1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/*
* Licensed Materials - Property of IBM
*
* trousers - An open source TCG Software Stack
*
* (C) Copyright International Business Machines Corp. 2004, 2005
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "bi.h"
#include "list.h"
#include "tsplog.h"
static unsigned long *primes;
static int primes_length;
/* Generates a random number of bit_length bit length. The first two bits and the last bit of this
* number are always set, therefore the number is odd and >= (2^(bit_length-1)+2^(bit_length-2)+1)
*
* bit_length: The length of the number to be generated, in bits
* return: a random number of bitLength bit length with first and last bits set
*/
void
random_odd_bi(bi_ptr bi, int bit_length)
{
if (bit_length > 0) {
bi_urandom(bi, bit_length);
//bi_generate_prime(bi, bit_length);
bi_setbit(bi, 0);
bi_setbit(bi, bit_length - 1);
bi_setbit(bi, bit_length - 2);
}
}
/* This method generates small prime numbers up to a specified bounds using the Sieve of
* Eratosthenes algorithm.
*
* prime_bound: the upper bound for the primes to be generated
* starting_prime: the first prime in the list of primes that is returned
* return: list of primes up to the specified bound. Each prime is of type bi_ptr
*/
void
generate_small_primes(int prime_bound, int starting_prime)
{
list_ptr res;
int length;
int *is_primes;
int i;
int k;
int prime;
node_t *current;
primes_length = 0;
res = list_new();
if (allocs == NULL) {
LogError("malloc of list failed");
return;
}
if ((prime_bound <= 1) || (starting_prime > prime_bound))
return;
if (starting_prime <= 2) {
starting_prime = 2;
list_add(res, bi_2);
}
length = (prime_bound - 1) >> 1; // length = (prime_bound -1) / 2;
is_primes = (int *)malloc(sizeof(int)*length);
if (is_primes == NULL) {
LogError("malloc of %zd bytes failed", sizeof(int) * length);
return;
}
for (i = 0; i < length; i++)
is_primes[i] = 1;
for (i = 0; i < length; i++) {
if (is_primes[i] == 1) {
prime = 2 * i + 3;
for (k = i + prime; k < length; k+= prime)
is_primes[k] = 0;
if (prime >= starting_prime) {
list_add(res, (void *)prime);
primes_length++;
}
}
}
// converti the list to a table
current = res->head; // go to first node
primes = (unsigned long *)malloc(sizeof(unsigned long) * primes_length);
if (primes == NULL) {
LogError("malloc of %d bytes failed",
sizeof(unsigned long)*primes_length);
return;
}
i = 0;
while (current != NULL) {
primes[i++] = (unsigned long)current->obj;
current = current->next; // traverse through the list
}
free(is_primes);
list_freeall(res);
}
void
prime_init()
{
generate_small_primes(16384, 3);
}
/* Test whether the provided pDash or p = 2*pDash + 1 are divisible by any of the small primes
* saved in the listOfSmallPrimes. A limit for the largest prime to be tested against can be
* specified, but it will be ignored if it exeeds the number of precalculated primes.
*
* p_dash: the number to be tested (p_dash)
* prime_bound: the limit for the small primes to be tested against.
*/
static int
test_small_prime_factors(const bi_ptr p_dash, const unsigned long prime_bound)
{
int sievePassed = 1;
unsigned long r;
unsigned long small_prime;
bi_t temp; bi_new(temp);
small_prime = 1;
int i = 0;
while (i < primes_length && small_prime < prime_bound ) {
small_prime = primes[i++];
// r = p_dash % small_prime
bi_mod_si(temp, p_dash, small_prime);
r = bi_get_si(temp);
// test if pDash = 0 (mod smallPrime)
if (r == 0) {
sievePassed = 0;
break;
}
// test if p = 0 (mod smallPrime) (or r == smallPrime - r - 1)
if (r == (small_prime - r - 1)) {
sievePassed = 0;
break;
}
}
bi_free(temp);
return sievePassed;
}
/* Tests if a is a Miller-Rabin witness for n
*
* a: number which is supposed to be the witness
* n: number to be tested against
