1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
|
{
This file is part of the Free Pascal run time library.
Copyright (c) 1999-2007 by Several contributors
Generic mathematical routines (on type real)
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
{*************************************************************************}
{ Credits }
{*************************************************************************}
{ Copyright Abandoned, 1987, Fred Fish }
{ }
{ This previously copyrighted work has been placed into the }
{ public domain by the author (Fred Fish) and may be freely used }
{ for any purpose, private or commercial. I would appreciate }
{ it, as a courtesy, if this notice is left in all copies and }
{ derivative works. Thank you, and enjoy... }
{ }
{ The author makes no warranty of any kind with respect to this }
{ product and explicitly disclaims any implied warranties of }
{ merchantability or fitness for any particular purpose. }
{-------------------------------------------------------------------------}
{ Copyright (c) 1992 Odent Jean Philippe }
{ }
{ The source can be modified as long as my name appears and some }
{ notes explaining the modifications done are included in the file. }
{-------------------------------------------------------------------------}
{ Copyright (c) 1997 Carl Eric Codere }
{-------------------------------------------------------------------------}
{$goto on}
type
TabCoef = array[0..6] of Real;
{ also necessary for Int() on systems with 64bit floats (JM) }
{$ifndef FPC_SYSTEM_HAS_float64}
{$ifdef ENDIAN_LITTLE}
float64 = packed record
low: longint;
high: longint;
end;
{$else}
float64 = packed record
high: longint;
low: longint;
end;
{$endif}
{$endif FPC_SYSTEM_HAS_float64}
const
PIO2 = 1.57079632679489661923; { pi/2 }
PIO4 = 7.85398163397448309616E-1; { pi/4 }
SQRT2 = 1.41421356237309504880; { sqrt(2) }
SQRTH = 7.07106781186547524401E-1; { sqrt(2)/2 }
LOG2E = 1.4426950408889634073599; { 1/log(2) }
SQ2OPI = 7.9788456080286535587989E-1; { sqrt( 2/pi )}
LOGE2 = 6.93147180559945309417E-1; { log(2) }
LOGSQ2 = 3.46573590279972654709E-1; { log(2)/2 }
THPIO4 = 2.35619449019234492885; { 3*pi/4 }
TWOOPI = 6.36619772367581343075535E-1; { 2/pi }
lossth = 1.073741824e9;
MAXLOG = 8.8029691931113054295988E1; { log(2**127) }
MINLOG = -8.872283911167299960540E1; { log(2**-128) }
DP1 = 7.85398125648498535156E-1;
DP2 = 3.77489470793079817668E-8;
DP3 = 2.69515142907905952645E-15;
{$if not defined(FPC_SYSTEM_HAS_SIN) or not defined(FPC_SYSTEM_HAS_COS)}
const sincof : TabCoef = (
1.58962301576546568060E-10,
-2.50507477628578072866E-8,
2.75573136213857245213E-6,
-1.98412698295895385996E-4,
8.33333333332211858878E-3,
-1.66666666666666307295E-1, 0);
coscof : TabCoef = (
-1.13585365213876817300E-11,
2.08757008419747316778E-9,
-2.75573141792967388112E-7,
2.48015872888517045348E-5,
-1.38888888888730564116E-3,
4.16666666666665929218E-2, 0);
{$endif}
{*
-------------------------------------------------------------------------------
Raises the exceptions specified by `flags'. Floating-point traps can be
defined here if desired. It is currently not possible for such a trap
to substitute a result value. If traps are not implemented, this routine
should be simply `softfloat_exception_flags |= flags;'.
-------------------------------------------------------------------------------
*}
procedure float_raise(i: shortint);
var
pflags: pbyte;
unmasked_flags: byte;
Begin
{ taking address of threadvar produces somewhat more compact code }
pflags := @softfloat_exception_flags;
pflags^ := pflags^ or i;
unmasked_flags := pflags^ and (not softfloat_exception_mask);
if (unmasked_flags and float_flag_invalid) <> 0 then
HandleError(207)
else
if (unmasked_flags and float_flag_divbyzero) <> 0 then
HandleError(200)
else
if (unmasked_flags and float_flag_overflow) <> 0 then
HandleError(205)
else
if (unmasked_flags and float_flag_underflow) <> 0 then
HandleError(206)
else
if (unmasked_flags and float_flag_inexact) <> 0 then
HandleError(207);
end;
{$ifndef FPC_SYSTEM_HAS_TRUNC}
{$ifndef FPC_SYSTEM_HAS_float32}
type
float32 = longint;
{$endif FPC_SYSTEM_HAS_float32}
{$ifndef FPC_SYSTEM_HAS_flag}
type
flag = byte;
