summaryrefslogtreecommitdiff
path: root/fpcsrc/tests/test/alglib/u_fht.pp
blob: 1fbcd258dc1365ef20c4f5fce6fe13e34c54e169 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
(*************************************************************************
Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************)
unit u_fht;
interface
uses Math, Sysutils, u_ap, u_ftbase, u_fft;

procedure FHTR1D(var A : TReal1DArray; N : Integer);
procedure FHTR1DInv(var A : TReal1DArray; N : Integer);

implementation

(*************************************************************************
1-dimensional Fast Hartley Transform.

Algorithm has O(N*logN) complexity for any N (composite or prime).

INPUT PARAMETERS
    A   -   array[0..N-1] - real function to be transformed
    N   -   problem size
    
OUTPUT PARAMETERS
    A   -   FHT of a input array, array[0..N-1],
            A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1)


  -- ALGLIB --
     Copyright 04.06.2009 by Bochkanov Sergey
*************************************************************************)
procedure FHTR1D(var A : TReal1DArray; N : Integer);
var
    Plan : FTPlan;
    I : Integer;
    FA : TComplex1DArray;
begin
    Assert(N>0, 'FHTR1D: incorrect N!');
    
    //
    // Special case: N=1, FHT is just identity transform.
    // After this block we assume that N is strictly greater than 1.
    //
    if N=1 then
    begin
        Exit;
    end;
    
    //
    // Reduce FHt to real FFT
    //
    FFTR1D(A, N, FA);
    I:=0;
    while I<=N-1 do
    begin
        A[I] := FA[I].X-FA[I].Y;
        Inc(I);
    end;
end;


(*************************************************************************
1-dimensional inverse FHT.

Algorithm has O(N*logN) complexity for any N (composite or prime).

INPUT PARAMETERS
    A   -   array[0..N-1] - complex array to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    A   -   inverse FHT of a input array, array[0..N-1]


  -- ALGLIB --
     Copyright 29.05.2009 by Bochkanov Sergey
*************************************************************************)
procedure FHTR1DInv(var A : TReal1DArray; N : Integer);
var
    I : Integer;
begin
    Assert(N>0, 'FHTR1DInv: incorrect N!');
    
    //
    // Special case: N=1, iFHT is just identity transform.
    // After this block we assume that N is strictly greater than 1.
    //
    if N=1 then
    begin
        Exit;
    end;
    
    //
    // Inverse FHT can be expressed in terms of the FHT as
    //
    //     invfht(x) = fht(x)/N
    //
    FHTR1D(A, N);
    I:=0;
    while I<=N-1 do
    begin
        A[I] := A[I]/N;
        Inc(I);
    end;
end;


end.