          |-----------------------------------|                                           |   }
{          |       Relocation Header 0         |   12 bytes each                           |   }
{          |...................................|                                           |   }
{          |           - - -                   |                                           |   }
{          |...................................|                                           |   }
{          |       Relocation Header r-1       |                                           |   }
{          |-----------------------------------|               <-- + relocInstrOffset -----|   }
{          |       Relocation Instructions     |                                           |   }
{          |-----------------------------------|               <-- + loaderStringsOffset --|   }
{          |       Loader String Table         |                                           |   }
{          |-----------------------------------|               <-- + exportHashOffset -----+   }
{          |       Export Hash Slot 0          |   4 bytes each                                }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Export Hash Slot h-1        |                                               }
{          |-----------------------------------|                                               }
{          |       Export Symbol Key 0         |   4 bytes each                                }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Export Symbol Key e-1       |                                               }
{          |-----------------------------------|                                               }
{          |       Export Symbol 0             |   10 bytes each                               }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Export Symbol e-1           |                                               }
{          +-----------------------------------+                                               }


type
	PEFLoaderInfoHeaderPtr = ^PEFLoaderInfoHeader;
	PEFLoaderInfoHeader = record
		mainSection: SInt32;            { Section containing the main symbol, -1 => none.}
		mainOffset: UInt32;             { Offset of main symbol.}
		initSection: SInt32;            { Section containing the init routine's TVector, -1 => none.}
		initOffset: UInt32;             { Offset of the init routine's TVector.}
		termSection: SInt32;            { Section containing the term routine's TVector, -1 => none.}
		termOffset: UInt32;             { Offset of the term routine's TVector.}
		importedLibraryCount: UInt32;   { Number of imported libraries.  ('l')}
		totalImportedSymbolCount: UInt32; { Total number of imported symbols.  ('i')}
		relocSectionCount: UInt32;      { Number of sections with relocations.  ('r')}
		relocInstrOffset: UInt32;       { Offset of the relocation instructions.}
		loaderStringsOffset: UInt32;    { Offset of the loader string table.}
		exportHashOffset: UInt32;       { Offset of the export hash table.}
		exportHashTablePower: UInt32;   { Export hash table size as log 2.  (Log2('h'))}
		exportedSymbolCount: UInt32;    { Number of exported symbols.  ('e')}
	end;


{ =========================================================================================== }
{ Imported Libraries }
{ ------------------ }


type
	PEFImportedLibraryPtr = ^PEFImportedLibrary;
	PEFImportedLibrary = record
		nameOffset: UInt32;             { Loader string table offset of library's name.}
		oldImpVersion: UInt32;          { Oldest compatible implementation version.}
		currentVersion: UInt32;         { Current version at build time.}
		importedSymbolCount: UInt32;    { Imported symbol count for this library.}
		firstImportedSymbol: UInt32;    { Index of first imported symbol from this library.}
		options: UInt8;                { Option bits for this library.}
		reservedA: UInt8;              { Reserved, must be zero.}
		reservedB: UInt16;              { Reserved, must be zero.}
	end;
const
{ Bits for the PEFImportedLibrary options field.}
	kPEFWeakImportLibMask = $40; { The imported library is allowed to be missing.}
	kPEFInitLibBeforeMask = $80;  { The imported library must be initialized first.}


{ =========================================================================================== }
{ Imported Symbols }
{ ---------------- }


{ -------------------------------------------------------------------------------------------- }
{ The PEFImportedSymbol type has the following bit field layout.                               }
{                                                                     3                        }
{       0             7 8                                             1                        }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       }
{      | symbol class  | offset of symbol name in loader string table  |                       }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       }
{      |<-- 8 bits --->|<-- 24 bits ---------------------------------->|                       }


type
	PEFImportedSymbolPtr = ^PEFImportedSymbol;
	PEFImportedSymbol = record
		classAndName: UInt32;
	end;
const
	kPEFImpSymClassShift = 24;
	kPEFImpSymNameOffsetMask = $00FFFFFF;
	kPEFImpSymMaxNameOffset = $00FFFFFF; { 16,777,215}

const
{ Imported and exported symbol classes.}
	kPEFCodeSymbol = $00;
	kPEFDataSymbol = $01;
	kPEFTVectorSymbol = $02;
	kPEFTOCSymbol = $03;
	kPEFGlueSymbol = $04;
	kPEFUndefinedSymbol = $0F;
	kPEFWeakImportSymMask = $80;


{ =========================================================================================== }
{ Exported Symbol Hash Table }
{ -------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ Exported symbols are described in four parts, optimized for speed of lookup.  These parts    }
{ are the "export hash table", the "export key table", the "export symbol table", and the      }
{ "export name table".  Overall they contain a flattened representation of a fairly normal     }
{ hashed symbol table.                                                                         }
{ The export hash table is an array of small fixed size elements.  The number of elements is   }
{ a power of 2.  A 32 bit hash word for a symbol is converted into an index into this array.   }
{ Each hash slot contains a count of the number of exported symbols that map to this slot and  }
{ the index of the first of those symbols in the key and symbol tables.  Of course some hash   }
{ slots will have a zero count.                                                                }
{ The key and symbol tables are also arrays of fixed size elements, one for each exported      }
{ symbol.  Their entries are grouped by hash slot, those elements mapping to the same hash     }
{ slot are contiguous.  The key table contains just the full 32 bit hash word for each         }
{ exported symbol.  The symbol table contains the offset of the symbol's name in the string    }
{ table and other information about the exported symbol.                                       }
{ To look up an export you take the hashword and compute the hash slot index.  You then scan   }
{ the indicated portion of the key table for matching hashwords.  If a hashword matches, you   }
{ look at the corresponding symbol table entry to find the full symbol name.  If the names     }
{ match the symbol is found.                                                                   }


{ -------------------------------------------------------------------------------------------- }
{ The following function may be used to compute the hash table size.  Signed values are used   }
{ just to avoid potential code generation overhead for unsigned division.                      }
{      UInt8   PEFComputeHashTableExponent ( SInt32    exportCount )                           }
{      (                                                                                       }
{          SInt32  exponent;                                                                   }
{          const SInt32    kExponentLimit      = 16;   // Arbitrary, but must not exceed 30.   }
{          const SInt32    kAverageChainLimit  = 10;   // Arbitrary, for space/time tradeoff.  }
{          for ( exponent = 0; exponent < kExponentLimit; exponent += 1 ) (                    }
{              if ( (exportCount / (1 << exponent)) < kAverageChainLimit ) break;              }
{          )                                                                                   }
{          return exponent;                                                                    }
{      )   // PEFComputeHashTableExponent ()                                                   }