{$endif FPC_SYSTEM_HAS_flag}
{$ifndef FPC_SYSTEM_HAS_extractFloat64Frac0}
Function extractFloat64Frac0(const a: float64): longint;
Begin
extractFloat64Frac0 := a.high and $000FFFFF;
End;
{$endif not FPC_SYSTEM_HAS_extractFloat64Frac0}
{$ifndef FPC_SYSTEM_HAS_extractFloat64Frac1}
Function extractFloat64Frac1(const a: float64): longint;
Begin
extractFloat64Frac1 := a.low;
End;
{$endif not FPC_SYSTEM_HAS_extractFloat64Frac1}
{$ifndef FPC_SYSTEM_HAS_extractFloat64Exp}
Function extractFloat64Exp(const a: float64): smallint;
Begin
extractFloat64Exp:= ( a.high shr 20 ) AND $7FF;
End;
{$endif not FPC_SYSTEM_HAS_extractFloat64Exp}
{$ifndef FPC_SYSTEM_HAS_extractFloat64Frac}
Function extractFloat64Frac(const a: float64): int64;
Begin
extractFloat64Frac:=int64(a) and $000FFFFFFFFFFFFF;
End;
{$endif not FPC_SYSTEM_HAS_extractFloat64Frac}
{$ifndef FPC_SYSTEM_HAS_extractFloat64Sign}
Function extractFloat64Sign(const a: float64) : flag;
Begin
extractFloat64Sign := a.high shr 31;
End;
{$endif not FPC_SYSTEM_HAS_extractFloat64Sign}
Procedure shortShift64Left(a0:longint; a1:longint; count:smallint; VAR z0Ptr:longint; VAR z1Ptr:longint );
Begin
z1Ptr := a1 shl count;
if count = 0 then
z0Ptr := a0
else
z0Ptr := ( a0 shl count ) OR ( a1 shr ( ( - count ) AND 31 ) );
End;
function float64_to_int32_round_to_zero(a: float64 ): longint;
Var
aSign: flag;
aExp, shiftCount: smallint;
aSig0, aSig1, absZ, aSigExtra: longint;
z: longint;
label
invalid;
Begin
aSig1 := extractFloat64Frac1( a );
aSig0 := extractFloat64Frac0( a );
aExp := extractFloat64Exp( a );
aSign := extractFloat64Sign( a );
shiftCount := aExp - $413;
if 0<=shiftCount then
Begin
if (aExp=$7FF) and ((aSig0 or aSig1)<>0) then
goto invalid;
shortShift64Left(aSig0 OR $00100000, aSig1, shiftCount, absZ, aSigExtra );
End
else
Begin
if aExp<$3FF then
begin
float64_to_int32_round_to_zero := 0;
exit;
end;
aSig0 := aSig0 or $00100000;
aSigExtra := ( aSig0 shl ( shiftCount and 31 ) ) OR aSig1;
absZ := aSig0 shr ( - shiftCount );
End;
if aSign<>0 then
z:=-absZ
else
z:=absZ;
if ((aSign<>0) xor (z<0)) AND (z<>0) then
begin
invalid:
float_raise(float_flag_invalid);
if (aSign <> 0) then
float64_to_int32_round_to_zero:=$80000000
else
float64_to_int32_round_to_zero:=$7FFFFFFF;
exit;
end;
if ( aSigExtra <> 0) then
float_raise(float_flag_inexact);
float64_to_int32_round_to_zero := z;
End;
function float64_to_int64_round_to_zero(a : float64) : int64;
var
aSign : flag;
aExp, shiftCount : smallint;
aSig : int64;
z : int64;
begin
aSig:=extractFloat64Frac(a);
aExp:=extractFloat64Exp(a);
aSign:=extractFloat64Sign(a);
if aExp<>0 then
aSig:=aSig or $0010000000000000;
shiftCount:= aExp-$433;
if 0<=shiftCount then
begin
if aExp>=$43e then
begin
if int64(a)<>$C3E0000000000000 then
begin
float_raise(float_flag_invalid);
if (aSign=0) or ((aExp=$7FF) and
(aSig<>$0010000000000000 )) then
begin
result:=$7FFFFFFFFFFFFFFF;
exit;
end;
end;
result:=$8000000000000000;
exit;
end;
z:=aSig shl shiftCount;
end
else
begin
if aExp<$3fe then
begin
result:=0;
exit;
end;
z:=aSig shr -shiftCount;
{
if (aSig shl (shiftCount and 63))<>0 then
float_exception_flags |= float_flag_inexact;
}
end;
if aSign<>0 then
z:=-z;
result:=z;
end;
{$ifndef FPC_SYSTEM_HAS_ExtractFloat32Frac}
Function ExtractFloat32Frac(a : Float32) : longint;
Begin
ExtractFloat32Frac := A AND $007FFFFF;
End;
{$endif not FPC_SYSTEM_HAS_ExtractFloat32Frac}
{$ifndef FPC_SYSTEM_HAS_extractFloat32Exp}
Function extractFloat32Exp( a: float32 ): smallint;
Begin
extractFloat32Exp := (a shr 23) AND $FF;
End;
{$endif not FPC_SYSTEM_HAS_extractFloat32Exp}
{$ifndef FPC_SYSTEM_HAS_extractFloat32Sign}
Function extractFloat32Sign( a: float32 ): Flag;
Begin
extractFloat32Sign := a shr 31;
End;
{$endif not FPC_SYSTEM_HAS_extractFloat32Sign}
Function float32_to_int32_round_to_zero( a: Float32 ): longint;
Var
aSign : flag;
aExp, shiftCount : smallint;
aSig : longint;
z : longint;
Begin
aSig := extractFloat32Frac( a );
aExp := extractFloat32Exp( a );
aSign := extractFloat32Sign( a );
shiftCount := aExp - $9E;
if ( 0 <= shiftCount ) then
Begin
if ( a <> Float32($CF000000) ) then
Begin
float_raise( float_flag_invalid );
if ( (aSign=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
