diff options
Diffstat (limited to 'usr/src/lib/libm/common/C/atan.c')
-rw-r--r-- | usr/src/lib/libm/common/C/atan.c | 198 |
1 files changed, 198 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/atan.c b/usr/src/lib/libm/common/C/atan.c new file mode 100644 index 0000000000..f19b7e1fdd --- /dev/null +++ b/usr/src/lib/libm/common/C/atan.c @@ -0,0 +1,198 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2011 Nexenta Systems, Inc. All rights reserved. + */ +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma weak atan = __atan + +/* INDENT OFF */ +/* + * atan(x) + * Accurate Table look-up algorithm with polynomial approximation in + * partially product form. + * + * -- K.C. Ng, October 17, 2004 + * + * Algorithm + * + * (1). Purge off Inf and NaN and 0 + * (2). Reduce x to positive by atan(x) = -atan(-x). + * (3). For x <= 1/8 and let z = x*x, return + * (2.1) if x < 2^(-prec/2), atan(x) = x with inexact flag raised + * (2.2) if x < 2^(-prec/4-1), atan(x) = x+(x/3)(x*x) + * (2.3) if x < 2^(-prec/6-2), atan(x) = x+(z-5/3)(z*x/5) + * (2.4) Otherwise + * atan(x) = poly1(x) = x + A * B, + * where + * A = (p1*x*z) * (p2+z(p3+z)) + * B = (p4+z)+z*z) * (p5+z(p6+z)) + * Note: (i) domain of poly1 is [0, 1/8], (ii) remez relative + * approximation error of poly1 is bounded by + * |(atan(x)-poly1(x))/x| <= 2^-57.61 + * (4). For x >= 8 then + * (3.1) if x >= 2^prec, atan(x) = atan(inf) - pio2lo + * (3.2) if x >= 2^(prec/3), atan(x) = atan(inf) - 1/x + * (3.3) if x <= 65, atan(x) = atan(inf) - poly1(1/x) + * (3.4) otherwise atan(x) = atan(inf) - poly2(1/x) + * where + * poly2(r) = (q1*r) * (q2+z(q3+z)) * (q4+z), + * its domain is [0, 0.0154]; and its remez absolute + * approximation error is bounded by + * |atan(x)-poly2(x)|<= 2^-59.45 + * + * (5). Now x is in (0.125, 8). + * Recall identity + * atan(x) = atan(y) + atan((x-y)/(1+x*y)). + * Let j = (ix - 0x3fc00000) >> 16, 0 <= j < 96, where ix is the high + * part of x in IEEE double format. Then + * atan(x) = atan(y[j]) + poly2((x-y[j])/(1+x*y[j])) + * where y[j] are carefully chosen so that it matches x to around 4.5 + * bits and at the same time atan(y[j]) is very close to an IEEE double + * floating point number. Calculation indicates that + * max|(x-y[j])/(1+x*y[j])| < 0.0154 + * j,x + * + * Accuracy: Maximum error observed is bounded by 0.6 ulp after testing + * more than 10 million random arguments + */ +/* INDENT ON */ + +#include "libm.h" +#include "libm_synonyms.h" +#include "libm_protos.h" + +extern const double _TBL_atan[]; +static const double g[] = { +/* one = */ 1.0, +/* p1 = */ 8.02176624254765935351230154992663301527500152588e-0002, +/* p2 = */ 1.27223421700559402580665846471674740314483642578e+0000, +/* p3 = */ -1.20606901800503640842521235754247754812240600586e+0000, +/* p4 = */ -2.36088967922325565496066701598465442657470703125e+0000, +/* p5 = */ 1.38345799501389166152875986881554126739501953125e+0000, +/* p6 = */ 1.06742368078953453469637224770849570631980895996e+0000, +/* q1 = */ -1.42796626333911796935538518482644576579332351685e-0001, +/* q2 = */ 3.51427110447873227059810477159863497078605962912e+0000, +/* q3 = */ 5.92129112708164262457444237952586263418197631836e-0001, +/* q4 = */ -1.99272234785683144409063061175402253866195678711e+0000, +/* pio2hi */ 1.570796326794896558e+00, +/* pio2lo */ 6.123233995736765886e-17, +/* t1 = */ -0.333333333333333333333333333333333, +/* t2 = */ 0.2, +/* t3 = */ -1.666666666666666666666666666666666, +}; + +#define one g[0] +#define p1 g[1] +#define p2 g[2] +#define p3 g[3] +#define p4 g[4] +#define p5 g[5] +#define p6 g[6] +#define q1 g[7] +#define q2 g[8] +#define q3 g[9] +#define q4 g[10] +#define pio2hi g[11] +#define pio2lo g[12] +#define t1 g[13] +#define t2 g[14] +#define t3 g[15] + + +double +atan(double x) { + double y, z, r, p, s; + int ix, lx, hx, j; + + hx = ((int *) &x)[HIWORD]; + lx = ((int *) &x)[LOWORD]; + ix = hx & ~0x80000000; + j = ix >> 20; + + /* for |x| < 1/8 */ + if (j < 0x3fc) { + if (j < 0x3f5) { /* when |x| < 2**(-prec/6-2) */ + if (j < 0x3e3) { /* if |x| < 2**(-prec/2-2) */ + return ((int) x == 0 ? x : one); + } + if (j < 0x3f1) { /* if |x| < 2**(-prec/4-1) */ + return (x + (x * t1) * (x * x)); + } else { /* if |x| < 2**(-prec/6-2) */ + z = x * x; + s = t2 * x; + return (x + (t3 + z) * (s * z)); + } + } + z = x * x; s = p1 * x; + return (x + ((s * z) * (p2 + z * (p3 + z))) * + (((p4 + z) + z * z) * (p5 + z * (p6 + z)))); + } + + /* for |x| >= 8.0 */ + if (j >= 0x402) { + if (j < 0x436) { + r = one / x; + if (hx >= 0) { + y = pio2hi; p = pio2lo; + } else { + y = -pio2hi; p = -pio2lo; + } + if (ix < 0x40504000) { /* x < 65 */ + z = r * r; + s = p1 * r; + return (y + ((p - r) - ((s * z) * + (p2 + z * (p3 + z))) * + (((p4 + z) + z * z) * + (p5 + z * (p6 + z))))); + } else if (j < 0x412) { + z = r * r; + return (y + (p - ((q1 * r) * (q4 + z)) * + (q2 + z * (q3 + z)))); + } else + return (y + (p - r)); + } else { + if (j >= 0x7ff) /* x is inf or NaN */ + if (((ix - 0x7ff00000) | lx) != 0) +#if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN) + return (ix >= 0x7ff80000 ? x : x - x); + /* assumes sparc-like QNaN */ +#else + return (x - x); +#endif + y = -pio2lo; + return (hx >= 0 ? pio2hi - y : y - pio2hi); + } + } else { /* now x is between 1/8 and 8 */ + double *w, w0, w1, s, z; + w = (double *) _TBL_atan + (((ix - 0x3fc00000) >> 16) << 1); + w0 = (hx >= 0)? w[0] : -w[0]; + s = (x - w0) / (one + x * w0); + w1 = (hx >= 0)? w[1] : -w[1]; + z = s * s; + return (((q1 * s) * (q4 + z)) * (q2 + z * (q3 + z)) + w1); + } +} |