1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
/*
* MRustC - Rust Compiler
* - By John Hodge (Mutabah/thePowersGang)
*
* hir/hir.cpp
* - Processed module tree (High-level Intermediate Representation)
*
* HIR type helper code
*/
#include "hir.hpp"
#include <algorithm>
namespace HIR {
::std::ostream& operator<<(::std::ostream& os, const ::HIR::Literal& v)
{
TU_MATCH(::HIR::Literal, (v), (e),
(Invalid,
os << "!";
),
(List,
os << "[";
for(const auto& val : e)
os << " " << val << ",";
os << " ]";
),
(Variant,
os << "#" << e.idx << ":[";
for(const auto& val : e.vals)
os << " " << val << ",";
os << " ]";
),
(Integer,
os << e;
),
(Float,
os << e;
),
(BorrowOf,
os << "&" << e;
),
(String,
os << "\"" << e << "\"";
)
)
return os;
}
}
const ::HIR::Enum::Variant* ::HIR::Enum::get_variant(const ::std::string& name) const
{
auto it = ::std::find_if(m_variants.begin(), m_variants.end(), [&](const auto& x){ return x.first == name; });
if( it == m_variants.end() )
return nullptr;
return &it->second;
}
namespace {
bool matches_genericpath(const ::HIR::GenericParams& params, const ::HIR::GenericPath& left, const ::HIR::GenericPath& right, ::HIR::t_cb_resolve_type ty_res, bool expand_generic);
bool matches_type_int(const ::HIR::GenericParams& params, const ::HIR::TypeRef& left, const ::HIR::TypeRef& right_in, ::HIR::t_cb_resolve_type ty_res, bool expand_generic)
{
assert(! left.m_data.is_Infer() );
const auto& right = (right_in.m_data.is_Infer() || (right_in.m_data.is_Generic() && expand_generic) ? ty_res(right_in) : right_in);
if( right_in.m_data.is_Generic() )
expand_generic = false;
//DEBUG("left = " << left << ", right = " << right);
// TODO: What indicates what out of ty_res?
if( right.m_data.is_Infer() ) {
//DEBUG("left = " << left << ", right = " << right);
switch(right.m_data.as_Infer().ty_class)
{
case ::HIR::InferClass::None:
case ::HIR::InferClass::Diverge:
//return left.m_data.is_Generic();
return true;
case ::HIR::InferClass::Integer:
TU_IFLET(::HIR::TypeRef::Data, left.m_data, Primitive, le,
return is_integer(le);
)
else {
return left.m_data.is_Generic();
}
break;
case ::HIR::InferClass::Float:
TU_IFLET(::HIR::TypeRef::Data, left.m_data, Primitive, le,
return is_float(le);
)
else {
return left.m_data.is_Generic();
}
break;
}
throw "";
}
// A local generic could match anything, leave that up to the caller
if( left.m_data.is_Generic() ) {
return true;
}
// A local UfcsKnown can only be becuase it couldn't be expanded earlier, assume it could match
if( left.m_data.is_Path() && left.m_data.as_Path().path.m_data.is_UfcsKnown() ) {
// True?