{ -------------------------------------------------------------------------------------------- }
{ The PEFExportedSymbolHashSlot type has the following bit field layout.                       }
{                                 1 1                                 3                        }
{       0                         3 4                                 1                        }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       }
{      | symbol count              | index of first export key         |                       }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       }
{      |<-- 14 bits -------------->|<-- 18 bits ---------------------->|                       }


type
	PEFExportedSymbolHashSlotPtr = ^PEFExportedSymbolHashSlot;
	PEFExportedSymbolHashSlot = record
		countAndStart: UInt32;
	end;
const
	kPEFHashSlotSymCountShift = 18;
	kPEFHashSlotFirstKeyMask = $0003FFFF;
	kPEFHashSlotMaxSymbolCount = $00003FFF; {  16,383}
	kPEFHashSlotMaxKeyIndex = $0003FFFF; { 262,143}

{ =========================================================================================== }
{ Exported Symbol Hash Key }
{ ------------------------ }


type
	PEFSplitHashWordPtr = ^PEFSplitHashWord;
	PEFSplitHashWord = record
		nameLength: UInt16;
		hashValue: UInt16;
	end;
type
	PEFExportedSymbolKeyPtr = ^PEFExportedSymbolKey;
	PEFExportedSymbolKey = record
		case SInt16 of
		0: (
			fullHashWord: UInt32;
			);
		1: (
			splitHashWord: PEFSplitHashWord;
			);
	end;
const
	kPEFHashLengthShift = 16;
	kPEFHashValueMask = $0000FFFF;
	kPEFHashMaxLength = $0000FFFF; { 65,535}


{ ---------------------------------------------------------------------------------------------------- }
{ The following function computes the full 32 bit hash word.                                           }
{      UInt32  PEFComputeHashWord  ( BytePtr   nameText,       // ! First "letter", not length byte.   }
{                                    UInt32    nameLength )    // ! The text may be zero terminated.   }
{      (                                                                                               }
{          BytePtr charPtr     = nameText;                                                             }
{          SInt32  hashValue   = 0;        // ! Signed to match old published algorithm.               }
{          UInt32  length      = 0;                                                                    }
{          UInt32  limit;                                                                              }
{          UInt32  result;                                                                             }
{          UInt8   currChar;                                                                           }
{          #define PseudoRotate(x)  ( ( (x) << 1 ) - ( (x) >> 16 ) )                                   }
{          for ( limit = nameLength; limit > 0; limit -= 1 ) (                                         }
{              currChar = *charPtr++;                                                                  }
{              if ( currChar == NULL ) break;                                                          }
{              length += 1;                                                                            }
{              hashValue = PseudoRotate ( hashValue ) ^ currChar;                                      }
{          )                                                                                           }
{          result  = (length << kPEFHashLengthShift) |                                                 }
{                    ((UInt16) ((hashValue ^ (hashValue >> 16)) & kPEFHashValueMask));                 }
{          return result;                                                                              }
{      )   // PEFComputeHashWord ()                                                                    }


{ =========================================================================================== }
{ Exported Symbols }
{ ---------------- }


type
	PEFExportedSymbolPtr = ^PEFExportedSymbol;
	PEFExportedSymbol = record
{ ! This structure is 10 bytes long and arrays are packed.}
		classAndName: UInt32;           { A combination of class and name offset.}
		symbolValue: UInt32;            { Typically the symbol's offset within a section.}
		sectionIndex: SInt16;           { The index of the section, or pseudo-section, for the symbol.}
	end;

{ -------------------------------------------------------------------------------------------- }
{ The classAndName field of the PEFExportedSymbol type has the following bit field layout.     }
{                                                                     3                        }
{       0             7 8                                             1                        }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       }
{      | symbol class  | offset of symbol name in loader string table  |                       }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                       }
{      |<-- 8 bits --->|<-- 24 bits ---------------------------------->|                       }


const
	kPEFExpSymClassShift = 24;
	kPEFExpSymNameOffsetMask = $00FFFFFF;
	kPEFExpSymMaxNameOffset = $00FFFFFF; { 16,777,215}

(*
#define PEFExportedSymbolClass(classAndName)        ((UInt8) ((classAndName) >> kPEFExpSymClassShift))
#define PEFExportedSymbolNameOffset(classAndName)   ((classAndName) & kPEFExpSymNameOffsetMask)

#define PEFComposeExportedSymbol(class,nameOffset)      \
            ( ( ((UInt32)(class)) << kPEFExpSymClassShift ) | ( (UInt32)(nameOffset) ) )
*)

const
{ Negative section indices indicate pseudo-sections.}
	kPEFAbsoluteExport = -2;   { The symbol value is an absolute address.}
	kPEFReexportedImport = -3;    { The symbol value is the index of a reexported import.}


{ =========================================================================================== }
{ Loader Relocations }
{ ================== }


{ -------------------------------------------------------------------------------------------- }
{ The relocations for a section are defined by a sequence of instructions for an abstract      }
{ machine that is specifically geared to performing relocations commonly needed for the "CFM"  }
{ code generation model.  These instructions occur in 16 bit chunks.  Most instructions have   }
{ just a single chunk.  Instructions that are larger than 16 bits have an opcode and some of   }
{ the operands in the first chunk, with other operands in following chunks.                    }
{ ! Note that the multi-chunk relocations have separate "Compose" macros for each chunk.  The  }
{ ! macros have the same basic name with a positional suffix of "_1st", "_2nd", etc.           }


type
	PEFRelocChunk = UInt16;
	PEFLoaderRelocationHeaderPtr = ^PEFLoaderRelocationHeader;
	PEFLoaderRelocationHeader = record
		sectionIndex: UInt16;           { Index of the section to be fixed up.}
		reservedA: UInt16;              { Reserved, must be zero.}
		relocCount: UInt32;             { Number of 16 bit relocation chunks.}
		firstRelocOffset: UInt32;       { Offset of first relocation instruction.}
	end;

{ -------------------------------------------------------------------------------------------- }
{ ! Note that the relocCount field is the number of 16 bit relocation chunks, i.e. 1/2 the     }
{ ! total number of bytes of relocation instructions.  While most relocation instructions are  }
{ ! 16 bits long, some are longer so the number of complete relocation instructions may be     }
{ ! less than the relocCount value.                                                            }


{ ------------------------------------------------------------------------------------ }
{ The PEFRelocField macro is a utility for extracting relocation instruction fields.   }

(*
#define PEFRFShift(offset,length)   (16 - ((offset) + (length)))
#define PEFRFMask(length)           ((1 << (length)) - 1)

#define PEFRelocField(chunk,offset,length)  \
            ( ( (chunk) >> (16 - ((offset) + (length))) ) & ((1 << (length)) - 1) )
*)

{ =========================================================================================== }
{ Basic Relocation Opcodes }
{ ------------------------ }


