summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/atan.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/lib/libm/common/C/atan.c')
-rw-r--r--usr/src/lib/libm/common/C/atan.c198
1 files changed, 198 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/atan.c b/usr/src/lib/libm/common/C/atan.c
new file mode 100644
index 0000000000..f19b7e1fdd
--- /dev/null
+++ b/usr/src/lib/libm/common/C/atan.c
@@ -0,0 +1,198 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma weak atan = __atan
+
+/* INDENT OFF */
+/*
+ * atan(x)
+ * Accurate Table look-up algorithm with polynomial approximation in
+ * partially product form.
+ *
+ * -- K.C. Ng, October 17, 2004
+ *
+ * Algorithm
+ *
+ * (1). Purge off Inf and NaN and 0
+ * (2). Reduce x to positive by atan(x) = -atan(-x).
+ * (3). For x <= 1/8 and let z = x*x, return
+ * (2.1) if x < 2^(-prec/2), atan(x) = x with inexact flag raised
+ * (2.2) if x < 2^(-prec/4-1), atan(x) = x+(x/3)(x*x)
+ * (2.3) if x < 2^(-prec/6-2), atan(x) = x+(z-5/3)(z*x/5)
+ * (2.4) Otherwise
+ * atan(x) = poly1(x) = x + A * B,
+ * where
+ * A = (p1*x*z) * (p2+z(p3+z))
+ * B = (p4+z)+z*z) * (p5+z(p6+z))
+ * Note: (i) domain of poly1 is [0, 1/8], (ii) remez relative
+ * approximation error of poly1 is bounded by
+ * |(atan(x)-poly1(x))/x| <= 2^-57.61
+ * (4). For x >= 8 then
+ * (3.1) if x >= 2^prec, atan(x) = atan(inf) - pio2lo
+ * (3.2) if x >= 2^(prec/3), atan(x) = atan(inf) - 1/x
+ * (3.3) if x <= 65, atan(x) = atan(inf) - poly1(1/x)
+ * (3.4) otherwise atan(x) = atan(inf) - poly2(1/x)
+ * where
+ * poly2(r) = (q1*r) * (q2+z(q3+z)) * (q4+z),
+ * its domain is [0, 0.0154]; and its remez absolute
+ * approximation error is bounded by
+ * |atan(x)-poly2(x)|<= 2^-59.45
+ *
+ * (5). Now x is in (0.125, 8).
+ * Recall identity
+ * atan(x) = atan(y) + atan((x-y)/(1+x*y)).
+ * Let j = (ix - 0x3fc00000) >> 16, 0 <= j < 96, where ix is the high
+ * part of x in IEEE double format. Then
+ * atan(x) = atan(y[j]) + poly2((x-y[j])/(1+x*y[j]))
+ * where y[j] are carefully chosen so that it matches x to around 4.5
+ * bits and at the same time atan(y[j]) is very close to an IEEE double
+ * floating point number. Calculation indicates that
+ * max|(x-y[j])/(1+x*y[j])| < 0.0154
+ * j,x
+ *
+ * Accuracy: Maximum error observed is bounded by 0.6 ulp after testing
+ * more than 10 million random arguments
+ */
+/* INDENT ON */
+
+#include "libm.h"
+#include "libm_synonyms.h"
+#include "libm_protos.h"
+
+extern const double _TBL_atan[];
+static const double g[] = {
+/* one = */ 1.0,
+/* p1 = */ 8.02176624254765935351230154992663301527500152588e-0002,
+/* p2 = */ 1.27223421700559402580665846471674740314483642578e+0000,
+/* p3 = */ -1.20606901800503640842521235754247754812240600586e+0000,