Begin
float32_to_int32_round_to_zero:=$7fffffff;
exit;
end;
End;
float32_to_int32_round_to_zero:=$80000000;
exit;
End
else
if ( aExp <= $7E ) then
Begin
float32_to_int32_round_to_zero := 0;
exit;
End;
aSig := ( aSig or $00800000 ) shl 8;
z := aSig shr ( - shiftCount );
if ( aSign<>0 ) then z := - z;
float32_to_int32_round_to_zero := z;
End;
function fpc_trunc_real(d : ValReal) : int64;compilerproc;
var
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
l: longint;
{$endif FPC_DOUBLE_HILO_SWAPPED}
f32 : float32;
f64 : float64;
Begin
{ in emulation mode the real is equal to a single }
{ otherwise in fpu mode, it is equal to a double }
{ extended is not supported yet. }
if sizeof(D) > 8 then
HandleError(255);
if sizeof(D)=8 then
begin
move(d,f64,sizeof(f64));
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
{ the arm fpu has a strange opinion how a double has to be stored }
l:=f64.low;
f64.low:=f64.high;
f64.high:=l;
{$endif FPC_DOUBLE_HILO_SWAPPED}
result:=float64_to_int64_round_to_zero(f64);
end
else
begin
move(d,f32,sizeof(f32));
result:=float32_to_int32_round_to_zero(f32);
end;
end;
{$endif not FPC_SYSTEM_HAS_TRUNC}
{$ifndef FPC_SYSTEM_HAS_INT}
{$ifdef SUPPORT_DOUBLE}
{ straight Pascal translation of the code for __trunc() in }
{ the file sysdeps/libm-ieee754/s_trunc.c of glibc (JM) }
function fpc_int_real(d: ValReal): ValReal;compilerproc;
var
i0, j0: longint;
i1: cardinal;
sx: longint;
f64 : float64;
begin
f64:=float64(d);
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
{ the arm fpu has a strange opinion how a double has to be stored }
i0:=f64.low;
f64.low:=f64.high;
f64.high:=i0;
{$endif FPC_DOUBLE_HILO_SWAPPED}
i0 := f64.high;
i1 := cardinal(f64.low);
sx := i0 and $80000000;
j0 := ((i0 shr 20) and $7ff) - $3ff;
if (j0 < 20) then
begin
if (j0 < 0) then
begin
{ the magnitude of the number is < 1 so the result is +-0. }
f64.high := sx;
f64.low := 0;
end
else
begin
f64.high := sx or (i0 and not($fffff shr j0));
f64.low := 0;
end
end
else if (j0 > 51) then
begin
if (j0 = $400) then
{ d is inf or NaN }
exit(d + d); { don't know why they do this (JM) }
end
else
begin
f64.high := i0;
f64.low := longint(i1 and not(cardinal($ffffffff) shr (j0 - 20)));
end;
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
{ the arm fpu has a strange opinion how a double has to be stored }
i0:=f64.low;
f64.low:=f64.high;
f64.high:=i0;
{$endif FPC_DOUBLE_HILO_SWAPPED}
result:=double(f64);
end;
{$else SUPPORT_DOUBLE}
function fpc_int_real(d : ValReal) : ValReal;compilerproc;
begin
{ this will be correct since real = single in the case of }
{ the motorola version of the compiler... }
result:=ValReal(trunc(d));
end;
{$endif SUPPORT_DOUBLE}
{$endif not FPC_SYSTEM_HAS_INT}
{$ifndef FPC_SYSTEM_HAS_ABS}
function fpc_abs_real(d : ValReal) : ValReal;compilerproc;
begin
if (d<0.0) then
result := -d
else
result := d ;
end;
{$endif not FPC_SYSTEM_HAS_ABS}
{$ifndef SYSTEM_HAS_FREXP}
function frexp(x:Real; out e:Integer ):Real;
{* frexp() extracts the exponent from x. It returns an integer *}
{* power of two to expnt and the significand between 0.5 and 1 *}
{* to y. Thus x = y * 2**expn. *}
begin
e :=0;
if (abs(x)<0.5) then
While (abs(x)<0.5) do
begin
x := x*2;
Dec(e);
end
else
While (abs(x)>1) do
begin
x := x/2;
Inc(e);
end;
frexp := x;
end;
{$endif not SYSTEM_HAS_FREXP}
{$ifndef SYSTEM_HAS_LDEXP}
function ldexp( x: Real; N: Integer):Real;
{* ldexp() multiplies x by 2**n. *}
var r : Real;
begin
R := 1;
if N>0 then
while N>0 do
begin
R:=R*2;
Dec(N);
end
else
while N<0 do
begin
R:=R/2;
Inc(N);
end;
ldexp := x * R;
end;
{$endif not SYSTEM_HAS_LDEXP}
function polevl(var x:Real; var Coef:TabCoef; N:Integer):Real;
{*****************************************************************}
{ Evaluate polynomial }
{*****************************************************************}
{ }
{ SYNOPSIS: }
{ }
{ int N; }
{ double x, y, coef[N+1], polevl[]; }
{ }
{ y = polevl( x, coef, N ); }
{ }
{ DESCRIPTION: }
{ }
{ Evaluates polynomial of degree N: }
{ }
{ 2 N }
{ y = C + C x + C x +...+ C x }
{ 0 1 2 N }
{ }
{ Coefficients are stored in reverse order: }
{ }
{ coef[0] = C , ..., coef[N] = C . }
{ N 0 }
{ }