return true;
}
// If the RHS (provided) is generic, it can only match if it binds to a local type parameter
if( right.m_data.is_Generic() ) {
return left.m_data.is_Generic();
}
if( left.m_data.tag() != right.m_data.tag() ) {
return false;
}
TU_MATCH(::HIR::TypeRef::Data, (left.m_data, right.m_data), (le, re),
(Infer, assert(!"infer");),
(Diverge, return true; ),
(Primitive, return le == re;),
(Path,
if( le.path.m_data.tag() != re.path.m_data.tag() )
return false;
TU_MATCH_DEF(::HIR::Path::Data, (le.path.m_data, re.path.m_data), (ple, pre),
(
return false;
),
(Generic,
return matches_genericpath(params, ple, pre, ty_res, expand_generic);
)
)
),
(Generic,
throw "";
),
(TraitObject,
if( !matches_genericpath(params, le.m_trait.m_path, re.m_trait.m_path, ty_res, expand_generic) )
return false;
if( le.m_markers.size() != re.m_markers.size() )
return false;
for(unsigned int i = 0; i < le.m_markers.size(); i ++)
{
const auto& lm = le.m_markers[i];
const auto& rm = re.m_markers[i];
if( !matches_genericpath(params, lm, rm, ty_res, expand_generic) )
return false;
}
return true;
),
(ErasedType,
throw "Unexpected ErasedType in matches_type_int";
),
(Array,
if( ! matches_type_int(params, *le.inner, *re.inner, ty_res, expand_generic) )
return false;
if( le.size_val != re.size_val )
return false;
return true;
),
(Slice,
return matches_type_int(params, *le.inner, *re.inner, ty_res, expand_generic);
),
(Tuple,
if( le.size() != re.size() )
return false;
for( unsigned int i = 0; i < le.size(); i ++ )
if( !matches_type_int(params, le[i], re[i], ty_res, expand_generic) )
return false;
return true;
),
(Borrow,
if( le.type != re.type )
return false;
return matches_type_int(params, *le.inner, *re.inner, ty_res, expand_generic);
),
(Pointer,
if( le.type != re.type )
return false;
return matches_type_int(params, *le.inner, *re.inner, ty_res, expand_generic);
),
(Function,
if( le.is_unsafe != re.is_unsafe )
return false;
if( le.m_abi != re.m_abi )
return false;
if( le.m_arg_types.size() != re.m_arg_types.size() )
return false;
for( unsigned int i = 0; i < le.m_arg_types.size(); i ++ )
if( !matches_type_int(params, le.m_arg_types[i], re.m_arg_types[i], ty_res, expand_generic) )
return false;
return matches_type_int(params, *le.m_rettype, *re.m_rettype, ty_res, expand_generic);
),
(Closure,
return le.node == re.node;
)
)
return false;
}
bool matches_genericpath(const ::HIR::GenericParams& params, const ::HIR::GenericPath& left, const ::HIR::GenericPath& right, ::HIR::t_cb_resolve_type ty_res, bool expand_generic)
{
if( left.m_path.m_crate_name != right.m_path.m_crate_name )
return false;
if( left.m_path.m_components.size() != right.m_path.m_components.size() )
return false;
for(unsigned int i = 0; i < left.m_path.m_components.size(); i ++ )
{
if( left.m_path.m_components[i] != right.m_path.m_components[i] )
return false;
}
if( left.m_params.m_types.size() > 0 || right.m_params.m_types.size() > 0 ) {
if( left.m_params.m_types.size() != right.m_params.m_types.size() ) {
return true;
//TODO(Span(), "Match generic paths " << left << " and " << right << " - count mismatch");
}
for( unsigned int i = 0; i < right.m_params.m_types.size(); i ++ )
{
if( ! matches_type_int(params, left.m_params.m_types[i], right.m_params.m_types[i], ty_res, expand_generic) )
return false;
}
}
return true;
}
}
//::HIR::TypeRef HIR::Function::make_ty(const Span& sp, const ::HIR::PathParams& params) const
//{
// // TODO: Obtain function type for this function (i.e. a type that is specifically for this function)