* return: true if a is Miller-Rabin witness for n, false otherwise
*/
int
is_miller_rabin_witness(const bi_ptr a, const bi_ptr n)
{
bi_t n_1;
bi_t temp;
bi_t _2_power_t;
bi_t u;
bi_t x0;
bi_t x1;
int t = -1;
int i;
bi_new(n_1);
bi_new(temp);
bi_new(_2_power_t);
bi_new(u);
// n1 = n - 1
bi_sub_si(n_1, n, 1);
// test if n-1 = 2^t*u with t >= 1 && u even
do {
t++;
// _2_power_t = bi_1 << t ( == 2 ^ t)
bi_shift_left(_2_power_t, bi_1, t);
// u = n_1 / (2 ^ t)
bi_div(u, n_1, _2_power_t);
} while (bi_equals_si(bi_mod(temp, u, bi_2), 0));
bi_new(x0);
bi_new(x1);
// x1 = (a ^ u ) % n
bi_mod_exp(x1, a, u, n);
// finished to use u, _2_power_t and temp
bi_free(u);
bi_free(_2_power_t);
bi_free(temp);
for (i = 0; i < t; i++) {
bi_set(x0, x1);
// x1 = (x0 ^ 2) % n
bi_mod_exp(x1, x0, bi_2, n);
if (bi_equals_si(x1, 1) && !bi_equals_si(x0, 1) && !bi_equals(x0, n_1) != 0) {
bi_free(x0);
bi_free(x1);
bi_free(n_1);
return 1;
}
}
bi_free(x0);
bi_free(x1);
bi_free(n_1);
if (!bi_equals(x1, bi_1))
return 1;
return 0;
}
bi_ptr
compute_trivial_safe_prime(bi_ptr result, int bit_length)
{
LogDebugFn("Enter");
do {
bi_generate_prime(result, bit_length-1);
bi_shift_left(result, result, 1); // result := result << 1
bi_add_si(result, result, 1); // result := result -1
if (getenv("TSS_DEBUG_OFF") == NULL) {
printf(".");
fflush(stdout);
}
} while (bi_is_probable_prime(result)==0);
return result;
}
/* The main method to compute a random safe prime of the specified bit length.
* IMPORTANT: The computer prime will have two first bits and the last bit set to 1 !!
* i.e. > (2^(bitLength-1)+2^(bitLength-2)+1). This is done to be sure that if two primes of
* bitLength n are multiplied, the result will have the bitLenght of 2*n exactly This
* implementation uses the algorithm proposed by Ronald Cramer and Victor Shoup in "Signature
* Schemes Based on the strong RSA Assumption" May 9, 2000.
*
* bitLength: the bit length of the safe prime to be computed.
* return: a number which is considered to be safe prime
*/
bi_ptr
compute_safe_prime(bi_ptr p, int bit_length)
{
bi_ptr p_dash;
bi_ptr temp_p;
bi_ptr p_minus_1;
int stop;
unsigned long prime_bound;
LogDebug("compute Safe Prime: length: %d bits\n", bit_length);
p_dash = bi_new_ptr();
temp_p = bi_new_ptr();
p_minus_1 = bi_new_ptr();
/* some heuristic checks to limit the number of small primes to check against and the
* number of Miller-Rabin primality tests at the end */
if (bit_length <= 256) {
prime_bound = 768;
} else if (bit_length <= 512) {
prime_bound = 3072;
} else if (bit_length <= 768) {
prime_bound = 6144;
} else if (bit_length <= 1024) {
prime_bound = 1024;
} else {
prime_bound = 16384;
}
do {
stop = 0;
/* p_dash = generated random with basic bit settings (odd) */
random_odd_bi(p_dash, bit_length - 1);
if (test_small_prime_factors(p_dash, prime_bound) == 0) {
LogDebugFn("1");
continue;
}
/* test if p_dash or p are divisible by some small primes */
if (is_miller_rabin_witness(bi_2, p_dash)) {
LogDebugFn("2");
continue;
}
/* test if 2^(pDash) = +1/-1 (mod p)
* bi can not handle negative operation, we compare to (p-1) instead of -1
* calculate p = 2*pDash+1 -> (pDash << 1) + 1
*/
bi_shift_left(p, p_dash, 1);
bi_add(p, p, bi_1);
// p_minus_1:= p - 1
bi_sub(p_minus_1, p, bi_1);
// temp_p := ( 2 ^ p_dash ) mod p
bi_mod_exp(temp_p, bi_2, p_dash, p);
if (!bi_equals_si(temp_p, 1) && !bi_equals(temp_p, p_minus_1) ) {
LogDebugFn("3");
continue;
}
// test if pDash or p are divisible by some small primes
if (is_miller_rabin_witness(bi_2, p_dash)) {
LogDebugFn("4");
continue;
}
// test the library dependent probable_prime
if (bi_is_probable_prime(p_dash))
stop = 1;
} while (stop == 0);
bi_free(p_minus_1);
bi_free(temp_p);
bi_free(p_dash);
LogDebug("found Safe Prime: %s bits", bi_2_hex_char(p));
return p;
}
|