+/* p4 = */ -2.36088967922325565496066701598465442657470703125e+0000,
+/* p5 = */ 1.38345799501389166152875986881554126739501953125e+0000,
+/* p6 = */ 1.06742368078953453469637224770849570631980895996e+0000,
+/* q1 = */ -1.42796626333911796935538518482644576579332351685e-0001,
+/* q2 = */ 3.51427110447873227059810477159863497078605962912e+0000,
+/* q3 = */ 5.92129112708164262457444237952586263418197631836e-0001,
+/* q4 = */ -1.99272234785683144409063061175402253866195678711e+0000,
+/* pio2hi */ 1.570796326794896558e+00,
+/* pio2lo */ 6.123233995736765886e-17,
+/* t1 = */ -0.333333333333333333333333333333333,
+/* t2 = */ 0.2,
+/* t3 = */ -1.666666666666666666666666666666666,
+};
+
+#define one g[0]
+#define p1 g[1]
+#define p2 g[2]
+#define p3 g[3]
+#define p4 g[4]
+#define p5 g[5]
+#define p6 g[6]
+#define q1 g[7]
+#define q2 g[8]
+#define q3 g[9]
+#define q4 g[10]
+#define pio2hi g[11]
+#define pio2lo g[12]
+#define t1 g[13]
+#define t2 g[14]
+#define t3 g[15]
+
+
+double
+atan(double x) {
+ double y, z, r, p, s;
+ int ix, lx, hx, j;
+
+ hx = ((int *) &x)[HIWORD];
+ lx = ((int *) &x)[LOWORD];
+ ix = hx & ~0x80000000;
+ j = ix >> 20;
+
+ /* for |x| < 1/8 */
+ if (j < 0x3fc) {
+ if (j < 0x3f5) { /* when |x| < 2**(-prec/6-2) */
+ if (j < 0x3e3) { /* if |x| < 2**(-prec/2-2) */
+ return ((int) x == 0 ? x : one);
+ }
+ if (j < 0x3f1) { /* if |x| < 2**(-prec/4-1) */
+ return (x + (x * t1) * (x * x));
+ } else { /* if |x| < 2**(-prec/6-2) */
+ z = x * x;
+ s = t2 * x;
+ return (x + (t3 + z) * (s * z));
+ }
+ }
+ z = x * x; s = p1 * x;
+ return (x + ((s * z) * (p2 + z * (p3 + z))) *
+ (((p4 + z) + z * z) * (p5 + z * (p6 + z))));
+ }
+
+ /* for |x| >= 8.0 */
+ if (j >= 0x402) {
+ if (j < 0x436) {
+ r = one / x;
+ if (hx >= 0) {
+ y = pio2hi; p = pio2lo;
+ } else {
+ y = -pio2hi; p = -pio2lo;
+ }
+ if (ix < 0x40504000) { /* x < 65 */
+ z = r * r;
+ s = p1 * r;
+ return (y + ((p - r) - ((s * z) *
+ (p2 + z * (p3 + z))) *
+ (((p4 + z) + z * z) *
+ (p5 + z * (p6 + z)))));
+ } else if (j < 0x412) {
+ z = r * r;
+ return (y + (p - ((q1 * r) * (q4 + z)) *
+ (q2 + z * (q3 + z))));
+ } else
+ return (y + (p - r));
+ } else {
+ if (j >= 0x7ff) /* x is inf or NaN */
+ if (((ix - 0x7ff00000) | lx) != 0)
+#if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
+ return (ix >= 0x7ff80000 ? x : x - x);
+ /* assumes sparc-like QNaN */
+#else
+ return (x - x);
+#endif
+ y = -pio2lo;
+ return (hx >= 0 ? pio2hi - y : y - pio2hi);
+ }
+ } else { /* now x is between 1/8 and 8 */
+ double *w, w0, w1, s, z;
+ w = (double *) _TBL_atan + (((ix - 0x3fc00000) >> 16) << 1);
+ w0 = (hx >= 0)? w[0] : -w[0];
+ s = (x - w0) / (one + x * w0);
+ w1 = (hx >= 0)? w[1] : -w[1];
+ z = s * s;
+ return (((q1 * s) * (q4 + z)) * (q2 + z * (q3 + z)) + w1);
+ }
+}