// auto fcn_ty_data = ::HIR::FunctionType {
// m_is_unsafe,
// m_abi,
// box$( monomorphise_type(sp, m_params, params, m_return) ),
// {}
// };
// fcn_ty_data.m_arg_types.reserve( m_args.size() );
// for(const auto& arg : m_args)
// {
// fcn_ty_data.m_arg_types.push_back( monomorphise_type(sp, m_params, params, arg.second) );
// }
// return ::HIR::TypeRef( mv$(fcn_ty_data) );
//}
namespace {
bool is_unbounded_infer(const ::HIR::TypeRef& type) {
TU_IFLET( ::HIR::TypeRef::Data, type.m_data, Infer, e,
return e.ty_class == ::HIR::InferClass::None || e.ty_class == ::HIR::InferClass::Diverge;
)
else {
return false;
}
}
}
bool ::HIR::TraitImpl::matches_type(const ::HIR::TypeRef& type, ::HIR::t_cb_resolve_type ty_res) const
{
// NOTE: Don't return any impls when the type is an unbouned ivar. Wouldn't be able to pick anything anyway
if( is_unbounded_infer(type) ) {
return false;
}
return matches_type_int(m_params, m_type, type, ty_res, true);
}
bool ::HIR::TypeImpl::matches_type(const ::HIR::TypeRef& type, ::HIR::t_cb_resolve_type ty_res) const
{
if( is_unbounded_infer(type) ) {
return false;
}
return matches_type_int(m_params, m_type, type, ty_res, true);
}
bool ::HIR::MarkerImpl::matches_type(const ::HIR::TypeRef& type, ::HIR::t_cb_resolve_type ty_res) const
{
if( is_unbounded_infer(type) ) {
return false;
}
return matches_type_int(m_params, m_type, type, ty_res, true);
}
namespace {
::Ordering typelist_ord_specific(const Span& sp, const ::std::vector<::HIR::TypeRef>& left, const ::std::vector<::HIR::TypeRef>& right);
::Ordering type_ord_specific(const Span& sp, const ::HIR::TypeRef& left, const ::HIR::TypeRef& right)
{
// TODO: What happens if you get `impl<T> Foo<T> for T` vs `impl<T,U> Foo<U> for T`
// A generic can't be more specific than any other type we can see
// - It's equally as specific as another Generic, so still false
if( left.m_data.is_Generic() ) {
return right.m_data.is_Generic() ? ::OrdEqual : ::OrdLess;
}
// - A generic is always less specific than anything but itself (handled above)
if( right.m_data.is_Generic() ) {
return ::OrdGreater;
}
TU_MATCH(::HIR::TypeRef::Data, (left.m_data), (le),
(Generic,
throw "";
),
(Infer,
BUG(sp, "Hit infer");
),
(Diverge,
BUG(sp, "Hit diverge");
),
(Closure,
BUG(sp, "Hit closure");
),
(Primitive,
TU_IFLET(::HIR::TypeRef::Data, right.m_data, Primitive, re,
if( le != re )
BUG(sp, "Mismatched types - " << left << " and " << right);
return ::OrdEqual;
)
else {
BUG(sp, "Mismatched types - " << left << " and " << right);
}
),
(Path,
if( !right.m_data.is_Path() || le.path.m_data.tag() != right.m_data.as_Path().path.m_data.tag() )
BUG(sp, "Mismatched types - " << left << " and " << right);
TU_MATCHA( (le.path.m_data, right.m_data.as_Path().path.m_data), (lpe, rpe),
(Generic,
if( lpe.m_path != rpe.m_path )
BUG(sp, "Mismatched types - " << left << " and " << right);
return typelist_ord_specific(sp, lpe.m_params.m_types, rpe.m_params.m_types);
),
(UfcsUnknown,
),
(UfcsKnown,
),
(UfcsInherent,
)
)
TODO(sp, "Path - " << le.path << " and " << right);
),
(TraitObject,
TODO(sp, "TraitObject - " << left);
),
(ErasedType,
TODO(sp, "ErasedType - " << left);
),
(Function,
TU_IFLET(::HIR::TypeRef::Data, right.m_data, Function, re,
TODO(sp, "Function");
//return typelist_ord_specific(sp, le.arg_types, re.arg_types);
)
else {
BUG(sp, "Mismatched types - " << left << " and " << right);
}
),
(Tuple,
TU_IFLET(::HIR::TypeRef::Data, right.m_data, Tuple, re,