{ -------------------------------------------------------------------------------------------- }
{ The number of opcode bits varies from 2 to 7.  The enumeration and switch table given here   }
{ are defined in terms of the most significant 7 bits of the first instruction chunk.  An      }
{ instruction is decoded by using the most significant 7 bits as an index into the opcode      }
{ table, which in turn contains appropriately masked forms of the most significant 7 bits.     }
{ The macro PEFRelocBasicOpcode assumes a declaration of the form.                             }
{      UInt8 kPEFRelocBasicOpcodes [kPEFRelocBasicOpcodeRange] = ( PEFMaskedBasicOpcodes );    }


const
	kPEFRelocBasicOpcodeRange = 128;

(*
#define PEFRelocBasicOpcode(firstChunk) (kPEFRelocBasicOpcodes[(firstChunk)>>9])
*)

{ -------------------------------------------------------------------------------------------- }
{ The relocation opcodes, clustered by major and minor groups.  The instructions within a      }
{ cluster all have the same bit field layout.  The enumeration values use the high order 7     }
{ bits of the relocation instruction.  Unused low order bits are set to zero.                  }

const
	kPEFRelocBySectDWithSkip = $00; { Binary: 00x_xxxx}
	kPEFRelocBySectC = $20; { Binary: 010_0000, group is "RelocRun"}
	kPEFRelocBySectD = $21; { Binary: 010_0001}
	kPEFRelocTVector12 = $22; { Binary: 010_0010}
	kPEFRelocTVector8 = $23; { Binary: 010_0011}
	kPEFRelocVTable8 = $24; { Binary: 010_0100}
	kPEFRelocImportRun = $25; { Binary: 010_0101}
	kPEFRelocSmByImport = $30; { Binary: 011_0000, group is "RelocSmIndex"}
	kPEFRelocSmSetSectC = $31; { Binary: 011_0001}
	kPEFRelocSmSetSectD = $32; { Binary: 011_0010}
	kPEFRelocSmBySection = $33; { Binary: 011_0011}
	kPEFRelocIncrPosition = $40; { Binary: 100_0xxx}
	kPEFRelocSmRepeat = $48; { Binary: 100_1xxx}
	kPEFRelocSetPosition = $50; { Binary: 101_000x}
	kPEFRelocLgByImport = $52; { Binary: 101_001x}
	kPEFRelocLgRepeat = $58; { Binary: 101_100x}
	kPEFRelocLgSetOrBySection = $5A; { Binary: 101_101x}
	kPEFRelocUndefinedOpcode = $FF;  { Used in masking table for all undefined values.}


{ ---------------------------------------------------------------------------- }
{ The RelocLgSetOrBySection instruction has an additional 4 bits of subopcode  }
{ beyond the 7 used by the dispatch table.  To be precise it has 6 plus 4 but  }
{ the dispatch table ignores the 7th bit, so the subdispatch is on all 4 extra }
{ subopcode bits.                                                              }

const
	kPEFRelocLgBySectionSubopcode = $00; { Binary: 0000}
	kPEFRelocLgSetSectCSubopcode = $01; { Binary: 0001}
	kPEFRelocLgSetSectDSubopcode = $02;  { Binary: 0010}
(*
#define PEFRelocLgSetOrBySubopcode(chunk) (((chunk) >> 6) & 0x0F)
*)

{ -------------------------------------------------------------------------------------------- }
{ The initial values for the opcode "masking" table.  This has the enumeration values from     }
{ above with appropriate replications for "don't care" bits.  It is almost certainly shorter   }
{ and faster to look up the masked value in a table than to use a branch tree.                 }

(*
#define PEFMaskedBasicOpcodes                                                                                                                   \
                                                                                                                                                \
            kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   { 0x00 .. 0x03 }  \
            kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   { 0x04 .. 0x07 }  \
            kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   { 0x08 .. 0x0B }  \
            kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   { 0x0C .. 0x0F }  \
                                                                                                                                                \
            kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   { 0x10 .. 0x13 }  \
            kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   { 0x14 .. 0x17 }  \
            kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   { 0x18 .. 0x1B }  \
            kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   kPEFRelocBySectDWithSkip,   { 0x1C .. 0x1F }  \
                                                                                                                                                \
            kPEFRelocBySectC,           kPEFRelocBySectD,           kPEFRelocTVector12,         kPEFRelocTVector8,          { 0x20 .. 0x23 }  \
            kPEFRelocVTable8,           kPEFRelocImportRun,         kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x24 .. 0x27 }  \
                                                                                                                                                \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x28 .. 0x2B }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x2C .. 0x2F }  \
                                                                                                                                                \
            kPEFRelocSmByImport,        kPEFRelocSmSetSectC,        kPEFRelocSmSetSectD,        kPEFRelocSmBySection,       { 0x30 .. 0x33 }  \
                                                                                                                                                \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x34 .. 0x37 }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x38 .. 0x3B }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x3C .. 0x3F }  \
                                                                                                                                                \
            kPEFRelocIncrPosition,      kPEFRelocIncrPosition,      kPEFRelocIncrPosition,      kPEFRelocIncrPosition,      { 0x40 .. 0x43 }  \
            kPEFRelocIncrPosition,      kPEFRelocIncrPosition,      kPEFRelocIncrPosition,      kPEFRelocIncrPosition,      { 0x44 .. 0x47 }  \
                                                                                                                                                \
            kPEFRelocSmRepeat,          kPEFRelocSmRepeat,          kPEFRelocSmRepeat,          kPEFRelocSmRepeat,          { 0x48 .. 0x4B }  \
            kPEFRelocSmRepeat,          kPEFRelocSmRepeat,          kPEFRelocSmRepeat,          kPEFRelocSmRepeat,          { 0x4C .. 0x4F }  \
                                                                                                                                                \
            kPEFRelocSetPosition,       kPEFRelocSetPosition,       kPEFRelocLgByImport,        kPEFRelocLgByImport,        { 0x50 .. 0x53 }  \
                                                                                                                                                \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x54 .. 0x57 }  \
                                                                                                                                                \
            kPEFRelocLgRepeat,          kPEFRelocLgRepeat,          kPEFRelocLgSetOrBySection,  kPEFRelocLgSetOrBySection,  { 0x58 .. 0x5B }  \
                                                                                                                                                \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x5C .. 0x5F }  \
                                                                                                                                                \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x60 .. 0x63 }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x64 .. 0x67 }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x68 .. 0x6B }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x6C .. 0x6F }  \
                                                                                                                                                \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x70 .. 0x73 }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x74 .. 0x77 }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   { 0x78 .. 0x7B }  \
            kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode,   kPEFRelocUndefinedOpcode    { 0x7C .. 0x7F }
*)

{ =========================================================================================== }
{ RelocBySectDWithSkip Instruction (DDAT) }
{ --------------------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocBySectDWithSkip" (DDAT) instruction has the following bit field layout.            }
{                           1         1                                                        }
{       0 1 2             9 0         5                                                        }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |0 0| skip count    | rel count |                                                       }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      | 2 |<-- 8 bits --->|<--  6 --->|                                                       }
{ ! Note that the stored skip count and reloc count are the actual values!                     }

const
	kPEFRelocWithSkipMaxSkipCount = 255;
	kPEFRelocWithSkipMaxRelocCount = 63;
(*
#define PEFRelocWithSkipSkipCount(chunk)    PEFRelocField ( (chunk), 2, 8 )
#define PEFRelocWithSkipRelocCount(chunk)   PEFRelocField ( (chunk), 10, 6 )

