summaryrefslogtreecommitdiff
path: root/fpcsrc/tests/test/alglib/u_corr.pp
blob: 7649b6471278c611ef3374b5da3892921e12fb34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
(*************************************************************************
Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************)
unit u_corr;
interface
uses Math, Sysutils, u_ap, u_ftbase, u_fft, u_conv;

procedure CorrC1D(const Signal : TComplex1DArray;
     N : Integer;
     const Pattern : TComplex1DArray;
     M : Integer;
     var R : TComplex1DArray);
procedure CorrC1DCircular(const Signal : TComplex1DArray;
     M : Integer;
     const Pattern : TComplex1DArray;
     N : Integer;
     var C : TComplex1DArray);
procedure CorrR1D(const Signal : TReal1DArray;
     N : Integer;
     const Pattern : TReal1DArray;
     M : Integer;
     var R : TReal1DArray);
procedure CorrR1DCircular(const Signal : TReal1DArray;
     M : Integer;
     const Pattern : TReal1DArray;
     N : Integer;
     var C : TReal1DArray);

implementation

(*************************************************************************
1-dimensional complex cross-correlation.

For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).

Correlation is calculated using reduction to  convolution.  Algorithm with
max(N,N)*log(max(N,N)) complexity is used (see  ConvC1D()  for  more  info
about performance).

IMPORTANT:
    for  historical reasons subroutine accepts its parameters in  reversed
    order: CorrC1D(Signal, Pattern) = Pattern x Signal (using  traditional
    definition of cross-correlation, denoting cross-correlation as "x").

INPUT PARAMETERS
    Signal  -   array[0..N-1] - complex function to be transformed,
                signal containing pattern
    N       -   problem size
    Pattern -   array[0..M-1] - complex function to be transformed,
                pattern to search withing signal
    M       -   problem size

OUTPUT PARAMETERS
    R       -   cross-correlation, array[0..N+M-2]:
                * positive lags are stored in R[0..N-1],
                  R[i] = sum(conj(pattern[j])*signal[i+j]
                * negative lags are stored in R[N..N+M-2],
                  R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]

NOTE:
    It is assumed that pattern domain is [0..M-1].  If Pattern is non-zero
on [-K..M-1],  you can still use this subroutine, just shift result by K.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************)
procedure CorrC1D(const Signal : TComplex1DArray;
     N : Integer;
     const Pattern : TComplex1DArray;
     M : Integer;
     var R : TComplex1DArray);
var
    P : TComplex1DArray;
    B : TComplex1DArray;
    I : Integer;
    i_ : Integer;
    i1_ : Integer;
begin
    Assert((N>0) and (M>0), 'CorrC1D: incorrect N or M!');
    SetLength(P, M);
    I:=0;
    while I<=M-1 do
    begin
        P[M-1-I] := Conj(Pattern[I]);
        Inc(I);
    end;
    ConvC1D(P, M, Signal, N, B);
    SetLength(R, M+N-1);
    i1_ := (M-1) - (0);
    for i_ := 0 to N-1 do
    begin
        R[i_] := B[i_+i1_];
    end;
    if M+N-2>=N then
    begin
        i1_ := (0) - (N);
        for i_ := N to M+N-2 do
        begin
            R[i_] := B[i_+i1_];
        end;
    end;
end;


(*************************************************************************
1-dimensional circular complex cross-correlation.

For given Pattern/Signal returns corr(Pattern,Signal) (circular).
Algorithm has linearithmic complexity for any M/N.

IMPORTANT:
    for  historical reasons subroutine accepts its parameters in  reversed
    order:   CorrC1DCircular(Signal, Pattern) = Pattern x Signal    (using
    traditional definition of cross-correlation, denoting cross-correlation
    as "x").

INPUT PARAMETERS
    Signal  -   array[0..N-1] - complex function to be transformed,
                periodic signal containing pattern
    N       -   problem size
    Pattern -   array[0..M-1] - complex function to be transformed,
                non-periodic pattern to search withing signal
    M       -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..M-1].


  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************)
procedure CorrC1DCircular(const Signal : TComplex1DArray;
     M : Integer;
     const Pattern : TComplex1DArray;
     N : Integer;
     var C : TComplex1DArray);
var
    P : TComplex1DArray;
    B : TComplex1DArray;
    I1 : Integer;
    I2 : Integer;
    I : Integer;
    J2 : Integer;
    i_ : Integer;
    i1_ : Integer;
begin
    Assert((N>0) and (M>0), 'ConvC1DCircular: incorrect N or M!');
    
    //
    // normalize task: make M>=N,
    // so A will be longer (at least - not shorter) that B.
    //
    if M<N then
    begin
        SetLength(B, M);
        I1:=0;
        while I1<=M-1 do
        begin
            B[I1] := C_Complex(0);
            Inc(I1);
        end;
        I1 := 0;
        while I1<N do
        begin
            I2 := Min(I1+M-1, N-1);
            J2 := I2-I1;
            i1_ := (I1) - (0);
            for i_ := 0 to J2 do
            begin
                B[i_] := C_Add(B[i_], Pattern[i_+i1_]);
            end;
            I1 := I1+M;
        end;
        CorrC1DCircular(Signal, M, B, M, C);
        Exit;
    end;
    