return typelist_ord_specific(sp, le, re);
)
else {
BUG(sp, "Mismatched types - " << left << " and " << right);
}
),
(Slice,
TU_IFLET(::HIR::TypeRef::Data, right.m_data, Slice, re,
return type_ord_specific(sp, *le.inner, *re.inner);
)
else {
BUG(sp, "Mismatched types - " << left << " and " << right);
}
),
(Array,
TU_IFLET(::HIR::TypeRef::Data, right.m_data, Array, re,
if( le.size_val != re.size_val )
BUG(sp, "Mismatched types - " << left << " and " << right);
return type_ord_specific(sp, *le.inner, *re.inner);
)
else {
BUG(sp, "Mismatched types - " << left << " and " << right);
}
),
(Pointer,
TU_IFLET(::HIR::TypeRef::Data, right.m_data, Pointer, re,
if( le.type != re.type )
BUG(sp, "Mismatched types - " << left << " and " << right);
return type_ord_specific(sp, *le.inner, *re.inner);
)
else {
BUG(sp, "Mismatched types - " << left << " and " << right);
}
),
(Borrow,
TU_IFLET(::HIR::TypeRef::Data, right.m_data, Borrow, re,
if( le.type != re.type )
BUG(sp, "Mismatched types - " << left << " and " << right);
return type_ord_specific(sp, *le.inner, *re.inner);
)
else {
BUG(sp, "Mismatched types - " << left << " and " << right);
}
)
)
throw "Fell off end of type_ord_specific";
}
::Ordering typelist_ord_specific(const Span& sp, const ::std::vector<::HIR::TypeRef>& le, const ::std::vector<::HIR::TypeRef>& re)
{
auto rv = ::OrdEqual;
for(unsigned int i = 0; i < le.size(); i ++) {
auto a = type_ord_specific(sp, le[i], re[i]);
if( a != ::OrdEqual ) {
if( rv != ::OrdEqual && a != rv )
BUG(sp, "Inconsistent ordering between type lists");
rv = a;
}
}
return rv;
}
}
namespace {
::std::vector< ::HIR::GenericBound> flatten_bounds(const ::std::vector<::HIR::GenericBound>& bounds)
{
::std::vector< ::HIR::GenericBound > rv;
for(const auto& b : bounds)
{
TU_MATCHA( (b), (be),
(Lifetime,
rv.push_back( ::HIR::GenericBound(be) );
),
(TypeLifetime,
rv.push_back( ::HIR::GenericBound::make_TypeLifetime({ be.type.clone(), be.valid_for }) );
),
(TraitBound,
rv.push_back( ::HIR::GenericBound::make_TraitBound({ be.type.clone(), be.trait.clone() }) );
),
(TypeEquality,
rv.push_back( ::HIR::GenericBound::make_TypeEquality({ be.type.clone(), be.other_type.clone() }) );
)
)
}
return rv;
}
}
bool ::HIR::TraitImpl::more_specific_than(const ::HIR::TraitImpl& other) const
{
static const Span _sp;
const Span& sp = _sp;
// >> https://github.com/rust-lang/rfcs/blob/master/text/1210-impl-specialization.md#defining-the-precedence-rules
// 1. If this->m_type is less specific than other.m_type: return false
if( type_ord_specific(sp, this->m_type, other.m_type) == ::OrdLess ) {
return false;
}
// 2. If any in te.impl->m_params is less specific than oe.impl->m_params: return false
if( typelist_ord_specific(sp, this->m_trait_args.m_types, other.m_trait_args.m_types) == ::OrdLess ) {
return false;
}
//assert(m_params.m_types.size() == other.m_params.m_types.size());
if( other.m_params.m_bounds.size() == 0 ) {
return m_params.m_bounds.size() > 0;
}
// 3. Compare bound set, if there is a rule in oe that is missing from te; return false
// 3a. Compare for rules in te that are missing from oe
auto bounds_t = flatten_bounds(m_params.m_bounds);
auto bounds_o = flatten_bounds(other.m_params.m_bounds);
::std::sort(bounds_t.begin(), bounds_t.end(), [](const auto& a, const auto& b){ return ::ord(a,b); });
::std::sort(bounds_o.begin(), bounds_o.end(), [](const auto& a, const auto& b){ return ::ord(a,b); });
if( bounds_t.size() < bounds_o.size() )
return false;
// TODO: One must be a subset of the other.
