1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
/*
Unix SMB/CIFS implementation.
security access checking routines
Copyright (C) Nadezhda Ivanova 2009
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Description: Contains data handler functions for
* the object tree that must be constructed to perform access checks.
* The object tree is an unbalanced tree of depth 3, indexed by
* object type guid. Perhaps a different data structure
* should be concidered later to improve performance
*
* Author: Nadezhda Ivanova
*/
#include "includes.h"
#include "libcli/security/security.h"
#include "librpc/ndr/libndr.h"
/* Adds a new node to the object tree. If attributeSecurityGUID is not zero and
* has already been added to the tree, the new node is added as a child of that node
* In all other cases as a child of the root
*/
bool insert_in_object_tree(TALLOC_CTX *mem_ctx,
const struct GUID *guid,
uint32_t init_access,
struct object_tree *root,
struct object_tree **new_node_out)
{
struct object_tree *new_node;
if (!guid || GUID_all_zero(guid)){
return true;
}
if (!root) {
root = talloc_zero(mem_ctx, struct object_tree);
if (!root) {
return false;
}
new_node = root;
} else {
int i;
for (i = 0; i < root->num_of_children; i++) {
if (GUID_equal(&root->children[i].guid, guid)) {
new_node = &root->children[i];
new_node->remaining_access |= init_access;
*new_node_out = new_node;
return true;
}
}
root->children = talloc_realloc(mem_ctx, root->children,
struct object_tree,
root->num_of_children + 1);
if (!root->children) {
return false;
}
new_node = &root->children[root->num_of_children];
root->num_of_children++;
}
new_node->children = NULL;
new_node->guid = *guid;
new_node->remaining_access = init_access;
new_node->num_of_children = 0;
*new_node_out = new_node;
return true;
}
/* search by GUID */
struct object_tree *get_object_tree_by_GUID(struct object_tree *root,
const struct GUID *guid)
{
struct object_tree *result = NULL;
int i;
if (!root || GUID_equal(&root->guid, guid)) {
result = root;
return result;
}
for (i = 0; i < root->num_of_children; i++) {
if ((result = get_object_tree_by_GUID(&root->children[i], guid)))
break;
}
return result;
}
/* Change the granted access per each ACE */
void object_tree_modify_access(struct object_tree *root,
uint32_t access_mask)
{
int i;
root->remaining_access &= ~access_mask;
for (i = 0; i < root->num_of_children; i++) {
object_tree_modify_access(&root->children[i], access_mask);
}
}
|