    //
    // Task is normalized
    //
    SetLength(P, N);
    I:=0;
    while I<=N-1 do
    begin
        P[N-1-I] := Conj(Pattern[I]);
        Inc(I);
    end;
    ConvC1DCircular(Signal, M, P, N, B);
    SetLength(C, M);
    i1_ := (N-1) - (0);
    for i_ := 0 to M-N do
    begin
        C[i_] := B[i_+i1_];
    end;
    if M-N+1<=M-1 then
    begin
        i1_ := (0) - (M-N+1);
        for i_ := M-N+1 to M-1 do
        begin
            C[i_] := B[i_+i1_];
        end;
    end;
end;


(*************************************************************************
1-dimensional real cross-correlation.

For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).

Correlation is calculated using reduction to  convolution.  Algorithm with
max(N,N)*log(max(N,N)) complexity is used (see  ConvC1D()  for  more  info
about performance).

IMPORTANT:
    for  historical reasons subroutine accepts its parameters in  reversed
    order: CorrR1D(Signal, Pattern) = Pattern x Signal (using  traditional
    definition of cross-correlation, denoting cross-correlation as "x").

INPUT PARAMETERS
    Signal  -   array[0..N-1] - real function to be transformed,
                signal containing pattern
    N       -   problem size
    Pattern -   array[0..M-1] - real function to be transformed,
                pattern to search withing signal
    M       -   problem size

OUTPUT PARAMETERS
    R       -   cross-correlation, array[0..N+M-2]:
                * positive lags are stored in R[0..N-1],
                  R[i] = sum(pattern[j]*signal[i+j]
                * negative lags are stored in R[N..N+M-2],
                  R[N+M-1-i] = sum(pattern[j]*signal[-i+j]

NOTE:
    It is assumed that pattern domain is [0..M-1].  If Pattern is non-zero
on [-K..M-1],  you can still use this subroutine, just shift result by K.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************)
procedure CorrR1D(const Signal : TReal1DArray;
     N : Integer;
     const Pattern : TReal1DArray;
     M : Integer;
     var R : TReal1DArray);
var
    P : TReal1DArray;
    B : TReal1DArray;
    I : Integer;
begin
    Assert((N>0) and (M>0), 'CorrR1D: incorrect N or M!');
    SetLength(P, M);
    I:=0;
    while I<=M-1 do
    begin
        P[M-1-I] := Pattern[I];
        Inc(I);
    end;
    ConvR1D(P, M, Signal, N, B);
    SetLength(R, M+N-1);
    APVMove(@R[0], 0, N-1, @B[0], M-1, M+N-2);
    if M+N-2>=N then
    begin
        APVMove(@R[0], N, M+N-2, @B[0], 0, M-2);
    end;
end;


(*************************************************************************
1-dimensional circular real cross-correlation.

For given Pattern/Signal returns corr(Pattern,Signal) (circular).
Algorithm has linearithmic complexity for any M/N.

IMPORTANT:
    for  historical reasons subroutine accepts its parameters in  reversed
    order:   CorrR1DCircular(Signal, Pattern) = Pattern x Signal    (using
    traditional definition of cross-correlation, denoting cross-correlation
    as "x").

INPUT PARAMETERS
    Signal  -   array[0..N-1] - real function to be transformed,
                periodic signal containing pattern
    N       -   problem size
    Pattern -   array[0..M-1] - real function to be transformed,
                non-periodic pattern to search withing signal
    M       -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..M-1].


  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************)
procedure CorrR1DCircular(const Signal : TReal1DArray;
     M : Integer;
     const Pattern : TReal1DArray;
     N : Integer;
     var C : TReal1DArray);
var
    P : TReal1DArray;
    B : TReal1DArray;
    I1 : Integer;
    I2 : Integer;
    I : Integer;
    J2 : Integer;
begin
    Assert((N>0) and (M>0), 'ConvC1DCircular: incorrect N or M!');
    
    //
    // normalize task: make M>=N,
    // so A will be longer (at least - not shorter) that B.
    //
    if M<N then
    begin
        SetLength(B, M);
        I1:=0;
        while I1<=M-1 do
        begin
            B[I1] := 0;
            Inc(I1);
        end;
        I1 := 0;
        while I1<N do
        begin
            I2 := Min(I1+M-1, N-1);
            J2 := I2-I1;
            APVAdd(@B[0], 0, J2, @Pattern[0], I1, I2);
            I1 := I1+M;
        end;
        CorrR1DCircular(Signal, M, B, M, C);
        Exit;
    end;
    
    //
    // Task is normalized
    //
    SetLength(P, N);
    I:=0;
    while I<=N-1 do
    begin
        P[N-1-I] := Pattern[I];
        Inc(I);
    end;
    ConvR1DCircular(Signal, M, P, N, B);
    SetLength(C, M);
    APVMove(@C[0], 0, M-N, @B[0], N-1, M-1);
    if M-N+1<=M-1 then
    begin
        APVMove(@C[0], M-N+1, M-1, @B[0], 0, N-2);
    end;
end;


end.