{ The function p1evl() assumes that coef[N] = 1.0 and is }
{ omitted from the array. Its calling arguments are }
{ otherwise the same as polevl(). }
{ }
{ SPEED: }
{ }
{ In the interest of speed, there are no checks for out }
{ of bounds arithmetic. This routine is used by most of }
{ the functions in the library. Depending on available }
{ equipment features, the user may wish to rewrite the }
{ program in microcode or assembly language. }
{*****************************************************************}
var ans : Real;
i : Integer;
begin
ans := Coef[0];
for i:=1 to N do
ans := ans * x + Coef[i];
polevl:=ans;
end;
function p1evl(var x:Real; var Coef:TabCoef; N:Integer):Real;
{ }
{ Evaluate polynomial when coefficient of x is 1.0. }
{ Otherwise same as polevl. }
{ }
var
ans : Real;
i : Integer;
begin
ans := x + Coef[0];
for i:=1 to N-1 do
ans := ans * x + Coef[i];
p1evl := ans;
end;
{$ifndef FPC_SYSTEM_HAS_SQR}
function fpc_sqr_real(d : ValReal) : ValReal;compilerproc;{$ifdef MATHINLINE}inline;{$endif}
begin
result := d*d;
end;
{$endif}
{$ifndef FPC_SYSTEM_HAS_PI}
function fpc_pi_real : ValReal;compilerproc;{$ifdef MATHINLINE}inline;{$endif}
begin
result := 3.1415926535897932385;
end;
{$endif}
{$ifndef FPC_SYSTEM_HAS_SQRT}
function fpc_sqrt_real(d:ValReal):ValReal;compilerproc;
{*****************************************************************}
{ Square root }
{*****************************************************************}
{ }
{ SYNOPSIS: }
{ }
{ double x, y, sqrt(); }
{ }
{ y = sqrt( x ); }
{ }
{ DESCRIPTION: }
{ }
{ Returns the square root of x. }
{ }
{ Range reduction involves isolating the power of two of the }
{ argument and using a polynomial approximation to obtain }
{ a rough value for the square root. Then Heron's iteration }
{ is used three times to converge to an accurate value. }
{*****************************************************************}
var e : Integer;
w,z : Real;
begin
if( d <= 0.0 ) then
begin
if d < 0.0 then begin
float_raise(float_flag_invalid);
d := 0/0;
end;
result := 0.0;
end
else
begin
w := d;
{ separate exponent and significand }
z := frexp( d, e );
{ approximate square root of number between 0.5 and 1 }
{ relative error of approximation = 7.47e-3 }
d := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
{ adjust for odd powers of 2 }
if odd(e) then
d := d*SQRT2;
{ re-insert exponent }
d := ldexp( d, (e div 2) );
{ Newton iterations: }
d := 0.5*(d + w/d);
d := 0.5*(d + w/d);
d := 0.5*(d + w/d);
d := 0.5*(d + w/d);
d := 0.5*(d + w/d);
d := 0.5*(d + w/d);
result := d;
end;
end;
{$endif}
{$ifndef FPC_SYSTEM_HAS_EXP}
{$ifdef SUPPORT_DOUBLE}
{
This code was translated from uclib code, the original code
had the following copyright notice:
*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*}
{*
* Returns the exponential of x.
*
* Method
* 1. Argument reduction:
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2.
*
* Here r will be represented as r = hi-lo for better
* accuracy.
*
* 2. Approximation of exp(r) by a special rational function on
* the interval [0,0.34658]:
* Write
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
* We use a special Reme algorithm on [0,0.34658] to generate
* a polynomial of degree 5 to approximate R. The maximum error
* of this polynomial approximation is bounded by 2**-59. In
* other words,
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
* (where z=r*r, and the values of P1 to P5 are listed below)
* and
* | 5 | -59
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
* | |
* The computation of exp(r) thus becomes
* 2*r
* exp(r) = 1 + -------
* R - r
* r*R1(r)
* = 1 + r + ----------- (for better accuracy)
* 2 - R1(r)
* where
2 4 10
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
*
* 3. Scale back to obtain exp(x):
* From step 1, we have
* exp(x) = 2^k * exp(r)
*
* Special cases:
* exp(INF) is INF, exp(NaN) is NaN;
* exp(-INF) is 0, and
* for finite argument, only exp(0)=1 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then exp(x) overflow
* if x < -7.45133219101941108420e+02 then exp(x) underflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
}
function fpc_exp_real(d: ValReal):ValReal;compilerproc;
const