#define PEFRelocComposeWithSkip(skipCount,relocCount)   \
            ( 0x0000 | (((UInt16)(skipCount)) << 6) | ((UInt16)(relocCount)) )
*)

{ =========================================================================================== }
{ RelocRun Group (CODE, DATA, DESC, DSC2, VTBL, SYMR) }
{ --------------------------------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocRun" group includes the "RelocBySectC" (CODE), "RelocBySectD" (DATA),              }
{ "RelocTVector12" (DESC), "RelocTVector8" (DSC2), "RelocVTable8" (VTBL), and                  }
{ "RelocImportRun" (SYMR) instructions.  This group has the following bit field layout.        }
{                                     1                                                        }
{       0   2 3     6 7               5                                                        }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |0 1 0| subop.| run length      |                                                       }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |  3  |<- 4 ->|<-- 9 bits ----->|                                                       }
{ ! Note that the stored run length is the actual value minus 1, but the macros deal with the  }
{ ! actual value!                                                                              }

const
	kPEFRelocRunMaxRunLength = 512;
(*
#define PEFRelocRunSubopcode(chunk) PEFRelocField ( (chunk), 3, 4 )
#define PEFRelocRunRunLength(chunk) (PEFRelocField ( (chunk), 7, 9 ) + 1)

#define PEFRelocComposeRun(subopcode,runLength) \
            ( 0x4000 | (((UInt16)(subopcode)) << 9) | ((UInt16)((runLength)-1)) )

#define PEFRelocComposeBySectC(runLength)       PEFRelocComposeRun ( 0, (runLength) )
#define PEFRelocComposeBySectD(runLength)       PEFRelocComposeRun ( 1, (runLength) )
#define PEFRelocComposeTVector12(runLength)     PEFRelocComposeRun ( 2, (runLength) )
#define PEFRelocComposeTVector8(runLength)      PEFRelocComposeRun ( 3, (runLength) )
#define PEFRelocComposeVTable8(runLength)       PEFRelocComposeRun ( 4, (runLength) )
#define PEFRelocComposeImportRun(runLength)     PEFRelocComposeRun ( 5, (runLength) )
*)

{ =========================================================================================== }
{ RelocSmIndex Group (SYMB, CDIS, DTIS, SECN) }
{ ------------------------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocSmIndex" group includes the "RelocSmByImport" (SYMB), "RelocSmSetSectC" (CDIS),    }
{ "RelocSmSetSectD" (DTIS) and "RelocSmBySection" (SECN) instructions.  This group has the     }
{ following bit field layout.                                                                  }
{                                     1                                                        }
{       0   2 3     6 7               5                                                        }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |0 1 1| subop.| index           |                                                       }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |  3  |<- 4 ->|<-- 9 bits ----->|                                                       }
{ ! Note that the stored index is the actual value!                                            }

const
	kPEFRelocSmIndexMaxIndex = 511;
(*
#define PEFRelocSmIndexSubopcode(chunk) PEFRelocField ( (chunk), 3, 4 )
#define PEFRelocSmIndexIndex(chunk)     PEFRelocField ( (chunk), 7, 9 )

#define PEFRelocComposeSmIndex(subopcode,index) \
            ( 0x6000 | (((UInt16)(subopcode)) << 9) | ((UInt16)(index)) )

#define PEFRelocComposeSmByImport(index)    PEFRelocComposeSmIndex ( 0, (index) )
#define PEFRelocComposeSmSetSectC(index)    PEFRelocComposeSmIndex ( 1, (index) )
#define PEFRelocComposeSmSetSectD(index)    PEFRelocComposeSmIndex ( 2, (index) )
#define PEFRelocComposeSmBySection(index)   PEFRelocComposeSmIndex ( 3, (index) )
*)

{ =========================================================================================== }
{ RelocIncrPosition Instruction (DELT) }
{ ------------------------------------ }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocIncrPosition" (DELT) instruction has the following bit field layout.               }
{                                     1                                                        }
{       0     3 4                     5                                                        }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |1 0 0 0| offset                |                                                       }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |<- 4 ->|<-- 12 bits ---------->|                                                       }
{ ! Note that the stored offset is the actual value minus 1, but the macros deal with the      }
{ ! actual value!                                                                              }

const
	kPEFRelocIncrPositionMaxOffset = 4096;

(*
#define PEFRelocIncrPositionOffset(chunk)   (PEFRelocField ( (chunk), 4, 12 ) + 1)

#define PEFRelocComposeIncrPosition(offset) \
            ( 0x8000 | ((UInt16)((offset)-1)) )
*)

{ =========================================================================================== }
{ RelocSmRepeat Instruction (RPT) }
{ ------------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocSmRepeat" (RPT) instruction has the following bit field layout.                    }
{                                     1                                                        }
{       0     3 4     7 8             5                                                        }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |1 0 0 1| chnks | repeat count  |                                                       }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                                                       }
{      |<- 4 ->|<- 4 ->|<-- 8 bits --->|                                                       }
{ ! Note that the stored chunk count and repeat count are the actual values minus 1, but the   }
{ ! macros deal with the actual values!                                                        }

const
	kPEFRelocSmRepeatMaxChunkCount = 16;
	kPEFRelocSmRepeatMaxRepeatCount = 256;

(*
#define PEFRelocSmRepeatChunkCount(chunk)   (PEFRelocField ( (chunk), 4, 4 ) + 1)
#define PEFRelocSmRepeatRepeatCount(chunk)  (PEFRelocField ( (chunk), 8, 8 ) + 1)

#define PEFRelocComposeSmRepeat(chunkCount,repeatCount) \
            ( 0x9000 | ((((UInt16)(chunkCount))-1) << 8) | (((UInt16)(repeatCount))-1) )
*)

{ =========================================================================================== }
{ RelocSetPosition Instruction (LABS) }
{ ----------------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocSetPosition" (LABS) instruction has the following bit field layout.                }
{                                     1                                   1                    }
{       0         5 6                 5     0                             5                    }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   }
{      |1 0 1 0 0 0| offset (high)     |   | offset (low)                  |                   }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   }
{      |<-- 6 ---->|<-- 10 bits ------>|   |<-- 16 bits ------------------>|                   }
{ ! Note that the stored offset is the actual value!                                           }

const
	kPEFRelocSetPosMaxOffset = $03FFFFFF; { 67,108,863}

(*
#define PEFRelocSetPosOffsetHigh(chunk) PEFRelocField ( (chunk), 6, 10 )

#define PEFRelocSetPosFullOffset(firstChunk,secondChunk)    \
            ( ((((UInt32)(firstChunk)) & 0x03FF) << 16) | ((UInt32)(secondChunk)) )

