1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/*
* MRustC - Rust Compiler
* - By John Hodge (Mutabah/thePowersGang)
*
* trans/codegen_c_structured.cpp
* - Converts MIR into a semi-structured form
*/
#include <common.hpp>
#include <mir/mir.hpp>
#include <algorithm>
#include "codegen_c.hpp"
NodeRef::NodeRef(Node node_data):
node(new Node(mv$(node_data))),
bb_idx(SIZE_MAX)
{
}
bool NodeRef::has_target() const
{
if( node ) {
TU_MATCHA( (*this->node), (e),
(Block,
return e.next_bb != SIZE_MAX;
),
(If,
return e.next_bb != SIZE_MAX;
),
(Switch,
return e.next_bb != SIZE_MAX;
),
(Loop,
return e.next_bb != SIZE_MAX;
)
)
throw "";
}
else {
return true;
}
}
size_t NodeRef::target() const
{
if( node ) {
TU_MATCHA( (*this->node), (e),
(Block,
return e.next_bb;
),
(If,
return e.next_bb;
),
(Switch,
return e.next_bb;
),
(Loop,
return e.next_bb;
)
)
throw "";
}
else {
return bb_idx;
}
}
class Converter
{
const ::MIR::Function& m_fcn;
public:
::std::vector<unsigned> m_block_ref_count;
::std::vector<bool> m_blocks_used;
Converter(const ::MIR::Function& fcn):
m_fcn(fcn)
{
}
// Returns true if the passed block is the start of a self-contained sequence of blocks
bool bb_is_opening(size_t bb_idx)
{
if( m_blocks_used[bb_idx] ) {
return false;
}
else if( m_block_ref_count[bb_idx] > 1 ) {
// TODO: Determine if these multiple references are from the block looping back on itself
return false;
}
else {
return true;
}
}
NodeRef process_node_ref(size_t bb_idx)
{
if( bb_is_opening(bb_idx) ) {
return NodeRef( process_node(bb_idx) );
}
else {
return NodeRef(bb_idx);
}
}
Node process_node(size_t bb_idx)
{
TRACE_FUNCTION_F(bb_idx);
::std::vector<NodeRef> refs;
for(;;)
{
DEBUG("bb_idx = " << bb_idx);
bool stop = false;
assert( !m_blocks_used[bb_idx] );
m_blocks_used[bb_idx] = true;
refs.push_back( NodeRef(bb_idx) );
const auto& blk = m_fcn.blocks.at(bb_idx);
DEBUG("> " << blk.terminator);
TU_MATCHA( (blk.terminator), (te),
(Incomplete,
stop = true;
),
(Goto,
bb_idx = te;
),
(Panic,
TODO(Span(), "Panic");
),
(Diverge,
stop = true;
),
(Return,
stop = true;
),
(If,
auto arm0 = process_node_ref(te.bb0);
auto arm1 = process_node_ref(te.bb1);
if( arm0.has_target() && arm1.has_target() ) {
if( arm0.target() == arm1.target() ) {
bb_idx = arm0.target();
}
else {
stop = true;
}
}
else if( arm0.has_target() ) {
bb_idx = arm0.target();
}
else if( arm1.has_target() ) {
bb_idx = arm1.target();
}
else {
// No target from either arm
stop = false;
}
refs.push_back(Node::make_If({ bb_idx, &te.cond, mv$(arm0), mv$(arm1) }));
),
(Switch,
::std::vector<NodeRef> arms;
::std::vector<size_t> next_blocks;
for(auto& tgt : te.targets)
{
arms.push_back( process_node_ref(tgt) );
if( arms.back().has_target() )
{
next_blocks.push_back( arms.back().target() );
}
}
::std::sort(next_blocks.begin(), next_blocks.end());
size_t exit_bb = SIZE_MAX;
if(!next_blocks.empty())
{
size_t cur = next_blocks[0];
size_t cur_count = 0;
size_t max_count = 0;
for(auto b : next_blocks)
{
if(cur == b) {
cur_count ++;
}
else {
if( cur_count > max_count ) {
exit_bb = cur;
}
cur = b;
cur_count = 1;
}
}
if( cur_count > max_count ) {
exit_bb = cur;
}
}
refs.push_back(Node::make_Switch({ exit_bb, &te.val, mv$(arms) }));
stop = true;
),
(SwitchValue,
TODO(Span(), "SwitchValue");
),
(Call,
// NOTE: Let the panic arm just be a goto
bb_idx = te.ret_block;
)
)
if( stop )
{
break;
}
// If `bb_idx` is in `refs` as a NodeRef
auto it = ::std::find(refs.begin(), refs.end(), bb_idx);
if( it != refs.end() )
{
// Wrap ibb_idxms from `it` to `refs.end()` in a `loop` block
::std::vector<NodeRef> loop_blocks;
loop_blocks.reserve(refs.end() - it);
for(auto it2 = it; it2 != refs.end(); ++it2)
loop_blocks.push_back( mv$(*it2) );
auto loop_node = NodeRef( Node::make_Block({ SIZE_MAX, mv$(loop_blocks) }) );
refs.push_back( Node::make_Loop({ SIZE_MAX, mv$(loop_node) }) );
// TODO: If there is only one `goto` in the above loop, assume it's the target
DEBUG("Loop");
break;
}
else if( bb_is_opening(bb_idx) )
{
DEBUG("Destination " << bb_idx << " is unreferenced+unvisited");
}
else
{
break;
}
}
return Node::make_Block({ bb_idx, mv$(refs) });
}
};
::std::vector<Node> MIR_To_Structured(const ::MIR::Function& fcn)
{
Converter conv(fcn);
conv.m_block_ref_count.resize( fcn.blocks.size() );
conv.m_block_ref_count[0] += 1;
for(const auto& blk : fcn.blocks)
{
TU_MATCHA( (blk.terminator), (te),
(Incomplete,
),
(Goto,
conv.m_block_ref_count[te] += 1;
),
(Panic,
conv.m_block_ref_count[te.dst] += 1;
),
(Diverge,
),
(Return,
),
(If,
conv.m_block_ref_count[te.bb0] += 1;
conv.m_block_ref_count[te.bb1] += 1;
),
(Switch,
for(auto tgt : te.targets)
conv.m_block_ref_count[tgt] += 1;
),
(SwitchValue,
for(auto tgt : te.targets)
conv.m_block_ref_count[tgt] += 1;
conv.m_block_ref_count[te.def_target] += 1;
),
(Call,
conv.m_block_ref_count[te.ret_block] += 1;
conv.m_block_ref_count[te.panic_block] += 1;
)
)
}
// First Block: Becomes a block in structured output
// - Terminator selects what the next block will be
// -
// Find next unvisited block
conv.m_blocks_used.resize( fcn.blocks.size() );
::std::vector<Node> nodes;
for(size_t bb_idx = 0; bb_idx < fcn.blocks.size(); bb_idx ++)
{
if( conv.m_blocks_used[bb_idx] )
continue;
nodes.push_back( conv.process_node(bb_idx) );
}
// Return.
return nodes;
}
|