1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
program Whet;
{$IFDEF VirtualPascal}
{$AlignCode+,AlignData+,AlignRec+,Asm-,B-,Cdecl-,D-,Delphi-,Frame+,G4+,I-}
{$Optimise+,OrgName-,P-,Q-,R-,SmartLink+,Speed+,T-,V-,W-,X+,Z-,ZD-}
uses
Dos, Os2Def, Os2Base;
{$ENDIF}
{$IFDEF Speed}
{$B-,D-,I-,L-,O-,Q-,R-,S-,V-,Z-}
uses
Dos, BseDos;
{$ENDIF}
{$IFDEF Speed_Pascal_20}
{$B-,D-,I-,L-,O-,Q-,R-,S-,V-,Z-}
uses
Dos,BseDos,OS2Def;
{$ENDIF}
{$IFDEF VER70}
{$A+,B-,D-,E-,F-,G+,I-,L-,N+,O-,P-,Q-,R-,S-,T-,V-,X-,Y-}
{$M 16384,0,655360}
uses
OpTimer, Dos;
{$ENDIF}
{$IFDEF Delphi}
uses
Dmisc;
{$ENDIF Delphi}
{$IFDEF FPC}
uses
Dos;
{$ENDIF FPC}
(**********************************************************************
C Benchmark Double Precision Whetstone (A001)
C
C o This is a LONGREAL*8 version of
C the Whetstone benchmark program.
C o FOR-loop semantics are ANSI-66 compatible.
C o Final measurements are to be made with all
C WRITE statements and FORMAT sttements removed.
C
C**********************************************************************)
const
(* With loopcount NLoop=10, one million Whetstone instructions
will be executed in each major loop.
A major loop is executed 'II' times to increase wall-clock timing accuracy *)
NLoopValue = 100;
{$IFDEF OS2}
function TimeNow : LongInt;
var
Clocks : LongInt;
rc : ApiRet;
begin
rc := DosQuerySysInfo(qsv_Ms_Count, qsv_Ms_Count, Clocks, SizeOf(Clocks));
TimeNow := Clocks;
end;
{$ELSE}
function TimeNow : Int64;
var
h,m,s,s100 : word;
begin
gettime(h,m,s,s100);
TimeNow := h*3600*1000+m*60*1000+s*1000+s100*10;
end;
{$ENDIF}
TYPE ARRAY4 = ARRAY [1..4] OF DOUBLE;
VAR E1 : ARRAY4;
T, T1, T2 : DOUBLE;
J, K, L : LONGINT;
ptime, time0, time1 : DOUBLE;
PROCEDURE PA (VAR E : ARRAY4);
VAR J1 : LONGINT;
BEGIN
J1 := 0;
REPEAT
E [1] := ( E [1] + E [2] + E [3] - E [4]) * T;
E [2] := ( E [1] + E [2] - E [3] + E [4]) * T;
E [3] := ( E [1] - E [2] + E [3] + E [4]) * T;
E [4] := (-E [1] + E [2] + E [3] + E [4]) / T2;
J1 := J1 + 1;
UNTIL J1 >= 6;
END;
PROCEDURE P0;
BEGIN
E1 [J] := E1 [K]; E1 [K] := E1 [L]; E1 [L] := E1 [J];
END;
PROCEDURE P3 (X,Y : DOUBLE; VAR Z : DOUBLE);
VAR X1, Y1 : DOUBLE;
BEGIN
X1 := X;
Y1 := Y;
X1 := T * (X1 + Y1);
Y1 := T * (X1 + Y1);
Z := (X1 + Y1)/T2;
END;
PROCEDURE POUT (N, J, K : LONGINT; X1, X2, X3, X4 : DOUBLE);
VAR time1 : double;
BEGIN
{
time1 := TimeNow;
WriteLn(time1-time0:6:1,time1-ptime:6,N:6,J:6,K:6,' ',
X1:10,' ', X2:10,' ',X3:10,' ',X4:10);
ptime := time1;
}
END;
PROCEDURE DoIt;
VAR NLoop, I, II, JJ : LONGINT;
N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, N11 : LONGINT;
X1, X2, X3, X4, X, Y, Z : DOUBLE;
BEGIN
time0 := TimeNow;
ptime := time0;
(* The actual benchmark starts here. *)
T := 0.499975;
T1 := 0.50025;
T2 := 2.0;
NLoop := NLoopValue;
II := 400;
FOR JJ:=1 TO II DO BEGIN
(* Establish the relative loop counts of each module. *)
N1 := 0;
N2 := 12 * NLoop;
N3 := 14 * NLoop;
N4 := 345 * NLoop;
N5 := 0;
N6 := 210 * NLoop;
N7 := 32 * NLoop;
N8 := 899 * NLoop;