#define PEFRelocComposeSetPosition_1st(fullOffset)  \
            ( 0xA000 | ((UInt16) (((UInt32)(fullOffset)) >> 16) ) )
#define PEFRelocComposeSetPosition_2nd(fullOffset)  \
            ( (UInt16) ((UInt32)(fullOffset) & 0xFFFF) )
*)

{ =========================================================================================== }
{ RelocLgByImport Instruction (LSYM) }
{ ---------------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocLgByImport" (LSYM) instruction has the following bit field layout.                 }
{                                     1                                   1                    }
{       0         5 6                 5     0                             5                    }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   }
{      |1 0 1 0 0 1| index (high)      |   | index (low)                   |                   }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   }
{      |<-- 6 ---->|<-- 10 bits ------>|   |<-- 16 bits ------------------>|                   }
{ ! Note that the stored offset is the actual value!                                           }

const
	kPEFRelocLgByImportMaxIndex = $03FFFFFF; { 67,108,863}

(*
#define PEFRelocLgByImportIndexHigh(chunk)  PEFRelocField ( (chunk), 6, 10 )

#define PEFRelocLgByImportFullIndex(firstChunk,secondChunk) \
            ( ((((UInt32)(firstChunk)) & 0x03FF) << 16) | ((UInt32)(secondChunk)) )

#define PEFRelocComposeLgByImport_1st(fullIndex)    \
            ( 0xA400 | ((UInt16) (((UInt32)(fullIndex)) >> 16) ) )
#define PEFRelocComposeLgByImport_2nd(fullIndex)    \
            ( (UInt16) ((UInt32)(fullIndex) & 0xFFFF) )
*)

{ =========================================================================================== }
{ RelocLgRepeat Instruction (LRPT) }
{ -------------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocLgRepeat" (LRPT) instruction has the following bit field layout.                   }
{                           1         1                                   1                    }
{       0         5 6     9 0         5     0                             5                    }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   }
{      |1 0 1 1 0 0| chnks | rpt (high)|   | repeat count (low)            |                   }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   }
{      |<--  6 --->|<- 4 ->|<--  6 --->|   |<-- 16 bits ------------------>|                   }
{ ! Note that the stored chunk count is the actual value minus 1, but the macros deal with     }
{ ! the actual value!  The stored repeat count is the actual value!                            }

const
	kPEFRelocLgRepeatMaxChunkCount = 16;
	kPEFRelocLgRepeatMaxRepeatCount = $003FFFFF; { 4,194,303}

(*
#define PEFRelocLgRepeatChunkCount(chunk)       (PEFRelocField ( (chunk), 6, 4 ) + 1)
#define PEFRelocLgRepeatRepeatCountHigh(chunk)  PEFRelocField ( (chunk), 10, 6 )

#define PEFRelocLgRepeatFullRepeatCount(firstChunk,secondChunk) \
            ( ((((UInt32)(firstChunk)) & 0x003F) << 16) | ((UInt32)(secondChunk)) )

#define PEFRelocComposeLgRepeat_1st(chunkCount,fullRepeatCount) \
            ( 0xB000 | ((((UInt16)(chunkCount))-1) << 6) | ((UInt16) (((UInt32)(fullRepeatCount)) >>16 ) ) )
#define PEFRelocComposeLgRepeat_2nd(chunkCount,fullRepeatCount) \
            ( (UInt16) ((UInt32)(fullRepeatCount) & 0xFFFF) )
*)

{ =========================================================================================== }
{ RelocLgSetOrBySection Group (LSEC) }
{ ---------------------------------- }


{ -------------------------------------------------------------------------------------------- }
{ The "RelocLgSetOrBySection" (LSEC) instruction is a group including the "RelocLgBySection",  }
{ "RelocLgSetSectC" and "RelocLgSetSectD" instructions.  This group has the following bit      }
{ field layout.                                                                                }
{                           1         1                                   1                    }
{       0         5 6     9 0         5     0                             5                    }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   }
{      |1 0 1 1 0 1| subop | idx (high)|   | index (low)                   |                   }
{      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                   }
{      |<--  6 --->|<- 4 ->|<--  6 --->|   |<-- 16 bits ------------------>|                   }
{ ! Note that the stored index is the actual value!                                            }

const
	kPEFRelocLgSetOrBySectionMaxIndex = $003FFFFF; { 4,194,303}

(*
#define PEFRelocLgSetOrBySectionSubopcode(chunk)    PEFRelocField ( (chunk), 6, 4 )
#define PEFRelocLgSetOrBySectionIndexHigh(chunk)    PEFRelocField ( (chunk), 10, 6 )

#define PEFRelocLgSetOrBySectionFullIndex(firstChunk,secondChunk)   \
            ( ((((UInt32)(firstChunk)) & 0x003F) << 16) | ((UInt32)(secondChunk)) )

#define PEFRelocComposeLgSetOrBySection_1st(subopcode,fullIndex)    \
            ( 0xB400 | (((UInt16)(subopcode)) << 6) | ((UInt16) (((UInt32)(fullIndex)) >> 16) ) )
#define PEFRelocComposeLgSetOrBySection_2nd(subopcode,fullIndex)    \
            ( (UInt16) ((UInt32)(fullIndex) & 0xFFFF) )

#define PEFRelocComposeLgBySection(fullIndex)   PEFRelocComposeLgSetOrBySection ( 0x00, (fullIndex) )
#define PEFRelocComposeLgSetSectC(fullIndex)    PEFRelocComposeLgSetOrBySection ( 0x01, (fullIndex) )
#define PEFRelocComposeLgSetSectD(fullIndex)    PEFRelocComposeLgSetOrBySection ( 0x02, (fullIndex) )
*)

{ ======================================================================================== }
{ ======================================================================================== }


{ ======================================================================================== }
{ Vector Library Declarations }
{ =========================== }