one = 1.0;
halF : array[0..1] of double = (0.5,-0.5);
huge = 1.0e+300;
twom1000 = 9.33263618503218878990e-302; { 2**-1000=0x01700000,0}
o_threshold = 7.09782712893383973096e+02; { 0x40862E42, 0xFEFA39EF }
u_threshold = -7.45133219101941108420e+02; { 0xc0874910, 0xD52D3051 }
ln2HI : array[0..1] of double = ( 6.93147180369123816490e-01, { 0x3fe62e42, 0xfee00000 }
-6.93147180369123816490e-01); { 0xbfe62e42, 0xfee00000 }
ln2LO : array[0..1] of double = (1.90821492927058770002e-10, { 0x3dea39ef, 0x35793c76 }
-1.90821492927058770002e-10); { 0xbdea39ef, 0x35793c76 }
invln2 = 1.44269504088896338700e+00; { 0x3ff71547, 0x652b82fe }
P1 = 1.66666666666666019037e-01; { 0x3FC55555, 0x5555553E }
P2 = -2.77777777770155933842e-03; { 0xBF66C16C, 0x16BEBD93 }
P3 = 6.61375632143793436117e-05; { 0x3F11566A, 0xAF25DE2C }
P4 = -1.65339022054652515390e-06; { 0xBEBBBD41, 0xC5D26BF1 }
P5 = 4.13813679705723846039e-08; { 0x3E663769, 0x72BEA4D0 }
var
c,hi,lo,t,y : double;
k,xsb : longint;
hx,hy,lx : dword;
begin
hi:=0.0;
lo:=0.0;
k:=0;
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
hx:=float64(d).low;
{$else}
hx:=float64(d).high;
{$endif FPC_DOUBLE_HILO_SWAPPED}
xsb := (hx shr 31) and 1; { sign bit of d }
hx := hx and $7fffffff; { high word of |d| }
{ filter out non-finite argument }
if hx >= $40862E42 then
begin { if |d|>=709.78... }
if hx >= $7ff00000 then
begin
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
lx:=float64(d).high;
{$else}
lx:=float64(d).low;
{$endif FPC_DOUBLE_HILO_SWAPPED}
if ((hx and $fffff) or lx)<>0 then
begin
result:=d+d; { NaN }
exit;
end
else
begin
if xsb=0 then begin
float_raise(float_flag_overflow);
result:=d
end else
result:=0.0; { exp(+-inf)=begininf,0end }
exit;
end;
end;
if d > o_threshold then begin
float_raise(float_flag_overflow); { overflow }
exit;
end;
if d < u_threshold then begin
float_raise(float_flag_underflow); { underflow }
exit;
end;
end;
{ argument reduction }
if hx > $3fd62e42 then
begin { if |d| > 0.5 ln2 }
if hx < $3FF0A2B2 then { and |d| < 1.5 ln2 }
begin
hi := d-ln2HI[xsb];
lo:=ln2LO[xsb];
k := 1-xsb-xsb;
end
else
begin
k := round(invln2*d+halF[xsb]);
t := k;
hi := d - t*ln2HI[0]; { t*ln2HI is exact here }
lo := t*ln2LO[0];
end;
d := hi - lo;
end
else if hx < $3e300000 then
begin { when |d|<2**-28 }
if huge+d>one then
begin
result:=one+d;{ trigger inexact }
exit;
end;
end
else
k := 0;
{ d is now in primary range }
t:=d*d;
c:=d - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
if k=0 then
begin
result:=one-((d*c)/(c-2.0)-d);
exit;
end
else
y := one-((lo-(d*c)/(2.0-c))-hi);
if k >= -1021 then
begin
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
hy:=float64(y).low;
float64(y).low:=longint(hy)+(k shl 20); { add k to y's exponent }
{$else}
hy:=float64(y).high;
float64(y).high:=longint(hy)+(k shl 20); { add k to y's exponent }
{$endif FPC_DOUBLE_HILO_SWAPPED}
result:=y;
end
else
begin
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
hy:=float64(y).low;
float64(y).low:=longint(hy)+((k+1000) shl 20); { add k to y's exponent }
{$else}
hy:=float64(y).high;
float64(y).high:=longint(hy)+((k+1000) shl 20); { add k to y's exponent }
{$endif FPC_DOUBLE_HILO_SWAPPED}
result:=y*twom1000;
end;
end;
{$else SUPPORT_DOUBLE}
function fpc_exp_real(d: ValReal):ValReal;compilerproc;
{*****************************************************************}
{ Exponential Function }
{*****************************************************************}
{ }
{ SYNOPSIS: }
{ }
{ double x, y, exp(); }
{ }
{ y = exp( x ); }
{ }
{ DESCRIPTION: }
{ }
{ Returns e (2.71828...) raised to the x power. }
{ }
{ Range reduction is accomplished by separating the argument }
{ into an integer k and fraction f such that }
{ }
{ x k f }
{ e = 2 e. }
{ }
{ A Pade' form of degree 2/3 is used to approximate exp(f)- 1 }
{ in the basic range [-0.5 ln 2, 0.5 ln 2]. }
{*****************************************************************}
const P : TabCoef = (
1.26183092834458542160E-4,
3.02996887658430129200E-2,
1.00000000000000000000E0, 0, 0, 0, 0);
Q : TabCoef = (
3.00227947279887615146E-6,
2.52453653553222894311E-3,
2.27266044198352679519E-1,
2.00000000000000000005E0, 0 ,0 ,0);
C1 = 6.9335937500000000000E-1;