N9 := 616 * NLoop;
N10 := 0;
N11 := 93 * NLoop;
(* Module 1: Simple identifiers *)
X1 := 1.0;
X2 := -1.0;
X3 := -1.0;
X4 := -1.0;
FOR I:=1 TO N1 DO BEGIN
X1 := (X1 + X2 + X3 - X4)*T;
X2 := (X1 + X2 - X3 + X4)*T;
X3 := (X1 - X2 + X3 + X4)*T;
X4 := (-X1 + X2 + X3 + X4)*T;
END;
IF (JJ = II) THEN BEGIN
POUT (N1, N1, N1, X1, X2, X3, X4);
END;
(* Module 2: Array elements *)
E1 [1] := 1.0;
E1 [2] := -1.0;
E1 [3] := -1.0;
E1 [4] := -1.0;
FOR I:=1 TO N2 DO BEGIN
E1 [1] := (E1 [1] + E1 [2] + E1 [3] - E1 [4])*T;
E1 [2] := (E1 [1] + E1 [2] - E1 [3] + E1 [4])*T;
E1 [3] := (E1 [1] - E1 [2] + E1 [3] + E1 [4])*T;
E1 [4] := (-E1 [1] + E1 [2] + E1 [3] + E1 [4])*T;
END;
IF (JJ = II) THEN BEGIN
POUT (N2, N3, N2, E1 [1], E1 [2], E1 [3], E1 [4]);
END;
(* Module 3: Array as parameter *)
FOR I:=1 TO N3 DO BEGIN
PA (E1);
END;
IF (JJ = II) THEN BEGIN
POUT(N3, N2, N2, E1 [1], E1 [2], E1 [3], E1 [4]);
END;
(* Module 4: Conditional jumps *)
J := 1;
FOR I:=1 TO N4 DO BEGIN
IF (J <> 1) THEN J := 3 ELSE J := 2;
IF (J <= 2) THEN J := 1 ELSE J := 0;
IF (J >= 1) THEN J := 0 ELSE J := 1;
END;
IF (JJ = II) THEN BEGIN
POUT (N4, J, J, X1, X2, X3, X4)
END;
(* Module 5: Omitted; Module 6: Integer arithmetic *)
J := 1;
K := 2;
L := 3;
FOR I:=1 TO N6 DO BEGIN
J := J * (K-J) * (L-K);
K := L * K - (L-J) * K;
L := (L - K) * (K + J);
E1 [L-1] := (J + K + L);
E1 [K-1] := (J * K * L);
END;
IF (JJ = II) THEN BEGIN
POUT (N6, J, K, E1 [1], E1 [2], E1 [3], E1 [4]);
END;
(* Module 7: Trigonometric functions *)
X := 0.5;
Y := 0.5;
FOR I:=1 TO N7 DO BEGIN
X:=T*arctan(T2*sin(X)*cos(X)/(cos(X+Y)+cos(X-Y)-1.0));
Y:=T*arctan(T2*sin(Y)*cos(Y)/(cos(X+Y)+cos(X-Y)-1.0));
END;
IF (JJ = II) THEN BEGIN
POUT (N7, J, K, X, X, Y, Y);
END;
(* Module 8: Procedure calls *)
X := 1.0;
Y := 1.0;
Z := 1.0;
FOR I:=1 TO N8 DO BEGIN
P3 (X,Y,Z);
END;
IF (JJ = II) THEN BEGIN
POUT (N8, J, K, X, Y, Z, Z);
END;
(* Module 9: Array references *)
J := 1;
K := 2;
L := 3;
E1 [1] := 1.0;
E1 [2] := 2.0;
E1 [3] := 3.0;
FOR I:=1 TO N9 DO BEGIN
P0;
END;
IF (JJ = II) THEN BEGIN
POUT (N9, J, K, E1 [1], E1 [2], E1 [3], E1 [4])
END;
(* Module 10: Integer arithmetic *)
J := 2;
K := 3;
FOR I:=1 TO N10 DO BEGIN
J := J + K;
K := J + K;
J := K - J;
K := K - J - J;
END;
IF (JJ = II) THEN BEGIN
POUT (N10, J, K, X1, X2, X3, X4)
END;
(* Module 11: Standard functions *)
X := 0.75;
FOR I:=1 TO N11 DO BEGIN
X := sqrt (exp (ln (X)/T1))
// x:=sqrt(x);
END;
IF (JJ = II) THEN BEGIN
POUT (N11, J, K, X, X, X, X)
END;
(* THIS IS THE END OF THE MAJOR LOOP. *)
END;
(* Stop benchmark timing at this point. *)
time1 := TimeNow;
(*----------------------------------------------------------------
Performance in Whetstone KIP's per second is given by
(100*NLoop*II)/TIME
where TIME is in seconds.
--------------------------------------------------------------------*)
WriteLn;
WriteLn ('Double Whetstone KIPS ',
(TRUNC ((100.0 * NLoop * II) * 1000 / (time1 - time0))));
WriteLn ('Whetstone MIPS ',
1.0*NLoop*II * 1000 / (time1 - time0):12:2);
END;
BEGIN
DoIt;
END.
|