{ -------------------------------------------------------------------------------------------- }
{ Mac OS X has special "vector" and "bridge" libraries to allow CFM managed clients to import  }
{ from the dyld managed implementation libraries.  The vector libraries are typically embedded }
{ within their respective implementation libraries.  Even if standalone, the vector libraries  }
{ are themselves normal dyld managed libraries.  The vector libraries contain an export symbol }
{ table and pointers to the actual implementations.  For functions, these pointers serve as    }
{ the PMacCG TVectors.  Because the dyld libraries are not part of the CFM search, we need a   }
{ separate library for CFM to find that then indicates where the vector library is.  These are }
{ the bridge libraries.  They are tiny, just the container header and container strings parts. }
{ Since the vector library is embedded in a Mach-O dylib, we use dyld services to obtain the   }
{ base address for the main portion and the exported symbol portion.  The binding pointers are }
{ found through offsets in the exported symbol records.                                        }
{      +-----------------------------------+           <-- containerOrigin ------------+       }
{      |       Container Header            |   76 bytes                                |       }
{      |-----------------------------------|           <-- + containerStringsOffset ---|       }
{      |       Container Strings           |                                           |       }
{      |-----------------------------------|           <-- + exportHashOffset ---------+       }
{      |       Export Hash Slot 0          |   4 bytes each                            |       }
{      |...................................|                                           |       }
{      |           - - -                   |                                           |       }
{      |...................................|                                           |       }
{      |       Export Hash Slot h-1        |                                           |       }
{      |-----------------------------------|           <-- + exportKeyOffset ----------+       }
{      |       Export Symbol Key 0         |   4 bytes each                            |       }
{      |...................................|   Order must match the exported symbols   |       }
{      |           - - -                   |                                           |       }
{      |...................................|                                           |       }
{      |       Export Symbol Key e-1       |                                           |       }
{      |-----------------------------------|           <-- + exportNamesOffset --------+       }
{      |       Export Names                |                                           |       }
{      |-----------------------------------|                                           |       }
{                                              (Disjoint parts)                        |       }
{      |-----------------------------------|           <-- + exportSymbolOffset -------+       }
{      |       Export Symbol 0             |   8 bytes each                                    }
{      |...................................|   Order must match the export keys                }
{      |           - - -                   |                                                   }
{      |...................................|                                                   }
{      |       Export Symbol e-1           |                                                   }
{      +-----------------------------------+                                                   }
{                                              (Disjoint parts)                                }
{      |-----------------------------------|                                                   }
{      |       Binding Pointer 0           |   4 bytes each                                    }
{      |-----------------------------------|   Possibly disjoint, order does not matter        }
{      |           - - -                   |                                                   }
{      |-----------------------------------|                                                   }
{      |       Binding Pointer e-1         |                                                   }
{      +-----------------------------------+                                                   }

type
	XLibContainerHeaderPtr = ^XLibContainerHeader;
	XLibContainerHeader = record
{ Structural description fields:}

		tag1: OSType;                   { Must contain 'ðMac'.}
		tag2: OSType;                   { Must contain 'vLib' or 'bLib'.}
		currentFormat: UInt32;          { The version of XLib types used to create this container.}
		containerStringsOffset: UInt32; { Container offset of the container string table.}
		exportHashOffset: UInt32;       { Offset of the export hash table.}
		exportKeyOffset: UInt32;        { Offset of the export key table.}
		exportSymbolOffset: UInt32;     { Offset of the export symbol table.}
		exportNamesOffset: UInt32;      { Offset of the export names.}
		exportHashTablePower: UInt32;   { Export hash table size as log 2.  (Log2('h'))}
		exportedSymbolCount: UInt32;    { Number of exported symbols.  ('e')}

                                              { Fragment description fields:}

		fragNameOffset: UInt32;         { The offset of the fragment name in the container string table.}
		fragNameLength: UInt32;         { The length of the fragment name in the container string table.}
		dylibPathOffset: UInt32;        { The offset of the dyld "install name" in the container string table.}
		dylibPathLength: UInt32;        { The length of the dyld "install name" in the container string table.}
		cpuFamily: OSType;              { The ISA for code sections.  Constants in CodeFragments.h.}
		cpuModel: OSType;               { Specific CPU model if applicable.}
		dateTimeStamp: UInt32;          { Mac format creation stamp.}
		currentVersion: UInt32;         { Current version number for the code fragment.}
		oldDefVersion: UInt32;          { Old definition version number for the code fragment.}
		oldImpVersion: UInt32;          { Old implementation version number for the code fragment.}
	end;
const
	kXLibTag1 = FourCharCode('ðMac'); { For non-Apple compilers: 0xF04D6163.}
	kVLibTag2 = FourCharCode('VLib'); { For non-Apple compilers: 0x564C6962.}
	kBLibTag2 = FourCharCode('BLib'); { For non-Apple compilers: 0x424C6962.}
	kXLibVersion = $00000001;


type
	XLibExportedSymbolHashSlot = PEFExportedSymbolHashSlot;
	XLibExportedSymbolKey = PEFExportedSymbolKey;
	XLibExportedSymbolPtr = ^XLibExportedSymbol;
	XLibExportedSymbol = record
		classAndName: UInt32;           { A combination of class and name offset.}
		bpOffset: UInt32;               { Container offset of the export's dyld binding pointer.}
	end;


{ =========================================================================================== }


{$ifc not undefined IncludePEF2Declarations and IncludePEF2Declarations}


{ ======================================================================================== }
{ ======================================================================================== }


{ ======================================================================================== }
{ PEF2 Declarations }
{ ================= }


{ -------------------------------------------------------------------------------------------- }
{ PEF2 is a follow-on to the original PEF, incorporating changes that would break backward     }
{ compatibility.  The primary motivations for PEF2 are to incorporate new features cleanly, to }
{ relax some physical limitations, and to provide a more explicit path for future growth.      }
{ PEF2 is very similar to PEF, it is possible for any PEF container to be mechanically         }
{ converted to PEF2.  The converse is not necessarily true, containers that use new features   }
{ of PEF2 might not be convertable to PEF.                                                     }
{ One difference from PEF is that PEF2 has no implicit ordering, e.g. the section headers do   }
{ not necessarily immediately follow the container header.  Explicit offsets and lengths are   }
{ provided for all portions of the container so that tools can continue to parse PEF2 as new   }
{ versions of it are produced in the future.  The following overall layout is suggested for    }
{ locality of reference in typical usage with a packed data image:                             }
{          +-----------------------------------+                                               }
{          |       Container Header            |                                               }
{          +-----------------------------------+                                               }
{          |       Section 0 header            |                                               }
{          |...................................|                                               }
{          |           - - - -                 |                                               }
{          |...................................|                                               }
{          |       Section n-1 header          |                                               }
{          +-----------------------------------+                                               }
{          |       Container String Table      |                                               }
{          +-----------------------------------+                                               }
{          |       Loader section contents     |                                               }
{          +-----------------------------------+                                               }
{          |       Packed data contents        |                                               }
{          +-----------------------------------+                                               }
{          |       Code section contents       |                                               }
{          +-----------------------------------+                                               }
{ If unpacked data is used for prebinding with copy-on-write mapping, the unpacked data should }
{ follow the code section.                                                                     }
{ Note that the rule regarding instantiated sections preceeding noninstantiated sections only  }
{ applies to the section headers, not the section contents.  Thus it is perfectly fine for the }
{ loader section contents to be first.                                                         }
{ The container string table holds the name of the fragment and the names of the sections.     }
{ The first 4 bytes of the container string table must be zero and always present.  An offset  }
{ of zero into the container string table is considered a null name.  Actual names are stored  }
{ as a PEF-style 32 bit hashword followed by the text of the name.  The encoding of the text   }
{ is given by the stringEncoding field of the container header.  The hashword is computed from }
{ the encoded name as a string of bytes.  The length in the hashword is the number of bytes in }
{ the encoded name, not the number of logical characters.                                      }