C2 = 2.1219444005469058277E-4;
var n : Integer;
px, qx, xx : Real;
begin
if( d > MAXLOG) then
float_raise(float_flag_overflow)
else
if( d < MINLOG ) then
begin
float_raise(float_flag_underflow);
end
else
begin
{ Express e**x = e**g 2**n }
{ = e**g e**( n loge(2) ) }
{ = e**( g + n loge(2) ) }
px := d * LOG2E;
qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
n := Trunc(qx);
d := d - qx * C1;
d := d + qx * C2;
{ rational approximation for exponential }
{ of the fractional part: }
{ e**x - 1 = 2x P(x**2)/( Q(x**2) - P(x**2) ) }
xx := d * d;
px := d * polevl( xx, P, 2 );
d := px/( polevl( xx, Q, 3 ) - px );
d := ldexp( d, 1 );
d := d + 1.0;
d := ldexp( d, n );
result := d;
end;
end;
{$endif SUPPORT_DOUBLE}
{$endif}
{$ifndef FPC_SYSTEM_HAS_ROUND}
function fpc_round_real(d : ValReal) : int64;compilerproc;
var
fr: ValReal;
tr: Int64;
Begin
fr := abs(Frac(d));
tr := Trunc(d);
case softfloat_rounding_mode of
float_round_nearest_even:
begin
if fr > 0.5 then
if d >= 0 then
result:=tr+1
else
result:=tr-1
else
if fr < 0.5 then
result:=tr
else { fr = 0.5 }
{ check sign to decide ... }
{ as in Turbo Pascal... }
begin
if d >= 0.0 then
result:=tr+1
else
result:=tr;
{ round to even }
result:=result and not(1);
end;
end;
float_round_down:
if (d >= 0.0) or
(fr = 0.0) then
result:=tr
else
result:=tr-1;
float_round_up:
if (d >= 0.0) and
(fr <> 0.0) then
result:=tr+1
else
result:=tr;
float_round_to_zero:
result:=tr;
end;
end;
{$endif FPC_SYSTEM_HAS_ROUND}
{$ifndef FPC_SYSTEM_HAS_LN}
function fpc_ln_real(d:ValReal):ValReal;compilerproc;
{*****************************************************************}
{ Natural Logarithm }
{*****************************************************************}
{ }
{ SYNOPSIS: }
{ }
{ double x, y, log(); }
{ }
{ y = ln( x ); }
{ }
{ DESCRIPTION: }
{ }
{ Returns the base e (2.718...) logarithm of x. }
{ }
{ The argument is separated into its exponent and fractional }
{ parts. If the exponent is between -1 and +1, the logarithm }
{ of the fraction is approximated by }
{ }
{ log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). }
{ }
{ Otherwise, setting z = 2(x-1)/x+1), }
{ }
{ log(x) = z + z**3 P(z)/Q(z). }
{ }
{*****************************************************************}
const P : TabCoef = (
{ Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
1/sqrt(2) <= x < sqrt(2) }
4.58482948458143443514E-5,
4.98531067254050724270E-1,
6.56312093769992875930E0,
2.97877425097986925891E1,
6.06127134467767258030E1,
5.67349287391754285487E1,
1.98892446572874072159E1);
Q : TabCoef = (
1.50314182634250003249E1,
8.27410449222435217021E1,
2.20664384982121929218E2,
3.07254189979530058263E2,
2.14955586696422947765E2,
5.96677339718622216300E1, 0);
{ Coefficients for log(x) = z + z**3 P(z)/Q(z),
where z = 2(x-1)/(x+1)
1/sqrt(2) <= x < sqrt(2) }
R : TabCoef = (
-7.89580278884799154124E-1,
1.63866645699558079767E1,
-6.41409952958715622951E1, 0, 0, 0, 0);
S : TabCoef = (
-3.56722798256324312549E1,
3.12093766372244180303E2,
-7.69691943550460008604E2, 0, 0, 0, 0);
var e : Integer;
z, y : Real;
Label Ldone;
begin
if( d <= 0.0 ) then
begin
float_raise(float_flag_invalid);
exit;
end;
d := frexp( d, e );
{ logarithm using log(x) = z + z**3 P(z)/Q(z),
where z = 2(x-1)/x+1) }
if( (e > 2) or (e < -2) ) then
begin
if( d < SQRTH ) then
begin
{ 2( 2x-1 )/( 2x+1 ) }
Dec(e, 1);
z := d - 0.5;
y := 0.5 * z + 0.5;
end
else
begin
{ 2 (x-1)/(x+1) }
z := d - 0.5;
z := z - 0.5;
y := 0.5 * d + 0.5;
end;
d := z / y;
{ /* rational form */ }
z := d*d;
z := d + d * ( z * polevl( z, R, 2 ) / p1evl( z, S, 3 ) );
goto ldone;
end;
{ logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) }
if( d < SQRTH ) then
begin
Dec(e, 1);
d := ldexp( d, 1 ) - 1.0; { 2x - 1 }
end
else
d := d - 1.0;
{ rational form }
z := d*d;
y := d * ( z * polevl( d, P, 6 ) / p1evl( d, Q, 6 ) );
y := y - ldexp( z, -1 ); { y - 0.5 * z }
z := d + y;
ldone:
{ recombine with exponent term }
if( e <> 0 ) then
begin
y := e;
z := z - y * 2.121944400546905827679e-4;
z := z + y * 0.693359375;
end;
result:= z;
end;
{$endif}
{$ifndef FPC_SYSTEM_HAS_SIN}
function fpc_Sin_real(d:ValReal):ValReal;compilerproc;
{*****************************************************************}