// For this to be more specific, it must have bounds that don't appear in the other
// - it also needs to not be missing present items
auto it_t = bounds_t.begin();
for(auto it_o = bounds_o.begin(); it_o != bounds_o.end(); ++it_o)
{
while( ::ord(*it_t, *it_o) == OrdLess && it_t != bounds_t.end() )
++ it_t;
if( it_t == bounds_t.end() || ::ord(*it_t, *it_o) != OrdEqual ) {
TODO(Span(), "Error when an impl is missing a bound - " << *it_t << " != " << *it_o);
return false;
}
}
if( bounds_t.size() <= bounds_o.size() )
return false;
return true;
}
const ::HIR::SimplePath& ::HIR::Crate::get_lang_item_path(const Span& sp, const char* name) const
{
auto it = this->m_lang_items.find( name );
if( it == this->m_lang_items.end() ) {
ERROR(sp, E0000, "Undefined language item '" << name << "' required");
}
return it->second;
}
const ::HIR::SimplePath& ::HIR::Crate::get_lang_item_path_opt(const char* name) const
{
static ::HIR::SimplePath empty_path;
auto it = this->m_lang_items.find( name );
if( it == this->m_lang_items.end() ) {
return empty_path;
}
return it->second;
}
const ::HIR::TypeItem& ::HIR::Crate::get_typeitem_by_path(const Span& sp, const ::HIR::SimplePath& path, bool ignore_crate_name) const
{
ASSERT_BUG(sp, path.m_components.size() > 0, "get_typeitem_by_path received invalid path - " << path);
const ::HIR::Module* mod;
if( !ignore_crate_name && path.m_crate_name != "" ) {
ASSERT_BUG(sp, m_ext_crates.count(path.m_crate_name) > 0, "Crate '" << path.m_crate_name << "' not loaded");
mod = &m_ext_crates.at(path.m_crate_name)->m_root_module;
}
else {
mod = &this->m_root_module;
}
for( unsigned int i = 0; i < path.m_components.size() - 1; i ++ )
{
const auto& pc = path.m_components[i];
auto it = mod->m_mod_items.find( pc );
if( it == mod->m_mod_items.end() ) {
BUG(sp, "Couldn't find component " << i << " of " << path);
}
TU_IFLET(::HIR::TypeItem, it->second->ent, Module, e,
mod = &e;
)
else {
BUG(sp, "Node " << i << " of path " << path << " wasn't a module");
}
}
auto it = mod->m_mod_items.find( path.m_components.back() );
if( it == mod->m_mod_items.end() ) {
BUG(sp, "Could not find type name in " << path);
}
return it->second->ent;
}
const ::HIR::Module& ::HIR::Crate::get_mod_by_path(const Span& sp, const ::HIR::SimplePath& path) const
{
if( path.m_components.size() == 0 )
{
if( path.m_crate_name != "" )
{
ASSERT_BUG(sp, m_ext_crates.count(path.m_crate_name) > 0, "Crate '" << path.m_crate_name << "' not loaded");
return m_ext_crates.at(path.m_crate_name)->m_root_module;
}
else
{
return this->m_root_module;
}
}
else
{
const auto& ti = this->get_typeitem_by_path(sp, path);
TU_IFLET(::HIR::TypeItem, ti, Module, e,
return e;
)
else {
BUG(sp, "Module path " << path << " didn't point to a module");
}
}
}
const ::HIR::Trait& ::HIR::Crate::get_trait_by_path(const Span& sp, const ::HIR::SimplePath& path) const
{
const auto& ti = this->get_typeitem_by_path(sp, path);
TU_IFLET(::HIR::TypeItem, ti, Trait, e,
return e;
)
else {
BUG(sp, "Trait path " << path << " didn't point to a trait");
}
}
const ::HIR::Struct& ::HIR::Crate::get_struct_by_path(const Span& sp, const ::HIR::SimplePath& path) const
{
const auto& ti = this->get_typeitem_by_path(sp, path);
TU_IFLET(::HIR::TypeItem, ti, Struct, e,
return e;
)
else {
BUG(sp, "Struct path " << path << " didn't point to a struct");
}
}
const ::HIR::Union& ::HIR::Crate::get_union_by_path(const Span& sp, const ::HIR::SimplePath& path) const
{
