summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/atan.c
blob: f19b7e1fddf989d17c567f4f0199007367160be2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
 */
/*
 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma weak atan = __atan

/* INDENT OFF */
/*
 * atan(x)
 * Accurate Table look-up algorithm with polynomial approximation in
 * partially product form.
 *
 * -- K.C. Ng, October 17, 2004
 *
 * Algorithm
 *
 * (1). Purge off Inf and NaN and 0
 * (2). Reduce x to positive by atan(x) = -atan(-x).
 * (3). For x <= 1/8 and let z = x*x, return
 *	(2.1) if x < 2^(-prec/2), atan(x) = x  with inexact flag raised
 *	(2.2) if x < 2^(-prec/4-1), atan(x) = x+(x/3)(x*x)
 *	(2.3) if x < 2^(-prec/6-2), atan(x) = x+(z-5/3)(z*x/5)
 *	(2.4) Otherwise
 *		atan(x) = poly1(x) = x + A * B,
 *	where
 *		A = (p1*x*z) * (p2+z(p3+z))
 *		B = (p4+z)+z*z) * (p5+z(p6+z))
 *	Note: (i) domain of poly1 is [0, 1/8], (ii) remez relative
 *	approximation error of poly1 is bounded by
 * 		|(atan(x)-poly1(x))/x| <= 2^-57.61
 * (4). For x >= 8 then
 *	(3.1) if x >= 2^prec,     atan(x) = atan(inf) - pio2lo
 *	(3.2) if x >= 2^(prec/3), atan(x) = atan(inf) - 1/x
 *	(3.3) if x <= 65,	  atan(x) = atan(inf) - poly1(1/x)
 *	(3.4) otherwise           atan(x) = atan(inf) - poly2(1/x)
 *	where
 *		poly2(r) = (q1*r) * (q2+z(q3+z)) * (q4+z),
 *	its domain is [0, 0.0154]; and its remez absolute
 *	approximation error is bounded by
 *		|atan(x)-poly2(x)|<= 2^-59.45
 *
 * (5). Now x is in (0.125, 8).
 *	Recall identity
 *		atan(x) = atan(y) + atan((x-y)/(1+x*y)).
 *	Let j = (ix - 0x3fc00000) >> 16, 0 <= j < 96, where ix is the high
 *	part of x in IEEE double format. Then
 *		atan(x) = atan(y[j]) + poly2((x-y[j])/(1+x*y[j]))
 *	where y[j] are carefully chosen so that it matches x to around 4.5
 *	bits and at the same time atan(y[j]) is very close to an IEEE double
 *	floating point number. Calculation indicates that
 *		max|(x-y[j])/(1+x*y[j])| < 0.0154
 *		j,x
 *
 * Accuracy: Maximum error observed is bounded by 0.6 ulp after testing
 * more than 10 million random arguments
 */
/* INDENT ON */

#include "libm.h"
#include "libm_synonyms.h"
#include "libm_protos.h"

extern const double _TBL_atan[];
static const double g[] = {
/* one	= */  1.0,
/* p1	= */  8.02176624254765935351230154992663301527500152588e-0002,
/* p2	= */  1.27223421700559402580665846471674740314483642578e+0000,
/* p3	= */ -1.20606901800503640842521235754247754812240600586e+0000,
/* p4	= */ -2.36088967922325565496066701598465442657470703125e+0000,
/* p5	= */  1.38345799501389166152875986881554126739501953125e+0000,
/* p6	= */  1.06742368078953453469637224770849570631980895996e+0000,
/* q1   = */ -1.42796626333911796935538518482644576579332351685e-0001,
/* q2   = */  3.51427110447873227059810477159863497078605962912e+0000,
/* q3   = */  5.92129112708164262457444237952586263418197631836e-0001,
/* q4   = */ -1.99272234785683144409063061175402253866195678711e+0000,
/* pio2hi */  1.570796326794896558e+00,
/* pio2lo */  6.123233995736765886e-17,
/* t1   = */ -0.333333333333333333333333333333333,
/* t2   = */  0.2,
/* t3   = */ -1.666666666666666666666666666666666,
};

#define	one g[0]
#define	p1 g[1]
#define	p2 g[2]
#define	p3 g[3]
#define	p4 g[4]
#define	p5 g[5]
#define	p6 g[6]
#define	q1 g[7]
#define	q2 g[8]
#define	q3 g[9]
#define	q4 g[10]
#define	pio2hi g[11]
#define	pio2lo g[12]
#define	t1 g[13]
#define	t2 g[14]
#define	t3 g[15]


double
atan(double x) {
	double y, z, r, p, s;
	int ix, lx, hx, j;

	hx = ((int *) &x)[HIWORD];
	lx = ((int *) &x)[LOWORD];
	ix = hx & ~0x80000000;
	j = ix >> 20;

	/* for |x| < 1/8 */
	if (j < 0x3fc) {
		if (j < 0x3f5) {	/* when |x| < 2**(-prec/6-2) */
			if (j < 0x3e3) {	/* if |x| < 2**(-prec/2-2) */
				return ((int) x == 0 ? x : one);
			}
			if (j < 0x3f1) {	/* if |x| < 2**(-prec/4-1) */
				return (x + (x * t1) * (x * x));
			} else {	/* if |x| < 2**(-prec/6-2) */
				z = x * x;
				s = t2 * x;
				return (x + (t3 + z) * (s * z));
			}
		}
		z = x * x; s = p1 * x;
		return (x + ((s * z) * (p2 + z * (p3 + z))) *
				(((p4 + z) + z * z) * (p5 + z * (p6 + z))));
	}

	/* for |x| >= 8.0 */
	if (j >= 0x402) {
		if (j < 0x436) {
			r = one / x;
			if (hx >= 0) {
				y =  pio2hi; p =  pio2lo;
			} else {
				y = -pio2hi; p = -pio2lo;
			}
			if (ix < 0x40504000) {	/* x <  65 */
				z = r * r;
				s = p1 * r;
				return (y + ((p - r) - ((s * z) *
					(p2 + z * (p3 + z))) *
					(((p4 + z) + z * z) *
					(p5 + z * (p6 + z)))));
			} else if (j < 0x412) {
				z = r * r;
				return (y + (p - ((q1 * r) * (q4 + z)) *
					(q2 + z * (q3 + z))));
			} else
				return (y + (p - r));
		} else {
			if (j >= 0x7ff) /* x is inf or NaN */
				if (((ix - 0x7ff00000) | lx) != 0)
#if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
					return (ix >= 0x7ff80000 ? x : x - x);
					/* assumes sparc-like QNaN */
#else
					return (x - x);
#endif
			y = -pio2lo;
			return (hx >= 0 ? pio2hi - y : y - pio2hi);
		}
	} else {	/* now x is between 1/8 and 8 */
		double *w, w0, w1, s, z;
		w = (double *) _TBL_atan + (((ix - 0x3fc00000) >> 16) << 1);
		w0 = (hx >= 0)? w[0] : -w[0];
		s = (x - w0) / (one + x * w0);
		w1 = (hx >= 0)? w[1] : -w[1];
		z = s * s;
		return (((q1 * s) * (q4 + z)) * (q2 + z * (q3 + z)) + w1);
	}
}