{ Circular Sine }
{*****************************************************************}
{ }
{ SYNOPSIS: }
{ }
{ double x, y, sin(); }
{ }
{ y = sin( x ); }
{ }
{ DESCRIPTION: }
{ }
{ Range reduction is into intervals of pi/4. The reduction }
{ error is nearly eliminated by contriving an extended }
{ precision modular arithmetic. }
{ }
{ Two polynomial approximating functions are employed. }
{ Between 0 and pi/4 the sine is approximated by }
{ x + x**3 P(x**2). }
{ Between pi/4 and pi/2 the cosine is represented as }
{ 1 - x**2 Q(x**2). }
{*****************************************************************}
var y, z, zz : Real;
j, sign : Integer;
begin
{ make argument positive but save the sign }
sign := 1;
if( d < 0 ) then
begin
d := -d;
sign := -1;
end;
{ above this value, approximate towards 0 }
if( d > lossth ) then
begin
result := 0.0;
exit;
end;
y := Trunc( d/PIO4 ); { integer part of x/PIO4 }
{ strip high bits of integer part to prevent integer overflow }
z := ldexp( y, -4 );
z := Trunc(z); { integer part of y/8 }
z := y - ldexp( z, 4 ); { y - 16 * (y/16) }
j := Trunc(z); { convert to integer for tests on the phase angle }
{ map zeros to origin }
{ typecast is to avoid "can't determine which overloaded function }
{ to call" }
if odd( longint(j) ) then
begin
inc(j);
y := y + 1.0;
end;
j := j and 7; { octant modulo 360 degrees }
{ reflect in x axis }
if( j > 3) then
begin
sign := -sign;
dec(j, 4);
end;
{ Extended precision modular arithmetic }
z := ((d - y * DP1) - y * DP2) - y * DP3;
zz := z * z;
if( (j=1) or (j=2) ) then
y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 )
else
{ y = z + z * (zz * polevl( zz, sincof, 5 )); }
y := z + z * z * z * polevl( zz, sincof, 5 );
if(sign < 0) then
y := -y;
result := y;
end;
{$endif}
{$ifndef FPC_SYSTEM_HAS_COS}
function fpc_Cos_real(d:ValReal):ValReal;compilerproc;
{*****************************************************************}
{ Circular cosine }
{*****************************************************************}
{ }
{ Circular cosine }
{ }
{ SYNOPSIS: }
{ }
{ double x, y, cos(); }
{ }
{ y = cos( x ); }
{ }
{ DESCRIPTION: }
{ }
{ Range reduction is into intervals of pi/4. The reduction }
{ error is nearly eliminated by contriving an extended }
{ precision modular arithmetic. }
{ }
{ Two polynomial approximating functions are employed. }
{ Between 0 and pi/4 the cosine is approximated by }
{ 1 - x**2 Q(x**2). }
{ Between pi/4 and pi/2 the sine is represented as }
{ x + x**3 P(x**2). }
{*****************************************************************}
var y, z, zz : Real;
j, sign : Integer;
i : LongInt;
begin
{ make argument positive }
sign := 1;
if( d < 0 ) then
d := -d;
{ above this value, round towards zero }
if( d > lossth ) then
begin
result := 0.0;
exit;
end;
y := Trunc( d/PIO4 );
z := ldexp( y, -4 );
z := Trunc(z); { integer part of y/8 }
z := y - ldexp( z, 4 ); { y - 16 * (y/16) }
{ integer and fractional part modulo one octant }
i := Trunc(z);
if odd( i ) then { map zeros to origin }
begin
inc(i);
y := y + 1.0;
end;
j := i and 07;
if( j > 3) then
begin
dec(j,4);
sign := -sign;
end;
if( j > 1 ) then
sign := -sign;
{ Extended precision modular arithmetic }
z := ((d - y * DP1) - y * DP2) - y * DP3;
zz := z * z;
if( (j=1) or (j=2) ) then
{ y = z + z * (zz * polevl( zz, sincof, 5 )); }
y := z + z * z * z * polevl( zz, sincof, 5 )
else
y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
if(sign < 0) then
y := -y;
result := y ;
end;
{$endif}
{$ifndef FPC_SYSTEM_HAS_ARCTAN}
function fpc_ArcTan_real(d:ValReal):ValReal;compilerproc;
{*****************************************************************}
{ Inverse circular tangent (arctangent) }
{*****************************************************************}
{ }
{ SYNOPSIS: }
{ }
{ double x, y, atan(); }
{ }
{ y = atan( x ); }
{ }
{ DESCRIPTION: }
{ }
{ Returns radian angle between -pi/2 and +pi/2 whose tangent }
{ is x. }
{ }
{ Range reduction is from four intervals into the interval }
{ from zero to tan( pi/8 ). The approximant uses a rational }
{ function of degree 3/4 of the form x + x**3 P(x)/Q(x). }
{*****************************************************************}
const P : TabCoef = (