const auto& ti = this->get_typeitem_by_path(sp, path);
TU_IFLET(::HIR::TypeItem, ti, Union, e,
return e;
)
else {
BUG(sp, "Path " << path << " didn't point to a union");
}
}
const ::HIR::Enum& ::HIR::Crate::get_enum_by_path(const Span& sp, const ::HIR::SimplePath& path) const
{
const auto& ti = this->get_typeitem_by_path(sp, path);
TU_IFLET(::HIR::TypeItem, ti, Enum, e,
return e;
)
else {
BUG(sp, "Enum path " << path << " didn't point to an enum");
}
}
const ::HIR::ValueItem& ::HIR::Crate::get_valitem_by_path(const Span& sp, const ::HIR::SimplePath& path, bool ignore_crate_name) const
{
if( path.m_components.size() == 0) {
BUG(sp, "get_valitem_by_path received invalid path");
}
const ::HIR::Module* mod;
if( !ignore_crate_name && path.m_crate_name != "" ) {
ASSERT_BUG(sp, m_ext_crates.count(path.m_crate_name) > 0, "Crate '" << path.m_crate_name << "' not loaded");
mod = &m_ext_crates.at(path.m_crate_name)->m_root_module;
}
else {
mod = &this->m_root_module;
}
for( unsigned int i = 0; i < path.m_components.size() - 1; i ++ )
{
const auto& pc = path.m_components[i];
auto it = mod->m_mod_items.find( pc );
if( it == mod->m_mod_items.end() ) {
BUG(sp, "Couldn't find component " << i << " of " << path);
}
TU_IFLET(::HIR::TypeItem, it->second->ent, Module, e,
mod = &e;
)
else {
BUG(sp, "Node " << i << " of path " << path << " wasn't a module");
}
}
auto it = mod->m_value_items.find( path.m_components.back() );
if( it == mod->m_value_items.end() ) {
BUG(sp, "Could not find value name " << path);
}
return it->second->ent;
}
const ::HIR::Function& ::HIR::Crate::get_function_by_path(const Span& sp, const ::HIR::SimplePath& path) const
{
const auto& ti = this->get_valitem_by_path(sp, path);
TU_IFLET(::HIR::ValueItem, ti, Function, e,
return e;
)
else {
BUG(sp, "Enum path " << path << " didn't point to an enum");
}
}
bool ::HIR::Crate::find_trait_impls(const ::HIR::SimplePath& trait, const ::HIR::TypeRef& type, t_cb_resolve_type ty_res, ::std::function<bool(const ::HIR::TraitImpl&)> callback) const
{
auto its = this->m_trait_impls.equal_range( trait );
for( auto it = its.first; it != its.second; ++ it )
{
const auto& impl = it->second;
if( impl.matches_type(type, ty_res) ) {
if( callback(impl) ) {
return true;
}
}
}
for( const auto& ec : this->m_ext_crates )
{
if( ec.second->find_trait_impls(trait, type, ty_res, callback) ) {
return true;
}
}
return false;
}
bool ::HIR::Crate::find_auto_trait_impls(const ::HIR::SimplePath& trait, const ::HIR::TypeRef& type, t_cb_resolve_type ty_res, ::std::function<bool(const ::HIR::MarkerImpl&)> callback) const
{
auto its = this->m_marker_impls.equal_range( trait );
for( auto it = its.first; it != its.second; ++ it )
{
const auto& impl = it->second;
if( impl.matches_type(type, ty_res) ) {
if( callback(impl) ) {
return true;
}
}
}
for( const auto& ec : this->m_ext_crates )
{
if( ec.second->find_auto_trait_impls(trait, type, ty_res, callback) ) {
return true;
}
}
return false;
}
bool ::HIR::Crate::find_type_impls(const ::HIR::TypeRef& type, t_cb_resolve_type ty_res, ::std::function<bool(const ::HIR::TypeImpl&)> callback) const
{
// TODO: Restrict which crate is searched based on the type.
for( const auto& impl : this->m_type_impls )
{
if( impl.matches_type(type, ty_res) ) {
if( callback(impl) ) {
return true;
}
}
}
for( const auto& ec : this->m_ext_crates )
{
//DEBUG("- " << ec.first);
if( ec.second->find_type_impls(type, ty_res, callback) ) {
return true;
}
}
return false;
}
|