{ =========================================================================================== }
{ Container Header }
{ ================ }


type
	PEF2ContainerHeaderPtr = ^PEF2ContainerHeader;
	PEF2ContainerHeader = record
{ Structural fields:}
		tag1: OSType;                   { Must contain 'Joy!'.}
		tag2: OSType;                   { Must contain 'PEF '.}
		currentFormat: UInt32;          { The version of PEF2 used to create this container.}
		oldestFormat: UInt32;           { Oldest compatible container handler.}
		containerHeaderSize: UInt32;    { The size of this header in bytes.}
		containerLength: UInt32;        { The total length of the container in bytes.}
		checksum: UInt32;               { A checksum for the entire container.}
		sectionHeadersOffset: UInt32;   { Container offset of the first section header.}
		sectionHeaderSize: UInt32;      { The size in bytes of each section header.}
		totalSectionCount: UInt32;      { Total number of section headers.}
		instSectionCount: UInt32;       { Number of instantiated sections.}
		loaderSectionIndex: UInt32;     { Index of the section containing runtime loader tables.}
		containerStringsOffset: UInt32; { Container offset of the container string table.}
		containerStringsLength: UInt32; { Length in bytes of the container string table.}
		options: UInt32;                { Array of 32 option bits.}
		preferredAddress: UInt32;       { Preferred container address, 0xFFFFFFFF indicates no preference.}
		alignment: UInt8;              { Required container alignment as LOG 2.}
		stringEncoding: UInt8;         { The encoding for all strings in the container.}
		reservedA: UInt16;              { Reserved, must be written as zero.}
		reservedB: UInt32;              { Reserved, must be written as zero.}
		reservedC: UInt32;              { Reserved, must be written as zero.}
                                              { Fragment description fields:}
		nameOffset: UInt32;             { The offset of the name in the container string table.}
		architecture: OSType;           { The ISA for code sections.  Constants in CodeFragments.h.}
		dateTimeStamp: UInt32;          { Macintosh format creation/modification stamp.}
		currentVersion: UInt32;         { Current version number for the code fragment.}
		oldDefVersion: UInt32;          { Old definition version number for the code fragment.}
		oldImpVersion: UInt32;          { Old implementation version number for the code fragment.}
		reservedD: UInt32;              { Reserved, must be written as zero.}
		reservedE: UInt32;              { Reserved, must be written as zero.}
	end;
const
	kPEF2Tag1 = kPEFTag1;
	kPEF2Tag2 = FourCharCode('PEF '); { For non-Apple compilers: 0x50656620.}
	kPEF2CurrentFormat = $00000002; { ! There is no version 0 or 1.}
	kPEF2OldestHandler = $00000002;

const
{ Values for the options field.}
	kPEF2IsReexportLibraryMask = $00000001; { This fragment does nothing but reexport imports.}
	kPEF2IsGlueLibraryMask = $00000002; { A special form of import library that provides a glue layer.}

const
{ Values for the stringEncoding field.}
	kPEF2StringsAreASCII = 0;
	kPEF2StringsAreUnicode = 1;


{ =========================================================================================== }
{ Section Headers }
{ =============== }


type
	PEF2SectionHeaderPtr = ^PEF2SectionHeader;
	PEF2SectionHeader = record
		nameOffset: UInt32;             { Offset of the name within the container string table.}
		presumedAddress: UInt32;        { Presumed address, affects relocations.}
		totalLength: UInt32;            { Fully expanded size in bytes of the section contents.}
		unpackedLength: UInt32;         { Size in bytes of the "initialized" part of the contents.}
		containerLength: UInt32;        { Size in bytes of the raw data in the container.}
		containerOffset: UInt32;        { Offset of section's raw data within the container.}
		options: UInt32;                { Array of 32 option bits.}
		shareKind: UInt8;              { Sharing level, if a writeable section.}
		alignment: UInt8;              { Required alignment, expressed as log 2.}
		reservedA: UInt16;              { Reserved, must be written as zero.}
		reservedB: UInt32;              { Reserved, must be written as zero.}
		reservedC: UInt32;              { Reserved, must be written as zero.}
	end;
const
{ Masks for instantiated section options.}
                                        { Bits that define the preparation and usage of the section's contents.}
	kPEF2SectionHasCodeMask = $00000001; { Affects cache flushing operations.}
	kPEF2SectionIsWriteableMask = $00000002; { Affects MMU access.}
	kPEF2SectionHasRelocationsMask = $00000004; { The section has runtime relocations.}
	kPEF2SectionContentsArePackedMask = $00000100; { The raw data is compressed.}
	kPEF2SectionNoZeroFillMask = $00000200; { "Uninit" part is not zero filled.}
	kPEF2SectionResidentMask = $00000400; { The section should be RAM resident.}
                                        { Bits that describe higher level semantics.}
	kPEF2SectionFollowsPriorMask = $00010000; { Raw data is related to prior section.}
	kPEF2SectionPrecedesNextMask = $00020000; { Raw data is related to next section.}
	kPEF2SectionHasLoaderTablesMask = $01000000;
	kPEF2SectionHasDebugTablesMask = $02000000;
	kPEF2SectionHasExceptionTablesMask = $04000000;
	kPEF2SectionHasTracebackTablesMask = $08000000;

const
{ Values for the shareKind field.}
	kPEF2PrivateShare = 0;    { Shared only within a "private" closure.}
	kPEF2ProcessShare = 1;    { Shared within a single process.}
	kPEF2GlobalShare = 4;    { Shared across the entire system.}
	kPEF2ProtectedShare = 5;     { Readable across the entire system, writeable only to privileged code.}


{ =========================================================================================== }
{ Loader Section }
{ ============== }


{ -------------------------------------------------------------------------------------------- }
{ The PEF2 loader section is very similar to that of PEF.  The following overall layout is     }
{ not required, but suggested for typical locality of reference.  The loader header contains   }
{ explicit offsets and sizes for each of the subsections.                                      }
{          +-----------------------------------+                                               }
{          |       Loader Info Header          |                                               }
{          |-----------------------------------|                                               }
{          |       Imported Library 0          |                                               }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Imported Library l-1        |                                               }
{          |-----------------------------------|                                               }
{          |       Imported Symbol 0           |                                               }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Imported Symbol i-1         |                                               }
{          |-----------------------------------|                                               }
{          |       Loader Name Table           |                                               }
{          |-----------------------------------|                                               }
{          |       Export Hash Slot 0          |                                               }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Export Hash Slot h-1        |                                               }
{          |-----------------------------------|                                               }
{          |       Exported Symbol Key 0       |                                               }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Exported Symbol Key e-1     |                                               }
{          |-----------------------------------|                                               }
{          |       Exported Symbol 0           |                                               }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Exported Symbol e-1         |                                               }
{          |-----------------------------------|                                               }
{          |       Relocation Header 0         |                                               }
{          |...................................|                                               }
{          |           - - -                   |                                               }
{          |...................................|                                               }
{          |       Relocation Header r-1       |                                               }
{          |-----------------------------------|                                               }
{          |       Relocation Instructions     |                                               }
{          +-----------------------------------+                                               }