-8.40980878064499716001E-1,
-8.83860837023772394279E0,
-2.18476213081316705724E1,
-1.48307050340438946993E1, 0, 0, 0);
Q : TabCoef = (
1.54974124675307267552E1,
6.27906555762653017263E1,
9.22381329856214406485E1,
4.44921151021319438465E1, 0, 0, 0);
{ tan( 3*pi/8 ) }
T3P8 = 2.41421356237309504880;
{ tan( pi/8 ) }
TP8 = 0.41421356237309504880;
var y,z : Real;
Sign : Integer;
begin
{ make argument positive and save the sign }
sign := 1;
if( d < 0.0 ) then
begin
sign := -1;
d := -d;
end;
{ range reduction }
if( d > T3P8 ) then
begin
y := PIO2;
d := -( 1.0/d );
end
else if( d > TP8 ) then
begin
y := PIO4;
d := (d-1.0)/(d+1.0);
end
else
y := 0.0;
{ rational form in x**2 }
z := d * d;
y := y + ( polevl( z, P, 3 ) / p1evl( z, Q, 4 ) ) * z * d + d;
if( sign < 0 ) then
y := -y;
result := y;
end;
{$endif}
{$ifndef FPC_SYSTEM_HAS_FRAC}
function fpc_frac_real(d : ValReal) : ValReal;compilerproc;
begin
result := d - Int(d);
end;
{$endif}
{$ifdef FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE}
{$ifndef FPC_SYSTEM_HAS_QWORD_TO_DOUBLE}
function fpc_qword_to_double(q : qword): double; compilerproc;
begin
result:=dword(q and $ffffffff)+dword(q shr 32)*double(4294967296.0);
end;
{$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
{$ifndef FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
function fpc_int64_to_double(i : int64): double; compilerproc;
begin
if i<0 then
result:=-double(qword(-i))
else
result:=qword(i);
end;
{$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
{$endif FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE}
{$ifdef SUPPORT_DOUBLE}
{****************************************************************************
Helper routines to support old TP styled reals
****************************************************************************}
{$ifndef FPC_SYSTEM_HAS_REAL2DOUBLE}
function real2double(r : real48) : double;
var
res : array[0..7] of byte;
exponent : word;
begin
{ check for zero }
if r[0]=0 then
begin
real2double:=0.0;
exit;
end;
{ copy mantissa }
res[0]:=0;
res[1]:=r[1] shl 5;
res[2]:=(r[1] shr 3) or (r[2] shl 5);
res[3]:=(r[2] shr 3) or (r[3] shl 5);
res[4]:=(r[3] shr 3) or (r[4] shl 5);
res[5]:=(r[4] shr 3) or (r[5] and $7f) shl 5;
res[6]:=(r[5] and $7f) shr 3;
{ copy exponent }
{ correct exponent: }
exponent:=(word(r[0])+(1023-129));
res[6]:=res[6] or ((exponent and $f) shl 4);
res[7]:=exponent shr 4;
{ set sign }
res[7]:=res[7] or (r[5] and $80);
real2double:=double(res);
end;
{$endif FPC_SYSTEM_HAS_REAL2DOUBLE}
{$endif SUPPORT_DOUBLE}
{$ifdef SUPPORT_EXTENDED}
{ fast 10^n routine }
function FPower10(val: Extended; Power: Longint): Extended;
const
pow32 : array[0..31] of extended =
(
1e0,1e1,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,
1e11,1e12,1e13,1e14,1e15,1e16,1e17,1e18,1e19,1e20,
1e21,1e22,1e23,1e24,1e25,1e26,1e27,1e28,1e29,1e30,
1e31
);
pow512 : array[0..15] of extended =
(
1,1e32,1e64,1e96,1e128,1e160,1e192,1e224,
1e256,1e288,1e320,1e352,1e384,1e416,1e448,
1e480
);
pow4096 : array[0..9] of extended =
(1,1e512,1e1024,1e1536,
1e2048,1e2560,1e3072,1e3584,
1e4096,1e4608
);
negpow32 : array[0..31] of extended =
(
1e-0,1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7,1e-8,1e-9,1e-10,
1e-11,1e-12,1e-13,1e-14,1e-15,1e-16,1e-17,1e-18,1e-19,1e-20,
1e-21,1e-22,1e-23,1e-24,1e-25,1e-26,1e-27,1e-28,1e-29,1e-30,
1e-31
);
negpow512 : array[0..15] of extended =
(
0,1e-32,1e-64,1e-96,1e-128,1e-160,1e-192,1e-224,
1e-256,1e-288,1e-320,1e-352,1e-384,1e-416,1e-448,
1e-480
);
negpow4096 : array[0..9] of extended =
(
0,1e-512,1e-1024,1e-1536,
1e-2048,1e-2560,1e-3072,1e-3584,
1e-4096,1e-4608
);
begin
if Power<0 then
begin
Power:=-Power;
result:=val*negpow32[Power and $1f];
power:=power shr 5;
if power<>0 then
begin
result:=result*negpow512[Power and $f];
power:=power shr 4;
if power<>0 then
begin
if power<=9 then
result:=result*negpow4096[Power]
else
result:=1.0/0.0;
end;
end;
end
else
begin
result:=val*pow32[Power and $1f];
power:=power shr 5;
if power<>0 then
begin
result:=result*pow512[Power and $f];
power:=power shr 4;
if power<>0 then
begin
if power<=9 then
result:=result*pow4096[Power]
else
result:=1.0/0.0;
end;
end;
end;
end;
{$endif SUPPORT_EXTENDED}
|