type
	PEF2LoaderInfoHeaderPtr = ^PEF2LoaderInfoHeader;
	PEF2LoaderInfoHeader = record
		headerSize: UInt32;             { Size in bytes of the loader info header.}
		options: UInt32;                { An array of 32 option bits.}
		mainSection: SInt32;            { Section containing the main symbol, -1 => none.}
		mainOffset: UInt32;             { Offset of main symbol.}
		initSection: SInt32;            { Section containing the init routine's TVector, -1 => none.}
		initOffset: UInt32;             { Offset of the init routine's TVector.}
		termSection: SInt32;            { Section containing the term routine's TVector, -1 => none.}
		termOffset: UInt32;             { Offset of the term routine's TVector.}
		notifySection: SInt32;          { Section containing the notification routine's TVector, -1 => none.}
		notifyOffset: UInt32;           { Offset of the notification routine's TVector.}
		importedLibrariesOffset: UInt32; { Offset of the imported library table.}
		importedLibrarySize: UInt32;    { The size in bytes of an imported library entry.}
		importedLibraryCount: UInt32;   { Number of imported libraries. ('l')}
		importedSymbolsOffset: UInt32;  { Offset of the imported symbol table.}
		importedSymbolSize: UInt32;     { The size in bytes of an imported symbol entry.}
		totalImportedSymbolCount: UInt32; { Total number of imported symbols.  ('s')}
		loaderNamesOffset: UInt32;      { Offset of the loader name table.}
		loaderNamesLength: UInt32;      { Total number of bytes in the loader name table.}
		exportHashTableOffset: UInt32;  { Offset of the export hash slot table.}
		exportHashTablePower: UInt8;   { Hash slot count as log 2.}
		reservedA: UInt8;              { Reserved, must be zero.}
		reservedB: UInt16;              { Reserved, must be zero.}
		exportedKeysOffset: UInt32;     { Offset of the exported symbol key table.}
		exportedSymbolsOffset: UInt32;  { Offset of the exported symbol table.}
		exportedSymbolSize: UInt32;     { The size in bytes of an exported symbol entry.}
		exportedSymbolCount: UInt32;    { Number of exported symbols. ('e')}
		relocHeadersOffset: UInt32;     { Offset of the relocation headers.}
		relocHeaderCount: UInt32;       { Number of sections with relocations.}
		relocInstrOffset: UInt32;       { Offset of the relocation instructions.}
		relocInstrLength: UInt32;       { Total number of bytes of relocation instructions.}
		reservedC: UInt32;              { Reserved, must be zero.}
		reservedD: UInt32;              { Reserved, must be zero.}
	end;
const
{ Masks for the option bits.}
	kPEF2LdrInfoLargeImpSymMask = $00000001; { Selects large imported symbol entries.}
	kPEF2LdrInfoLargeExpSymMask = $00000002; { Selects large exported symbol entries.}
	kPEF2LdrInfoLargeExpHashMask = $00000004; { Selects large export hash table entries.}


{ =========================================================================================== }
{ Imports and Exports }
{ ------------------- }


{ -------------------------------------------------------------------------------------------- }
{ Imports and exports in PEF2 have both small and large representations.  The small form is    }
{ identical to original PEF.  The large form removes count limitations by having full 32 bit   }
{ offsets.  The import and export name tables have the same representation as the container    }
{ string table, four bytes of zero at the start followed by pairs of 32 bit hashwords and      }
{ the names in the appropriate encoding.                                                       }


type
	PEF2ImportedLibraryPtr = ^PEF2ImportedLibrary;
	PEF2ImportedLibrary = record
		nameOffset: UInt32;             { Imported name table offset of library's name.}
		oldImpVersion: UInt32;          { Oldest compatible implementation version.}
		currentVersion: UInt32;         { Current version at build time.}
		importedSymbolCount: UInt32;    { Imported symbol count for this library.}
		firstImportedSymbol: UInt32;    { Index of first imported symbol from this library.}
		options: UInt32;                { Option bits for this library.}
		reservedA: UInt32;              { Reserved, must be zero.}
	end;
const
{ Bits for the PEF2ImportedLibrary options field.}
	kPEF2WeakImportLibMask = kPEFWeakImportLibMask; { The imported library is allowed to be missing.}
	kPEF2InitLibBeforeMask = kPEFInitLibBeforeMask; { The imported library must be initialized first.}


type
	PEF2SmImportedSymbol = PEFImportedSymbol;
//	PEF2ComposeSmImportedSymbol = PEFComposeImportedSymbol;

type
	PEF2LgImportedSymbolPtr = ^PEF2LgImportedSymbol;
	PEF2LgImportedSymbol = record
		symClass: UInt8;
		flags: UInt8;
		reservedA: UInt16;
		nameOffset: UInt32;
		versionPair: UInt32;
		reservedB: UInt32;
	end;

	PEF2SmExportedSymbolHashSlot = PEFExportedSymbolHashSlot;
	PEF2ExportedSymbolKey = PEFExportedSymbolKey;
	PEF2SmExportedSymbol = PEFExportedSymbol;
//	PEF2ComposeSmExportedSymbol = PEFComposeExportedSymbol;

type
	PEF2LgExportedSymbolHashSlotPtr = ^PEF2LgExportedSymbolHashSlot;
	PEF2LgExportedSymbolHashSlot = record
		chainCount: UInt32;
		chainOffset: UInt32;
	end;

type
	PEF2LgExportedSymbolPtr = ^PEF2LgExportedSymbol;
	PEF2LgExportedSymbol = record
		symClass: UInt8;
		flags: UInt8;
		reservedA: UInt16;
		nameOffset: UInt32;
		versionPair: UInt32;
		sectionIndex: SInt32;
		sectionOffset: UInt32;
		reservedB: UInt32;
	end;


{ =========================================================================================== }
{ Loader Relocations }
{ ================== }


{ -------------------------------------------------------------------------------------------- }
{ The relocation header differs slightly in PEF2.  The relocation instructions identical.      }


type
	PEF2LoaderRelocationHeaderPtr = ^PEF2LoaderRelocationHeader;
	PEF2LoaderRelocationHeader = record
		sectionIndex: UInt32;           { Index of the section to be fixed up.}
		relocLength: UInt32;            { Number of bytes of relocation items.}
		firstRelocOffset: UInt32;       { Byte offset of first relocation instruction.}
		reservedA: UInt32;              { Reserved, must be zero.}
	end;


{ =========================================================================================== }


{$endc}  {IncludePEF2Declarations}

{$endc} {TARGET_OS_MAC}
{$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE}

end.
{$endc} {not MACOSALLINCLUDE}